
 

Preface 

The foreign exchange market is one of the most complex dynamic markets 
with the characteristics of high volatility, nonlinearity and irregularity. 
Since the Bretton Woods System collapsed in 1970s, the fluctuations in the 
foreign exchange market are more volatile than ever. Furthermore, some 
important factors, such as economic growth, trade development, interest rates 
and inflation rates, have significant impacts on the exchange rate fluctuation. 
Meantime, these characteristics also make it extremely difficult to predict 
foreign exchange rates. Therefore, exchange rates forecasting has become 
a very important and challenge research issue for both academic and indus-
trial communities. 

In this monograph, the authors try to apply artificial neural networks 

forecasting techniques, ANNs are a class of data-driven, self-adaptive, and 
nonlinear methods that do not require specific assumptions on the under-
lying data generating process. These features are particularly appealing for 
practical forecasting situations where data are abundant or easily available, 
even though the theoretical model or the underlying relationship is un-
known. Furthermore, ANNs have been successfully applied to a wide 
range of forecasting problems in almost all areas of business, industry and 
engineering. In addition, ANNs have been proved to be a universal func-
tional approximator that can capture any type of complex relationships. 
Since the number of possible nonlinear relationships in foreign exchange 
rates data is typically large due to the high variability, ANNs have the 
advantage in approximating them well. 

The main motivation of this monograph is to provide academic re-
searchers and business practitioners recent developments in forecasting 
foreign exchange rates with ANNs. Therefore, some of the most important 
progress in foreign exchange rates forecasting with neural networks are 
first surveyed and then a few fully novel neural network models for ex-
change rates forecasting are presented. This monograph consists of six 
parts which are briefly described as follows. 

(ANNs) to exchange rates forecasting. Selection of the ANN approach for ex- 
change rates forecasting is because of ANNs’ unique features and powerful
pattern recognition capability. Unlike most of the traditional model-based 
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Part I presents a survey on ANNs in foreign exchange rates forecasting. 
Particularly, this survey discusses the factors of affecting foreign exchange 
rates predictability with ANNs. Through a literature review and analysis, 
some implications and research issues are presented. According to the 
results and implications of this survey, the sequel parts will discuss those
research issues respectively and provide the corresponding solutions. 

In Part II, we provide a data preparation scheme for neural network data 
analysis. Some basic learning principles of ANNs are presented before an 
integrated data preparation scheme is proposed to remedy the literature
gap. 

In terms of the non-optimal choice of the learning rate and momentum 
factor in neural network learning algorithms in the existing literature, Part 
III constructs three single neural network models through deriving opti-
mally adaptive learning rates and momentum factors. In the first single 
neural network model, optimal instantaneous learning rates and momen-
tum factors are derived from the back-propagation (BP) algorithm. Using 
adaptive forgetting factors, an online BP learning model with optimally 

smoothing techniques are used to determine the momentum factor of neural 
network algorithm. Meantime, the proposed neural network model with 
adaptive smoothing momentum factors is applied to exchange rate index 
prediction. 

In accordance with the analysis in the survey, the hybrid and ensemble 
models usually achieve better prediction performance than that of indivi-
dual ANN model, Part IV and Part V present three hybrid neural network 
models and three ensemble neural network models, respectively. 

In the first hybrid neural network model of Part IV, neural network and 
exponential smoothing model are hybridized into a synergetic model for 

neural network model in a nonlinear way. This model is applied to three 
typical foreign exchange rate forecasting problems and obtained good pre-
diction performance. In the third model, a hybrid intelligent data mining 
approach integrating a novel ANN model — support vector machine (SVM) 
with genetic algorithm (GA) for exploring foreign exchange market move-
ment tendency. In this model, a standard GA is first used to search through 
the possible combination of input features. The input features selected by 
GA are used to train SVM. The trained SVM is then used to predict ex-
change rate movement direction. 

In the three ensemble neural network models of Part V, the first model 
presents a multistage ensemble framework to formulate an ensemble neural 

foreign exchange rates. In the third single neural network model, adaptive 

foreign exchange rate prediction. Subsequently, the generalized linear auto- 
regression (GLAR) and neural network models are fused by another 

adaptive learning rates is developed to realize the online prediction of
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network model. In these stages of formulating ensemble models, some 
crucial issues are addressed. The second ensemble model introduces a 
meta-learning strategy to construct an exchange rate ensemble forecasting 
model. In some sense, an ensemble model is actually a meta-model. In the 
third ensemble model, a confidence-based neural network ensemble model 
is used to predict the exchange rate movement direction. In the last chapter 
of Part V, we propose a double-phase-processing procedure to solve the 
following two dilemmas, i.e., (1) whether should we select an appropriate 
modeling approach for the prediction purpose or should combine these dif-
ferent individual approaches into an ensemble forecast for the different/ 
dissimilar models? (2) whether should we select the best candidate model 
for forecasting or to mix the various candidate models with different para-
meters into a new forecast for the same/similar modeling approaches? 

Depended upon the previous methodology framework, an intelligent 
foreign exchange rates forecasting support system is developed by using 
client/server model and popular web technologies in Part VI. The descrip-
tion of this intelligent system is composed of two chapters. First of all, 
system conceptual framework, modeling techniques and system implemen-
tations are illustrated in details. Then an empirical and comprehensive 
assessment is performed. Empirical and comprehensive assessment results 
reveal that the intelligent exchange rate forecasting support system is one 
of the best forecasting systems by evaluating the performance of system 
implementation and comparing with the existing similar systems.  
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2 Basic Learning Principles of Artificial Neural 
Networks 

2.1 Introduction 

Artificial neural networks (ANNs), as an emerging discipline, studies or 
emulates the information processing capabilities of neurons of the human 
brain. It uses a distributed representation of the information stored in the 
network, and thus resulting in robustness against damage and correspond-
ing fault tolerance (Shadbolt and Taylor, 2002). Usually, a neural network 
model takes an input vector X and produces output vector Y. The relation-
ship between X and Y is determined by the network architecture. There are 
many forms of network architecture inspired by the neural architecture of 
the human brain. The neural network generally consists of one input layer, 
one output layer, and one or more hidden layers, as illustrated in Fig. 2.1. 

Fig. 2.1. The basic architecture of neural network 

In the neural network model, it is widely accepted that a three-layer 
back propagation neural network (BPNN) with an identity transfer func-
tion in the output unit and logistic functions in the middle-layer units can 
approximate any continuous function arbitrarily well given a sufficient 
amount of middle-layer units (White, 1990). Furthermore, in the practical 
applications, about 70 percent of all problems are usually trained on a 
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three-layer back-propagation network, as revealed by Chapter 1. The back-
propagation learning algorithm, designed to train a feed-forward network, 
is an effective learning technique used to exploit the regularities and excep-
tions in the training sample. 

A major advantage of neural networks is their ability to provide flexible 
mapping between inputs and outputs. The arrangement of the simple units 
into a multilayer framework produces a map between inputs and outputs 
that is consistent with any underlying functional relationship regardless of 
its “true” functional form. Having a general map between the input and 
output vectors eliminates the need for unjustified priori restrictions that are 
needed in conventional statistical and econometric modeling. Therefore, a 
neural network is often viewed as a “universal approximator”, i.e. a flexi-

(Hornik et al., 1989; White, 1990). Both theoretical proof and empirical 
applications have confirmed that a three-layer BP neural network (BPNN) 
model with an identity transfer function in the output unit and logistic 
functions in the middle-layer units is adequate for foreign exchange rates 
forecasting, which is our research focus in this book. Therefore, a three-
layer BP neural network model with identity activation function in the out-
put unit and logistic function in the middle-layer units is used throughout 
this book except specially specified. 

2.2 Basic Structure of the BPNN Model 

Consider a three-layer BPNN, which has p nodes of the input layer, q 
nodes of the hidden layer and k nodes of the output layer. Mathematically, 
the basic structure of the BPNN model is described by (see derivation 
later) 

))]()(()([)1(ˆ
12 tXtWFtVFtY T=+  (2.1) 
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ble functional form that can approximate any arbitrary function arbitrar-
ily well, given sufficient middle-layer units and properly adjusted weights 
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i0 vij(t), i = 1, …, q, 
j = 1, …, k, are the weights form the hidden node i to the output node j; 
vi0(t) is the bias of the output node; F1(•) and F2(•) are the activation func-
tion, which can be any nonlinear function as long as they are continuous, 
bounded and differentiable. Typically, F1(•) is a sigmoidal or hyperbolic 
tangent function and t is a time factor. For convenience, a symmetric hyper-
bolic tangent function (i.e., )tanh()( 1

01 xuxf −=  where u0 is the shape factor 
of the activation function) is used as the activation function of the hidden 
layer (Yu et al., 2005a, b). 
 
Derivation of Equation (2.1):  
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where f1 is the activation function of the hidden nodes and f2 is the activa-
tion function of output nodes and t is a time factor.                                    ■ 

Through estimating model parameter vector or network connection weights 

=i tnet )(
 i = 0, 1, … , q, is the output of the i-th hidden node. 

w (t), i = 1, …, q , are the bias of the hidden nodes; 

(W, V ) via BPNN training and learning, we can realize the corresponding 
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modeling tasks, such as function approximation, pattern recognition, and 
time series prediction. 

2.3 Learning Process of the BPNN Algorithm 

The ability to learn and improve its performance from examples is the neural 
network’s fundamental trait. For BPNN, it is a class of supervised learning 
algorithm in the form of the neural network associative memory. Usually, 
the back-propagation learning mechanism consists of two phases: forward-
propagation and back-propagation phase, as Tam and Kiang (1992) re-
ported.  

),,,( 21 ipiii xxxX L=  
and ),,,( 21 ikiii yyyY L= i i

output vector and 1 ≤  i ≤  n. 
In the first phase (forward-propagation phase), Xi is fed into the input 

layer, and an output )ˆ,,ˆ,ˆ(ˆ
21 ikiii yyyY L=  is generated based on the cur-

rent weight vector W. The objective is to minimize an error function E de-
fined as 

∑ ∑
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Through changing W so that all input vectors are correctly mapped to their 
corresponding output vectors. 

In the second phase (back-propagation phase), a gradient descent in the 
weight space, W, is performed to locate the optimal solution. The direction 
and magnitude change ∆wij can be computed as 

ε
ij

ij w
Ew

∂
∂

−=∆  (2.3) 

where 0 < ε  < 1 is a learning parameter controlling the algorithm’s con-
vergence rate. 

The total squared error calculated by Equation (2.1) is propagated back, 
layer by layer, from the output units to the input units in the second phase. 
Weight adjustments are determined on the way of propagation at each 
level. The two phases are executed during each iteration of the back-
propagation algorithm until E converges. 

 where X  is an input vector, Y  is a target 
Suppose we have n samples. Each is described by 
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2.4 Weight Update Formulae of the BPNN Algorithm 

Actually, the model parameter vector or neural network weights (W, V ) (as 
defined by Section 2.2) can be obtained by minimizing iteratively a cost 
function, E(X: W, V ). In general, E(X: W, V ) is a sum of the error squares 
cost function with k output nodes and n training pairs or patterns, that is, 
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where yj is the jth actual value and yj(X: W,V ) is the jth estimated value. 
Given the time factor t, Equation (2.4) can be rewritten as 
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where Rtetetete kT
kjjjj )](      )(    )([)( 1

21 L ∈= × , yj(t) and )(ˆ tyj  
are the jth actual value predicted value at time t, respectively. 

By applying the gradient descent rule to the cost function E(t) (as shown 
in Equation (2.5)) and considering Equation (2.1), we can obtain the 
weight increment formulae with respect to W and V, respectively (see 
proof later). 
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where η  is the learning rate, ∇  is the gradient operator, )(tW∆  and 
)(tV∆  are the weight adjustment increments at iteration t, respectively. 

Suppose )1()()( −−=∆ tWtWtW and )1()()( −−=∆ tVtVtV , then 
the weights update formulae for standard BP learning algorithm with res-
pect to W and V are given by, respectively 
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, j = 1,2,L, n
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where ∆  is the incremental operator, qq
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In order to prove Equations (2.8) and (2.9), three lemmas must be firstly 
introduced (Sha and Bajic, 2002). 
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Lemma 2.2  
The partial derivative of the single hidden output )(1 WXFV T  with res-

pect to the weight matrix W is given by 
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Lemma 2.3  
The partial derivative of the single hidden output )(1 WXFV T  with res-

pect to the weight vector V is given by 
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Using Lemmas 2.1-2.3, we can prove the weight update formula in 

the following. First of all, we derive the gradient of E(t) with respect to 
weights W and V. 

With reference to Equation (2.5) and Lemmas 2.1 and 2.2, the gradient 
of E(t) with respect to W can be obtained by applying the steepest descent 
method to E(t), 
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Similarly, the gradient of E(t) with respect to V can also be obtained 
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Therefore, the weight increments )(tW∆  and )(tV∆  can be obtained 

from the above derivation processes, i.e., 
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Assume )1()()( −−=∆ tWtWtW and )1()()( −−=∆ tVtVtV , then 

the weights update rule (i.e., Equations (2.8) and (2.9)) for standard BP 
learning algorithm with respect to W and V can be obtained, i.e., 
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Using the weight update formulae (i.e., Equations (2.8) and (2.9)), we 
can train BPNN to perform the corresponding tasks, such as data mining, 
function approximation and financial time series forecasting. 

2.5 Conclusions 

In this chapter, some preliminaries about back-propagation neural net-
works are presented. First of all, a basic architecture of three-layer BPNN 
model is described in the form of matrix. Then we briefly introduce a basic 
learning process including forward propagation phase and back-propagation 
phase for BPNN. Based upon the basic structure and learning process, the 
weight update rules are derived in terms of steepest gradient descent algo-
rithm. Using the weight update rules, some data analysis tasks are performed. 

However, in the neural network applications, an important process, data 
preparation process, is often neglected by researchers and business users. 
Although data preparation in neural network data analysis is important, 
some existing literature about the neural network data preparation are scat-
tered, and there is no systematic study about data preparation for neural 
network data analysis (Yu et al., 2006a). Therefore, this book tries to develop 
an integrated data preparation scheme for neural network data analysis, 
which will be described in the next chapter.  




