
 

Foreword 

In a cubic centimeter, there are 1 000 cubic millimeters, in a cubic 
decimeter 1 000 000, in a cubic meter 1 000 000 000, and so forth. Why on 
earth is it usually so difficult to teach and to learn such simple facts, and 
many others of a similar vein? Of course, some questions of this type are 
more intricate. There is no easy computation showing that a giant ten times 
as high as a given dwarf weighs about one thousand more. So the nature of 
the problem is a crucial factor, and the authors of this study are fully aware 
of that.  

This book deals with the illusion of linearity, mainly in the context of 
enlargement and reduction of figures and solids. An elementary example is 
when somebody believes that multiplying the side of a square by 2 implies 
that its area is also multiplied by 2. The book approaches also, to some 
extent, the context of probabilities. The authors rely essentially on two 
methods of investigation, namely experiments involving an experimental 
and a control group of students, and individual interviews on the other. A 
number of important variables are scrutinized, the most important being:  

• drawings made by students themselves versus ready-made drawings,  
using squared paper or not  
• direct versus indirect measures 
• problems stated in the missing-value format, or in the comparison 
format  
• awakening students’ consciousness by a preliminary significant 
question  
• degree of authenticity of the situation.  
Two of these variables deserve some further explanation.  
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Direct versus indirect measures. Expressing an area in square meters is 
an example of a direct measure, while relating the area of a surface to the 
amount of paint required to cover it is an example of an indirect measure.  

Missing-value or comparison format. As an example, one side of a 
polygon measures 2 dm and its area is 6 dm2. What happens to the area in an 
enlargement operation where the 2 dm become 8 dm? This is a missing-
value format. And if the 2 dm were increased by a factor of 4? This is a 
comparison format. In short, the givens are three measures in the former 
case, and two measures and a ratio of measures in the latter.  

An impressive result of the study is how deep-rooted the illusion of 
linearity is and how strongly it resists many variations of the teaching and 
learning parameters. The principal circumstance in which the illusion is 
substantially weakened is when the students are asked, instead of drawing or 
computing, to physically cover the enlarged surface (of the problem) by an 
appropriate paving. And even in that case, the improvement of the students’ 
awareness does not substantially withstand returning to more academically 
stated questions.  

The authors also tried a series of ten classroom one-hour sessions 
inspired by the principles of realistic mathematics education: meaningful and 
attractive problems, small group work, whole-class discussions and, as far as 
mathematical matters are concerned, a variety of representations and 
symbols (drawings, tables of functions, graphs, formulas). Even such a more 
concentrated and well-oriented pedagogical action did not yield entirely 
satisfactory results: “many students did not develop a deeper understanding 
of (non)-proportionality.”  

For such persistence of the illusion of linearity, three main causes are 
identified. One of them pertains to the way proportionality is often taught, 
namely when some parts of the curriculum pay an almost exclusive attention 
to proportionality as compared to non-linear relations, when there is an 
overuse of missing-value problems and an overemphasis on routine solving 
processes as compared to meaningful analysis of situations. Indeed, 
proportionality is more than a four-term relation. There are the classical rule 
of three, tables of proportionality showing more than four terms, straight-line 
graphs passing through the origin, the constant slope of such graphs 
identified with the coefficient of proportionality, etc. Of course, these 
features are better understood when contrasted with non-proportional (non-
linear) relations. If the teaching ignores these meaningful facets of linearity 
and remains confined to the narrow domain of four-term missing-value 
questions, and if it does not contrast proportionality with non-
proportionality, then the students are likely to remain like short-sighted 
prisoners in an obscure intellectual cell. As was so convincingly explained 
by Wertheimer (1945), a perspicacious problem solver in a given domain is 
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one who knows the landscape familiarly, i.e. not only its various parts, but 
the ways to circulate amongst them. Perceiving the very structure as a whole 
is crucial.  

Further, if linearity and non-linearity ought to be regularly confronted, 
doesn’t it mean that the real notion at stake is the one of function with its 
various modalities? As Klein (1939) wrote a long time ago (the quotation 
remains surprisingly timely after such a long period): 

We, who are readily called reformers, want to place the concept of 
function at the centre of teaching. For it is that mathematical concept of 
the last 200 years which, wherever mathematical thought is needed, plays 
a central role.  

Another cause of the persistent illusion of proportionality can be found, 
according to the authors, in some shortcomings of the general geometrical 
knowledge of the students. However, this second cause is akin to the first 
one. One refers to the teaching of proportionality, the other to an 
unsuccessful teaching of geometry in general. But what does it mean that, 
when solving proportionality questions, the students show some gaps in their 
general geometrical knowledge? It means that their understanding of 
proportionality lacks some structural links with significant adjoining 
geometrical questions. Generalizing this comment, one might say that 
mathematics is not a juxtaposition of items, it is an integrated culture. What 
is at stake is the mobility of mind. The authors are aware of that. As a 
remedy, they propose to displace the emphasis from computing correct 
numerical answers to building appropriate mathematical models. But what is 
the substance of such models if not those mathematical notions and 
properties that faithfully express the structure of the situation on hand?  

Let us now leave aside the deficiencies of the teaching system. A third 
cause of the illusion of linearity is of a more intrinsic nature. It relates to the 
intuitiveness and simplicity of the linear relation. This deserves some 
comments. Let us assume that a student received a fully appropriate 
instruction on proportionality and non-proportionality. She or he might still 
be seduced by the charms of proportionality. This is an effect of what might 
be called the inertia of concepts. Proportionality is similar, to some extent, to 
a paradigm in the sense of Kuhn (1962). When you have an intellectual 
instrument at your disposal, if this instrument properly solved a lot of 
previous problems, if it appears simpler and more elegant than others, then 
you stick to it until further notice. What happens here pertains 
simultaneously to the pleasant and simple nature of the knowledge and the 
indolent nature of the human mind. The inertia of the concepts is also 
illustrated by a striking finding of the study. In fact, when students have 
been duly trained, on a number of examples, to identify the non-linear 
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situations, they show a tendency to overuse a non-linear model. Changing 
ones mind is not so easy, but once this is done... Le mieux est l’ennemi du 
bien1.  

Now, what could be done to avoid such seductions, if not developing the 
habit of doubting, a critical mind, a constant circumspection in front of any 
problem, the habit of checking everything? To conclude, may I express how 
I appreciate the honesty of this study. It brings us a most careful survey of a 
number of real difficulties more than a wealth of solutions. All the more so 
that one of the findings is that even ten classroom sessions are not enough to 
bring a persistent change. No panacea is proposed. These questions have to 
be considered in a long run perspective. In the mean time, some doubts will 
remain. But after all, as Dante wrote in the Inferno, 

Che non men che saper, dubbiar m’aggrada,  

which means  

As well as knowing, doubting is praiseworthy.  

 

Nicolas Rouche 
Professor Emeritus of the Catholic University of Louvain, Belgium 

 
 

1 The best is the enemy of the good. 



  

 

Chapter 2 

IN SEARCH OF EMPIRICAL EVIDENCE 

 
 

1. INTRODUCTION 

Notwithstanding the numerous illustrations of students’ tendency towards 
the overuse of linearity, systematic observations and analyses of this 
phenomenon based on empirical research have been absent until recent 
years. In this chapter, we report a first pair of studies aimed at filling this gap 
in the research literature (see also De Bock, Verschaffel, & Janssens, 1998). 
Both studies focused on application problems about the effect of a linear 
enlargement or reduction of a geometrical figure on the perimeter or area of 
that figure. As illustrated in the previous chapter, many scholars in the field 
have mentioned the occurrence of students’ overuse of linearity for this 
particular type of problem situation, most often incidentally in the course of 
studies with other main foci (e.g. Mogensen, 2004; Outhred & Mitchelmore, 
2000; Rogalski, 1982; Simon & Blume, 1994; Tierney, Boyd, & Davis, 
1990). 

A first study investigated the occurrence and the strength of 12–13-year 
old students’ tendency to overuse linearity in solving word problems about 
the effect of a linear enlargement or reduction of a geometrical figure on the 
perimeter or area of that figure. Moreover, the impact of two task variables 
was investigated: (1) the shape of the geometrical figure involved in the 
problem situation, and (2) the availability of self-made or ready-made 
drawings accompanying the problem statement. Due to the extremely low 
occurrence of correct answers in this study, however, it was hardly possible 
to determine the impact of these task variables. Therefore, a second study 
was conducted, which was basically a replication of the first one, but now 
with an older age group of 15–16-year old students. 
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2. STUDY 1 

2.1 Subjects, materials and procedure 

Participants in the first study were 120 12–13-year olds (7th-graders) of a 
large secondary school in Flanders recruiting its students from a wide range 
of elementary schools in the region. Therefore, although all students 
attended the same secondary school at the time of testing, their educational 
histories with respect to (elementary) mathematics education were not 
identical but there are common elements. Word problems dealing with direct 
proportionality constitute an important topic of the mathematics program in 
the upper grades of the primary school in Flanders (Ministerie van de 
Vlaamse Gemeenschap, 1997). With the exception of inverse proportionality 
(y = k/x), other types of functional relationships are normally not 
systematically addressed at this level of schooling. With respect to 
elementary geometry, Flemish students are expected to master the names and 
the basic properties of the most familiar geometric figures, including the 
formulas for calculating their perimeter, area and volume, by the end of 
elementary school. Their expected experience with scaling and similarity in 
relation to mensuration involves declarative and procedural knowledge of 
the rules of the metric system for one-, two-, and three-dimensional 
measures.  

In this first study, the 120 students were divided into three equivalent 
groups (Groups I, II, and III consisting of 40, 42, and 38 students, 
respectively). Each group was composed of two intact classes, one of which 
had six hours of mathematics a week, while the other class had four hours of 
mathematics a week. 

The experiment consisted of two phases. During the first phase all 120 
students were administered the same paper-and-pencil test consisting of 12 
experimental items and 3 buffer items (Test 1). No clues or special 
instructions were given. All 12 experimental items involved enlargements of 
similar plane figures, and belonged to three categories: 4 items about squares 
(S), 4 about circles (C), and 4 about irregular figures (I). Within each 
category of figures (S, C, and I), there were 2 proportional and 2 non-
proportional items. Table 2-1 lists examples of one proportional and one 
non-proportional item for each of the three categories of figures from Test 1. 
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Table 2-1. Examples of experimental items 

Enlargement of a square figure 

Proportional item: 
Farmer Gus needs approximately 4 days to dig a ditch around a square pasture with a 
side of 100 m. How many days would he need to dig a ditch around a square pasture 
with a side of 300 m? (Answer: 12 days) 

Non-proportional item: 
Farmer Carl needs approximately 8 hours to fertilise a square piece of land with a side 
of 200 m. How many hours would he need to fertilise a square piece of land with a side 
of 600 m? (Answer: 72 hours) 

Enlargement of a circular figure 

Proportional item: 
You need approximately 6 hours to sail around a circular island with a diameter of 
70 km. How many hours would you need to sail around a circular island with a 
diameter of 140 km? (Answer: 12 hours) 

Non-proportional item: 
You need approximately 400 grams of flower seed to lay out a circular flower bed with 
a diameter of 10 m. How many grams of flower seed would you need to lay out a 
circular flower bed with a diameter of 20 m? (Answer: 1 600 grams) 

Enlargement of an irregular figure 

Proportional item: 
On a map of Belgium in an atlas the distance from Genk to Leuven is approximately 
5 cm and the distance from Genk to Ghent approximately 11 cm. On a map in front of 
the classroom the distance from Genk to Leuven is approximately 20 cm. How long is 
the distance from Genk to Ghent on this map? (Answer: 44 cm) 

Non-proportional item: 
On a map of Belgium in an atlas the distance from Genk to Tongeren is approximately 
2 cm and the area of Belgium approximately 250 cm2. On a map in front of the 
classroom, the distance from Genk to Tongeren is approximately 6 cm. How large is 
the area of Belgium on this map? (Answer: 2 250 cm2) 

 
As illustrated in Table 2-1, the variables ‘length’ and ‘area’ were mostly 

replaced by more concrete, indirect variables that are proportional to them 
(or are reasonably supposed to be so), with a view to constructing a set of 
meaningful application problems. We come back to this issue in chapter 3. 
All other possibly relevant task variables – such as the degree of familiarity 
with the problem context, the grammatical complexity of the problem 
formulation, and the nature of given numbers – were controlled as much as 
possible. For instance, we used only ‘simple’ natural numbers as scale 
factors, so that all required computations had a similar technical difficulty. 
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The response sheets could be used not only to write the answers, but also to 
make calculations, drawings, or comments. 

Two weeks after the first test the three groups of students were 
confronted with a second test (Test 2), which was a parallel version of Test 1. 
Once again, the problems were the same in all three groups, but the way in 
which the test was introduced and presented was different. In Group I, which 
functioned as the control group, the testing conditions were exactly the same 
as during the first test, i.e., these students received the problems without any 
additional clues and in exactly the same format as during Test 1. The 
students of Group II were explicitly instructed to make a sketch or drawing 
before answering each problem. This instruction was given at the beginning 
of the test and was illustrated by means of an example item (which did, of 
course, not involve similar plane figures). In Group III every problem was 
accompanied by a relevant ready-made drawing like the one given in Figure 
2-1 (belonging to the non-proportional item about squares in Table 2-1). 

200 m 600 m 

 

Figure 2-1. Example of a ready-made drawing 

2.2 Hypotheses 

First, on the basis of what is generally acknowledged in the field, we 
hypothesized that the predominance of the linear model would be a serious 
obstacle for the vast majority of the students. Consequently, we predicted 
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that their performance on the 6 proportional items would be very high, while 
their scores on the 6 non-proportional items would be very low. 

Second, we hypothesized that a sketch or drawing would have a 
beneficial effect on the students’ performance, especially for the non-
proportional experimental items. This hypothesis is based on the vast amount 
of theoretical and empirical research on how and why drawings and 
diagrams are a useful in enhancing people’s ability to represent and solve 
(mathematical) problems (Aprea & Ebner, 1999; De Corte, Greer, & 
Verschaffel, 1996; Hall, Bailey, & Tillman, 1997; Larkin & Simon, 1987; 
Pólya, 1945; Reed, 1999; Schoenfeld, 1992; Vlahovic-Stetic, 1999). When 
students are asked to make a drawing themselves, they are stimulated to 
construct a proper (mental) representation of the essential elements and 
relations involved in the problem (Pólya, 1945; Schoenfeld, 1992). 
Especially for the non-proportional items, this representational activity 
should help students to detect the inappropriateness of a stereotyped linear 
reasoning, and to determine the nature of the non-linear relationship 
connecting the known and the unknown elements in this problem 
representation. Of course, the heuristic of making a drawing or diagram does 
not guarantee that one will find the solution of a given problem. For 
instance, a drawing that reflects an incorrect understanding of the problem 
will be of little help for the problem solution (Van Essen & Hamaker, 1990). 
When students do not succeed in making a correct, usable drawing 
themselves, it might be more effective if they are provided with a correct 
ready-made drawing. Starting from these hypotheses, we predicted that in 
Group I the results will be the same for Test 1 and Test 2, while in Group II 
and Group III, the percentage of correct responses will increase from Test 1 
to Test 2. This increase would be essentially due to a decrease of 
inappropriate solutions based on linear reasoning on the non-proportional 
items during Test 2. No specific hypothesis was stated with respect to the 
relative impact of the two experimental manipulations. 

Third, we predicted that students’ performances would be different for 
the distinct types of plane figures involved in the study. More specifically, 
the items about squares (S items) were supposed to be the easiest and those 
about irregular figures (I items) the most difficult. We also expected that the 
size of the anticipated effect of drawings (see hypothesis 2) would be 
affected by the type of figure, in the sense that this drawing effect would be 
the greatest for the (non-proportional) S items and the lowest for the (non-
proportional) I items. The rationale behind these predictions is exemplarily 
worked out for the non-proportional item about squares given in Table 2-1. 
To find the answer to this item, the problem solver can choose among three 
appropriate solution strategies: (1) ‘paving’ the big square with little ones, 
(2) calculating and comparing the areas of both squares by means of the 
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formula ‘area = side × side’, and (3) applying the general principle ‘if length 
× r, then area × r2’. For the corresponding non-proportional item about 
circles, the first solution strategy is less obvious and can only provide an 
approximate answer, while the second strategy is more error-prone (because 
of the greater complexity of the formula for finding the area of a circle). For 
the corresponding non-proportional item dealing with irregular figures, a 
formula for calculating the area is not available and the paving strategy – or 
a variant, namely approximately transforming the irregular figure into one or 
more regular ones – does not provide an ‘exact’ answer. Applying the 
general principle is the only ‘direct’ solution strategy for this item. 

2.3 Analysis 

All responses on the proportional and the non-proportional items were 
categorized as ‘correct’ or ‘incorrect’. A response was considered correct 
when it was the result of a mathematically appropriate reasoning process; 
therefore, answers that differed from the correct one because of a technical 
mistake in a correct overall solution process were considered correct too. All 
other kinds of erroneous answers were scored as incorrect. Because a 
detailed analysis of a random sample of 300 incorrect answers on non-
proportional items revealed that 95% of them resulted from an inappropriate 
linear reasoning process (see De Bock, Verschaffel, & Janssens, 1996), we 
decided not to split up the incorrect answers any further in the present 
analysis. 

The hypotheses were tested by means of a ‘3 × 2 × 2 × 3’ analysis of 
variance (ANOVA) with ‘Group’ (Group I, II, and III), ‘Test’ (Test 1 vs. Test 
2), ‘Proportionality’ (proportional vs. non-proportional items), and ‘Figure’ 
(squares, circles, and irregular figures) as independent variables, and the 
number of ‘Correct answers’ as the dependent variable. Significant main and 
interaction effects were further analyzed using a posteriori Tukey tests. 

2.4 Results with respect to the hypotheses 

Table 2-2 gives an overview of the percentages of correct responses of 
the three groups of students (I, II, and III) on the proportional and the non-
proportional problems involving squares (S), circles (C), and irregular 
figures (I) in Test 1 and 2. 

The results provide a very strong confirmation of the first hypothesis. 
Indeed, there was a strong difference in the performance on the proportional 
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and non-proportional problems4. For the three groups and the two tests 
together, the percentages of correct responses for all proportional and for all 
non-proportional items were 92% and 2%, respectively. This shows that 
most 12–13-year olds were able to solve the proportional items correctly, 
whereas the non-proportional items were seldom solved correctly. 

The results did not support the second hypothesis concerning the 
beneficial effect of drawings on students’ performance. For none of the three 
groups did we find a significant increase in the students’ scores from Test 1 
to Test 2 in general, or in their performance on the non-proportional items in 
particular. For Group I (= the control group) the percentage of correct 
responses on the non-proportional items even decreased slightly from 2% to 
1% between Test 1 and Test 2. For Group II (= the self-made drawing group) 
this percentage unexpectedly remained the same at 2% during both tests. For 
Group III (= the ready-made drawing group) the percentage of correct 
answers on the non-proportional items increased slightly between Test 1 and 
Test 2, from 2% to 5%,  but remained still extremely low during the latter 
test. In sum, the anticipated beneficial impact of the instruction to make 
drawings (in Group II) and of the provision of ready-made drawings (in 
Group III) was too weak to break the predominance of the linear model in 
the reasoning of these 12–13-year olds. 

In line with the third hypothesis, the type of figure had a significant effect 
on the percentage of correct responses5. The scores for the S, the C, and the I 
items were in the expected direction – the overall percentages of correct 
answers for these three kinds of problems were 49%, 48%, and 45%, 
respectively, but only the difference between the S items and the I items and 
between the C items and the I items was statistically significant. Moreover, 
the observed effect of the type of figure was found in the proportional items 
as well as in the non-proportional items. 

Table 2-2. Percentage of correct responses of the three groups of 12–13-year olds on the 
different categories of proportional and non-proportional items in Test 1 and Test 2 
Group     Test 1        Test 2   
 Proportional items Non-proportional 

items 
Proportional items Non-proportional 

items 
 S C I S C I S C I S C I 
I 96 98 89 5 0 1 99 96 85 3 0 0 
II 93 95 89 6 1 0 93 95 95 4 2 0 
III 91 91 87 4 3 0 93 89 89 8 5 1 

 
 

 
4 ‘Proportionality’ main effect: F(1,117) = 4994.92, p < .01 
5 ‘Type of figure’ main effect: F(2,234) = 12.96, p < .01 
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2.5 Additional findings 

After presenting the quantitative results with respect to the three research 
hypotheses, we also briefly discuss some qualitative findings based on a 
systematic and fine-grained analysis of the students’ written notes on the 
response sheets, which may help to explain these quantitative results. 

First, the analysis of the notes on the response sheets of Test 1 revealed 
that only 2% of the students spontaneously constructed a sketch or drawing 
of the non-proportional problems. Apparently, these 12–13-year olds were 
not inclined to apply the heuristic of making a sketch or a drawing when 
modelling and solving a verbally stated geometric problem situation. 

 

Figure 2-2. Examples of self-made drawings with low (left) and high (right) representational 
quality 

Second, the inspection of the notes on Test 2 in Group II revealed that – 
in spite of the explicit instruction to do so – the students produced drawings 
for the non-proportional items in only 46% of the cases. It remains unclear 
why even the students from Group II who did follow the instruction to make 
a drawing still failed to solve the corresponding non-proportional item. 
Possibly, the representational quality of these drawings (both in terms of 
correctness and richness) was mostly too low to really help students in 
interpreting and solving these non-proportional items correctly. For 
examples of self-made drawings with a low and a high representational 
quality, we refer, respectively, to the drawings left and right in Table 2-2, 
both belonging to the non-proportional item about squares in Table 2-1. On 
the basis of the available data we cannot determine whether the poor quality 
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of most student drawings was due to their inability to make better drawings 
or to their unwillingness to make drawings for word problems that seemed 
trivial to them. 

Third, although the notes of the students from Group III on Test 2 
provide no direct information about the extent to which the ready-made 
drawings were effectively used by these students, the finding that only 6% of 
the given drawings for the non-proportional items had been ‘edited’ by these 
students as part of their problem-solving process, suggests that they 
generally paid little or no attention to them. 

2.6 Conclusion and discussion 

The first study convincingly demonstrated the strength and omnipresence 
of the linear model with respect to problems involving length and area of 
similar plane figures in 12–13-year old students. However, for two reasons 
we found it necessary to set up a follow-up study with an older target group. 

First, the extremely small number of correct responses on the non-
proportional items made us wonder how strong the predominance of 
linearity would be for students who were older and, therefore, probably 
mathematically better equipped for overcoming the obstacle of unlimited 
linear reasoning. 

Second, because the predominance of the linear model proved to be so 
strong for 12–13-year olds, the first study did not yield adequate information 
about the possible impact of both the kind of figure used in the problem 
(square, circular or irregular) and of self-made or ready-made drawings on 
the occurrence of errors based on inappropriate proportional reasoning. For 
instance, because of the extremely low occurrence of correct answers on the 
non-proportional items in Study 1, it was impossible to perform a statistical 
analysis of the relationship between making and/or using drawings, on the 
one hand, and producing correct answers, on the other hand. A follow-up 
study with older students – who were expected to suffer less from the 
predominance of the linear model – should result in a better understanding of 
the effect of these two additional task variables. 

3. STUDY 2 

3.1 Subjects, materials and procedure 

For this follow-up study, we decided to work with 10th-graders (15–16-
year olds). This choice was induced by the Flemish mathematics program for 
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Grades 9–10 (Ministerie van de Vlaamse Gemeenschap, 2002) which 
includes a systematic study of plane geometry (including similarities and 
scaling in relation to mensuration). Furthermore, in Grades 9 and 10 students 
also learn how to identify and use a diversity of non-proportional functional 
relationships (e.g. quadratic and general polynomial functions). 

To work with a cohort of participants of an intellectually, educationally 
and socially comparable level to that of the first study, we decided to 
undertake the second study in the same school as the first one. Participants 
were the 222 10th-graders (15–16-year olds). 

Contrary to the first study, the test was administered only once to all 
students. Therefore, students were immediately matched in three equivalent 
groups. For practical reasons, it was not possible to match the students from 
the three experimental groups on an individual basis; rather, we had to work 
with intact classes. The selection and placement of the distinct classes in the 
three experimental groups was based on the following subject variables: (1) 
the study stream to which the students of a certain class belonged (e.g., 
‘Ancient languages’, ‘Modern languages’, ‘Economics’, ...), (2) the number 
of hours a week spent at mathematics, and (3) the students’ results on the 
previous mathematics examination. Using these available data, three groups 
were formed in which (1) the different study streams were equally 
represented, (2) the average number of hours of mathematics per week was 
the same, and (3) the average result on the previous mathematics 
examination was similar (for a detailed description of the characteristics of 
the three experimental groups, see De Bock et al., 1996). The testing 
conditions for the three experimental groups were the same as in Test 2 of 
Study 1, i.e. in Group I no special help or instructions were given, in Group 
II students were explicitly instructed to make a drawing before computing 
their answer, and in Group III every item was accompanied by a correct 
ready-made drawing. 

The same 12 experimental items from the first study (Table 2-1) were 
used. The testing procedure, the layout of the response sheets, and the data-
analysis procedure were also identical. 

3.2 Hypotheses 

The predictions of Study 2 were largely the same as for Study 1. 
However, with regard to the first hypothesis, we assumed that 15–16-year 
olds would suffer less from the predominance of the linear model than 12–
13-year olds. Therefore, we predicted that they would perform better on the 
experimental items in general and on the non-proportional ones in particular. 
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The hypotheses regarding the influence of self-generated or ready-made 
drawings (= hypothesis 2 from Study 1) and of the type of geometrical figure 
involved (= hypothesis 3 from Study 1) remained unchanged. 

3.3 Results with respect to the hypotheses 

Table 2-3 lists the percentages of correct responses for the three groups of 
15–16-year olds (I, II, and III) for the proportional and non-proportional 
items involving squares (S), circles (C), and irregular figures (I). 

Table 2-3. Percentage of correct responses of the three groups of 15–16-year olds on the 
different categories of proportional and non-proportional items 
Group Proportional items Non-proportional items 
 S C I S C I 
I 91 97 97 26 11 1 
II 89 91 97 26 20 5 
III 89 93 97 39 21 7 

 

The first hypothesis was confirmed. Once again, there was an extremely 
strong difference in performance on the proportional and non-proportional 
items6. For all three groups together, the percentages of correct responses on 
the proportional and non-proportional items were 93% and 17%, 
respectively. (In Study 1, these percentages were 92% and 2%). A 
comparison of the results from the two studies revealed that only on the non-
proportional items was the difference in the number of correct responses 
between the 7th- and the 10th-graders significant7. 

The second hypothesis about the positive influence of drawings was 
again not confirmed. Global percentages of correct responses in Groups I, II, 
and III showed indeed a positive trend – i.e. 54%, 55%, and 58% correct 
answers, respectively – but the differences were again too small to produce a 
significant effect. 

As predicted in the third hypothesis and in accordance with the results of 
Study 1, the type of figure did make a difference8. Global percentages of 
correct responses for S, C, and I items were in the expected direction (60%, 
56%, and 51% correct answers, respectively), and all mutual differences 
between these three problem types were significant. Interestingly, the 
percentages of correct responses on the non-proportional items were in the 
expected direction (30%, 17%, and 4% for the S, C, and I items, 

 
 

6 ‘Proportionality’ main effect: F(1,219) = 1591.64, p < .01 
7 ‘Age’ × ‘Proportionality’ interaction effect: F(1,340) = 25.33, p < .01 
8 ‘Type of figure’ main effect: F(2,438) = 24.67, p < .01 
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respectively), whereas the percentages of correct responses on the 
proportional items were in the opposite direction (90%, 94%, and 97% for 
the S, C, and I items, respectively).  

3.4 Additional findings 

Students’ use of self-made and ready-made drawings. First, we will 
describe some additional findings concerning the use of drawings in 
students’ solutions of the non-proportional items. According to hypothesis 2, 
the instruction to make a drawing and – even more – the provision of a 
ready-made drawing should help students to overcome the obstacle of 
unlimited linear reasoning. Therefore, we predicted better results (on the 
non-proportional items) for Groups II and III than for Group I. But, as said 
before, the results of Study 2 again yielded no confirmation of this 
prediction. The qualitative analysis of the response sheets of the students of 
Group II and III in Study 1 suggested that the instruction to make drawings – 
and even the given drawings – were often ignored by these students. 
Therefore, the absence of a significant difference between the three groups 
in both studies did not allow the conclusion that the actual making of a 
drawing and the actual use of a ready-made drawing did not have a positive 
influence on students’ performance. To make that conclusion, we first 
needed to demonstrate that there was no relationship between actually 
making a drawing or actually using a ready-made one, on the one hand, and 
giving a correct response to a non-proportional item, on the other hand. 
Because of (1) the extremely low overall score on the non-proportional items 
and (2) the relatively small number of self-generated and ‘edited’ drawings 
in the first study, it was impossible to analyze (statistically) the relationship 
between students’ actual use of these drawings and their performance on the 
non-proportional items. Study 2, however, did allow such an analysis, 
because of the greater number of (1) self-generated and ‘edited’ drawings for 
the non-proportional items and of (2) correct responses on these items. For 
each of the three groups (Group I, II, and III) a contingency table with the 
variables ‘Drawing’ and ‘Answer’ was constructed (Table 2-4), and the 
(in)dependence of the two variables was investigated. 

Chi-square tests revealed that this null hypothesis must be rejected in all 
groups9. The comparison of the observed and expected frequencies in the 
various cells for Group I, II, and III shows that the dependence of the two 
variables is in the expected direction. In all three tables the number of 
subjects in the cells on the main diagonal (i.e., ‘drawing/correct answer’ and 

 
 

9 χ²(1, N = 444) = 16.18, 25.26 and 14.82 for Group I, II, and III, respectively 
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‘no drawing/incorrect answer’) is greater than could be expected if these two 
variables were mutually independent. To investigate if the application of a 
drawing indeed provoked the apprehension of non-linearity, or if –  
conversely – this heuristic was used more often by students who already had 
detected the non-linear nature of the mathematical model underlying the 
problem, we compared the occurrence of spontaneous drawings for 
proportional and non-proportional items. This analysis revealed that the 
incidence of these drawings was not significantly higher for non-
proportional than for proportional items, which suggests that students’ 
insight in the non-linear character of an item generally came after the 
(successful) application of the drawing heuristic. 

Table 2-4. Contingency tables for Group I, II, and II (Frequencies and percentages between 
brackets represent the expected cell frequencies and percentages under the null hypothesis of 
independence of both variables) 
Group I Spontaneous 

drawing 
No spontaneous 

drawing 
Row totals 

17 (7) 41 (51) 58 Correct answer 
4% (2%) 9% (11%) 13% 
40 (50) 346 (336) 386 Incorrect answer 

9% (11%) 78% (76%) 87% 
57 387 444 Column totals 

13% 87% 100% 
    
Group II Drawing made No drawing made Row totals 

65 (45) 12 (32) 77 Correct answer 
15% (10%) 3% (7%) 17% 
196 (216) 171 (151) 367 Incorrect answer 

44% (49%) 39% (34%) 83% 
261 183 444 Column totals 
59% 41% 100% 

    
Group III Given drawing 

edited 
Given drawing not 

edited 
Row totals 

32 (19) 66 (79) 98 Correct answer 
7% (4%) 15% (18%) 22% 
53 (66) 293 (280) 346 Incorrect answer 

12% (15%) 66% (63%) 78% 
85 359 444 Column totals 

19% 81% 100% 
 

Students’ solution strategies. Because the 15–16-year olds in Study 2 
produced considerably more correct responses on the non-proportional items 
than the 12–13-year olds from Study 1, it also became possible to get further 
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insight into the kind of strategies underlying these correct answers. For this 
purpose, all solution processes underlying a correct answer on a non-
proportional item were scored in terms of one of the following categories: 
(1) the ‘paving’ strategy, (2) the strategy of computing and comparing the 
length or area of both figures, and (3) the strategy of applying the general 
rule. For instance, the non-proportional item about squares in Table 2-1 can 
be solved in three different ways: 
1. ‘Paving’ the big square with little ones, observing that there are 9 little 

squares, and then concluding that the farmer will therefore need 9 times 8 
hours = 72 hours; 

2. Calculating the area of both squares (200 × 200 = 40 000 m2 and 600 × 
600 = 360 000 m2), determining the result of the division (360 000 : 
40 000 = 9), and therefore concluding that the farmer will need 9 times 8 
hours = 72 hours; and  

3. Immediately applying the general rule ‘side × r, thus area × r2’ (‘if the 
length is multiplied by 3, then the area (and thus the fertilising time) 
needs to be multiplied by 9’). 
A detailed analysis of the written protocols of all correct solutions 

revealed that the second solution strategy was – by far – the most frequent 
one. For instance, for the non-proportional items about squares, this strategy 
(sometimes used in combination with one of the other methods) was applied 
for 90% of the correctly solved non-proportional items. ‘Pure’ applications 
of the first and the third strategy were very rare (7% and 3% of the correct 
solution strategies, respectively). The low frequency of the ‘paving’ strategy 
is quite remarkable. Indeed, ‘paving’ is a very easy, intuitive, context-bound 
method requiring only little sophisticated formal-mathematical knowledge. 
The rare use of this informal strategy was probably due to students’ well-
documented belief that solving a mathematical problem is primarily a matter 
of finding and executing the correct mathematical formula(s) previously 
taught in school (Schoenfeld, 1992; Verschaffel, et al., 2000). 

 
Students’ errors on proportional items. With respect to the type of figure, 

the percentages of correct responses on the different kinds of non-
proportional items were in the expected direction (i.e. highest score for the S 
items and lowest score for the I items), whereas for the proportional items 
the percentages of correct responses were in the opposite direction (i.e. a 
higher percentage of correct answers for the I items than for the S items). A 
detailed analysis of students’ incorrect responses on the proportional items 
showed that they were typically the result of an inappropriate non-
proportional reasoning process. Apparently, students found it easier to 
discover the non-proportional nature of a given problem situation when a 
square figure was involved (and to some extent also when the figure had a 
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circular form), but, as a result of this discovery, they sometimes began to 
question the correctness of a linear model for problem situations wherein 
that model was appropriate. In this respect, we point out that also in Study 1 
some of the rare students who produced correct answers on non-proportional 
items, erroneously applied non-proportional reasoning for one or more 
proportional items too.  

4. DISCUSSION 

The major results of this first pair of studies were as follows. First, the 
tendency to apply linear reasoning in the solution of non-proportional 
problems proved to be extremely strong in the age group of 12–13-year olds, 
and was still very influential among 15–16-year olds. The 12–13-year olds 
solved 92% of the non-proportional items correctly, whereas they only 
answered 2% of the non-proportional items correctly; in the age group of 
15–16-year olds, the overall percentages of correct responses on the 
proportional and non-proportional items were, respectively, 93% and 17%. 
These data, which can be interpreted as strong evidence for students’ overuse 
of linearity, elicited a lot of amazement and unbelief among practitioners to 
whom we presented the results of these studies. Most of them were aware of 
the issue, but had not realised that it affected their students’ solutions so 
strongly.  

Second, the type of figure played a significant role. Students performed 
significantly better on the non-proportional items when the enlarged figure 
involved was regular (a square or a circle), but, as a drawback, they 
performed worse on the proportional items about these regular figures, 
because some students started to apply non-proportional reasoning on the 
proportional items too! This latter finding seems to indicate that the 
knowledge base underlying students’ (rare) correct answers on non-
proportional items was typically still quite fuzzy and unstable. Third, we 
unexpectedly did not find a beneficial effect of the self-made or given 
drawings, either for the test as a whole or for the non-proportional items in 
particular. An additional qualitative analysis of the data revealed that the vast 
majority of correct responses on the non-proportional items were found by 
applying an appropriate mathematical formula; informal strategies, such as 
paving a self-made or a given drawing, were chosen far less. It appears that 
we did not succeed in integrating the drawing activity or the given drawings 
in students’ problem-solving process.  

While this first set of investigations documented students’ strong 
tendency to apply linear reasoning in the solution of non-proportional 
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problems, it did not yield an explanation for this tendency. One could argue 
that students’ unbridled use of the linear model was just an artefact of certain 
elements in our experimental setting. In that case, it would be possible to 
improve students’ performance on the non-proportional items by simply 
modifying these elements. In the next chapter, we report a series of follow-
up studies, each testing one or more particular hypotheses with respect to the 
influence of the testing setting on students’ tendency to overuse linearity. 


