
6

Goals and Vision
Combining Web Services with Semantic Web Technology

Chris Preist

HP Laboratories, Bristol, UK, chris.preist@hp.com

Summary. This chapter introduces the combination of the formerly described Web Services
and Semantic Web technologies to Semantic Web Services. It outlines the vision and goals in
the Semantic Web Services area and clarifies terminology in this field. It defines an abstract
Semantic Web Service architecture and introduces a life cycle of the relationship between a
requester and a provider party. This motivates the subsequent chapters for description, discov-
ery, mediation and invocation of semantically annotated services in the web.

6.1 Semantic Web Services Vision

As we have seen from previous chapters, the technologies provided by the Semantic
Web are working towards a web which is machine-interpretable; a web where com-
puter algorithms are able to process and reason with information which currently is
only available in a human readable form. Web Services technologies, on the other
hand, are working towards an environment where organisations can make some of
their abilities accessible via the Internet. This is done by `wrapping’ some compu-
tational capability with a Web Service interface, and allowing other organisations
to locate it (via UDDI) and interact with it (via WSDL). Web Service technology
provides a standard and widely accepted way of defining these interfaces.

The Semantic Web Services vision [1, 2] is to combine these two technologies,
and through this to enable automatic and dynamic interaction between software sys-
tems. Web Service technology allows the description of an interface in a standard
way, but says nothing (in machine-interpretable form) about what the software sys-
tem does, or what sequence of messages is used to interact with it. We can overcome
this lack using Semantic Web technology. We can annotate software being offered
via Web Service interfaces with machine interpretable descriptions describing what
the software does (namely the service it provides a potential user) and how it does it.
Furthermore, with ontologies able to describe the services that can be provided, we
can bring about `advertising’ of services in a way which is both rich and machine-
interpretable. This allows more sophisticated discovery of services than is currently
possible with UDDI.

chris.preist@hp.com


160 Chris Preist

Combining these technologies enables many new things to be done. `Services’
as varied as protein analysis, bookselling, translation and animation rendering could
be advertised and discovered automatically on the Internet. A company needing a
service could locate a provider they were previously unaware of, set up a short-term
business relationship and receive the service in return for a payment. All this could be
done automatically and at high speed. Furthermore, several services could be com-
bined into a more complex service, possibly automatically [3]. If one of the compo-
nent services is unavailable, a replacement could be rapidly found and inserted, so
the complex service can still be provided.

Note that we used the word `enable’ in the previous paragraph. Semantic Web
Services technology is an enabling technology, so it is necessary but not sufficient
to bring about the vision we have just described. It provides a means for describing
services, and also infrastructural capabilities to discover services and to enable inter-
operation. However, it does not provide the reasoning to decide which service you
want, which provider is `best’, how to negotiate the parameters of a service and what
actions to take when using a service. If a service is simple and used in a straightfor-
ward way, this reasoning will also be simple. However, in some of the more ambi-
tious scenarios, complex reasoning such as negotiation or dynamic planning will be
necessary. Hence, Semantic Web Services alone will not bring about this brave new
world – it can do so only in conjunction with other computer science disciplines.

6.2 Example Scenarios

The real value that Semantic Web Services can enable is best illustrated through
some example scenarios which this technology, together with appropriate reasoning
techniques, can bring about. In this section, we introduce four scenarios. Initially, we
present a `storyboard’ for each. In subsequent sections, these example scenarios will
be used to illustrate different features of Semantic Web Services.

6.2.1 Scenario A: Overdraft Noti�cation Service

A bank provides an `overdraft notification service’ to its customers to help them
manage their account, and to warn them when they are at risk of going overdrawn.
Software at the bank monitors the behaviour of a customer’s account, and keeps track
of when regular payments are made into or out of it. Based on the expected future
transactions in an account, and the current balance, banking software can predict
if the customer is likely to go overdrawn. If this is about to happen, the customer
is warned via an email, text or voice message. To send the warning message, the
bank’s software component uses some message-sending service. It does not have a
pre-selected provider of this service, but instead automatically makes a decision at
the time a message must be sent. To do this, it looks in a directory of available service
providers and the message services they offer, and selects one based on factors such
as cost, reliability and the preferences of the customer receiving the message. It then



6 Goals and Vision 161

sends the message to the provider of that service, which in turn sends a text or voice
message to the customer.

This scenario is described in [4] in more detail.

6.2.2 Scenario B: Intelligent Procurement

A large manufacturing company makes regular purchases of supplies from a vari-
ety of on-line companies. Supplies essential for manufacturing, such as components,
are purchased through a fixed supply chain from providers who have been carefully
vetted to meet the companys requirements. However, less business-critical supplies,
such as stationery, anti-static foot straps or reference books, can be purchased from
any reputable supplier. This provides opportunity for shopping around to get the best
deal. A software agent acting on behalf of the company is given a list of stationery
equipment needed over the next month. It looks in a directory of suppliers the com-
pany considers acceptable for those which are able to supply stationery. The suppliers
provide purchasing websites which use a `shopping trolley’ model similar to Ama-
zon’s – a customer browses a catalog, places items it wants onto a list and goes to
a checkout to get a quote for the total package, including postage. They provide a
Web Service front end to these portals, allowing programs to interact with them as
well as people. The software agent visits several such sites simultaneously. It inter-
acts with them, discovering if they have the specific items in stock, and builds up a
`shopping trolley’ of purchases. On reaching `checkout’, it receives a quote for each
as to the total cost of the bundle, including volume discounts. Based on these quotes,
it selects the cheapest and completes the transaction with that supplier, cancelling the
other requests. The supplier then ships the order.

6.2.3 Scenario C: Provision of a Logistics Supply Chain

A company requires the transport of a crate from Bristol to Moscow. It already
has long-term contracts in place for land transportation of crates from Bristol to
Portsmouth, and from St Petersburg to Moscow. However, its usual supplier of ship-
ping services is for some reason unavailable and it needs to rapidly locate and agree
a replacement freight forwarder. A software agent acting on behalf of the company
has detailed information about the transportation task which must be carried out. It
contacts a discovery agent which has access to descriptions of services various organ-
isations are able to provide, and asks for providers able to ship between Portsmouth
and St Petersburg. The discovery agent responds with a list of possible freight for-
warders likely to be able to meet these requirements. The software agent then selects
one or more of the possible freight forwarders, and sends a more detailed description
of the task it requires to be performed, including the date the shipment will arrive at
Portsmouth, and the date it must reach St Petersburg. The freight forwarders respond
with lists of services they can offer which meet these requirements. For example, one
forwarder may say that it has a ship leaving Portsmouth on the required day which
will arrive in St Petersburg the day before the deadline. It will also give the cost of
placing a crate on that ship. The requesting agent then selects one of the proposed



162 Chris Preist

services (possibly by interacting with a user to make the final decision) and informs
the provider of the decision. Effectively, the two parties enter into an agreement at
this point.

As the shipment takes place, it is coordinated by an exchange of messages
between the two parties. The messages use an industry standard, RosettaNet, which
describes the format and order of the messages. The exchange starts when the crate
is about to arrive in Portsmouth, with a RosettaNet Advanced Shipment Notification
being sent by the requester to the freight forwarder, and ends with the sending of
a Proof of Delivery and Invoice by the freight forwarder when the crate arrives in
St Petersburg.

This scenario is described in [5] in more detail.

6.2.4 Scenario D: Free Stock Quote Web Service

A small-time investor has a software package to keep track of his/her share portfolio.
He/she is able to receive updated share prices via Web Services technology. When
he/she connects to the internet, the software searches for services able to provide
share prices. It locates two possible services, and asks the user to select one. One
service gives prices delayed by 1 minute, and requires a subscription of e 10 /per
month to use. The other gives prices delayed by 30 minutes and is free. The investor
chooses the latter, because he/she does not engage in real-time trading, and the soft-
ware package then updates his/her portfolio information whenever he/she is online.

6.3 Key Concepts in Semantic Web Services

We now introduce some key concepts in Semantic Web Services, and show how
these inter-relate. In each case, we illustrate this with examples from the scenarios
introduced in Sect. 6.2. The work presented in this section follows the Semantic
Web–enabled Web Services conceptual architecture [6].

6.3.1 Notion of Service

First, let us define the key concept of service. Intuitively, one party provides a service
to another when the first party does something for the benefit of the second. A service
may be freely given, but is often done for payment. A window cleaner performs the
service of cleaning windows; a hairdresser performs the service of cutting hair. In
Scenario A above, the bank provides the overdraft warning service to its customer;
in Scenario B, the stationery supplier provides the service of sale and shipment of
stationery to the manufacturing company; in Scenario C, the freight forwarder pro-
vides the service of transferring a crate from one port to another. Formally, we can
summarise this by saying that a service is the performance of some actions by one
party to provide some value to another party. Note that it makes sense to talk about a
service in a certain domain. (In Scenario C, the domain would be transport and logis-
tics.) We refer to this as the domain of value of the service. We call the party which



6 Goals and Vision 163

performs the service the service provider and the party which receives the benefit
of the service the service requester. Services can be considered at different levels of
abstraction. A concrete service is a specific performance of actions at a given time
by one party for another. (In Scenario C, a concrete service would be the shipping
of crate 246 on the ship departing from Portsmouth at 9.25 on 11/12/04 and arriving
in St Petersburg at 22.00 on 14/12/04.) However, often when we are reasoning about
services, we do not want to be so specific. In particular, when discussing a hypotheti-
cal service to be performed in the future, we cannot be specific about all of its details.
Hence, we use an abstraction. An abstract service corresponds to some set or class of
concrete services, and allows us to discuss these hypothetical future services without
being precise about all aspects of them. (In Scenario C, the service requester may
want to talk about a hypothetical service which will carry crate 246, departing from
Portsmouth sometime on 11/12/04 and arriving in St Petersburg before 17/12/04.)

6.3.2 Service Representation

One goal of Semantic Web Services is to bring about a computational machine-
readable representation of the service, in terms of the value it provides. This is
referred to as the service description. Usually, a service description will describe an
abstract service, in which case it can be referred to as an abstract service description.
Less often, a concrete service description is used to describe a concrete service.

To describe services, the Semantic Web approach uses techniques based on
knowledge representation, a discipline which has developed a set of formal lan-
guages and techniques for describing knowledge in a way which permits reasoning
with it. When describing a service, there are two key design decisions which must be
made initially. First, what formal language is going to be used to describe it? Should
it be described using horn clause logic, description logic, non-monotonic logic or
some other approach? Different formalisms can be used, and this will be further dis-
cussed in Chap. 7. Secondly, what specific concepts and relations are going to be
permitted in descriptions, and what is the meaning of these? This involves the cre-
ation or selection of an ontology, which provides a structured ontological vocabulary:
a set of concepts and relations which can be used to describe things in the domain
of interest. It is important that the terms the ontology provides allow a specification
of the actions the service consists of, and/or the outcomes it brings about, in the
terminology of the domain of value of the service.

When two parties describe services, they make different choices with regard to
the language and ontology used. As a result, if one party is to reason with a descrip-
tion produced by the other party, then some additional reasoning will be necessary to
translate between the two approaches. This additional reasoning is termed mediation,
specifically ontology mediation. Other forms of mediation may also be necessary,
and we will discuss this further below.

6.3.3 Agents

Having discussed the representation of services, we need to consider the online rep-
resentation of the service requester and provider. If the providing and receiving of a



164 Chris Preist

service is to be automated, then these two parties must have some online presence.
We refer to the software components which represent the parties as agents, with a
service provider agent representing a service provider and a service requester agent
representing a service requester.

These software components are agents in a very precise sense; they act as rep-
resentatives online on behalf of some party. (This is the same sense of the word
`agent’ as in `estate agents’, who act on behalf of a house seller.) Hence, the agent
property is a role the component takes, rather than some intrinsic property of the
component. Hence, these software entities are not necessarily agents in the sense
used in Multi Agent Systems research [7]. Often, they will be reactive not proactive,
and will be hardwired to follow some pre-determined process. For example, a set
of Web Services provided by Amazon make up a service provider agent able to sell
books on behalf of Amazon. However, as these entities become more sophisticated,
and take on further tasks from the party they represent, they will make use of tech-
nology developed by the Multi Agent Systems community. For example, they may
use negotiation algorithms [8] to allow them to agree details of services and prices;
they may use distributed planning [9] to allow complex service composition and they
may use utility theoretic reasoning to decide between possible alternative courses of
action [10] as a service is delivered.

Another consequence of `agent’ being a role that a software component takes is
that it can behave as a requester agent at one time, and a provider agent at another.
This can be seen in Scenario A; the bank’s software system acts as a service provider
agent to its customer, providing the service of account warnings. However, to get the
warning message to its customer, the bank’s system behaves as a service requester
and enters into an arrangement with a provider of a message delivery service.

If we are to be precise, we need to make a clear distinction between the service
requester (or provider) and the service requester agent (or provider agent) which
represents it. However, in practice this is not necessary in our subsequent discussions
and we will use `service provider/requester’ to refer to the agent also.

6.3.4 Communication

Choreography

When a service is provided online, there must be some interaction between the
provider and the requester. This interaction will require some exchange of messages.
The exchange of messages within an interaction must follow certain constraints if
they are to make sense to both parties. In other words, the message exchange must
proceed according to a certain communication protocol known to both parties. In
the Semantic Web Services world, a communication protocol, which can be multi-
party, is often referred to as a choreography. For consistency with this existing litera-
ture, we will adopt this terminology subsequently. When some exchange of messages
takes place according to the constraints provided by some choreography, we refer to
this as a conversation between two parties which satisfies the choreography.



6 Goals and Vision 165

Interactions about a service may involve more than two parties, playing different
roles. In general, many multi-party interactions can be reduced to a set of two-party
interactions. However, there are some cases where this is not possible. For the pur-
poses of this book, we focus only on two-party interactions; however, many of the
concepts generalise straightforwardly to the multi-party case.

When two parties engage in a conversation, they must each have one or more
communication endpoints to send and receive the messages according to some trans-
port protocol. This is referred to as the grounding of the choreography. In many
cases, service providers will interact via an interface specified in terms of Web Ser-
vice operations. This is particularly the case for simple service provider agents with
no internal state, where their choreography consists simply of a call–response inter-
action. The free stock quote service in Scenario D is of this type. However, there are
other possibilities; the freight forwarder interacts using a complex set of RosettaNet
messages with implicit state information in their sequencing, and these messages
will be transported between the business partners using the RNIF standard.

Semantics in Choreography

As we discussed above, the first technical goal of Semantic Web Services is to pro-
vide machine-readable descriptions of service, to allow them to be reasoned with by
different parties. The second technical goal of Semantic Web Services is to describe
the different choreographies, which parties can use to interact, in a machine-readable
form. This form should represent not only the messages which are exchanged, but
also provide some model for the underlying intention behind the exchange of mes-
sages on the part of both parties. In other words, it should represent the semantics
of the message exchange. In Scenario D, messages are exchanged to build up a sta-
tionery order; semantic representation of this will show that a certain sequence of
messages corresponds to adding an item to the order, another sequence corresponds
to getting a quote for the order, and another sequence corresponds to a final agree-
ment that the order will be processed and payment made.

Doing this will allow software entities to reason about choreographies. For exam-
ple, an entity could use an explicit model of a choreography to dynamically decide
which action to take or message to send next.

6.3.5 Orchestration and Service Composition

As explained above, choreography determines the constraints on the ordering of mes-
sages sent between the service requester and service provider. However, the con-
straints alone are not enough to determine exactly which message is sent when. This
is the role of an orchestration. An orchestration is a specification, within an agent,
of which message should be sent when. Hence, the choreography specifies what
is permitted of both parties, while an orchestration specifies what each party will
actually do.

The real power of orchestration becomes evident when we look at multiple simul-
taneous relationships between agents. So far in this discussion, we have focussed



166 Chris Preist

on a single interaction, with one agent taking the role of service requester and the
other the role of service provider. However, it is clear that in many circumstances
an agent will be involved in multiple relationships; in some, it will be acting as a
service provider, while in others it will be acting as a service requester. For example,
in Scenario A, the bank’s overdraft notification service agent acts as a provider to
the bank’s customer. However, it outsources the task of delivering the notification to
other parties. Hence, it acts as a service requester in relationship with these parties.

Often, such an agent will communicate with several service providers and coor-
dinate the services they provide to produce some more complex service – as, e.g.,
the logistics coordinator does in Scenario C. This act of combining and coordinat-
ing a set of services is referred to as service composition. When a requester agent is
interacting simultaneously with many service providers, an orchestration can specify
the sequencing of messages with all of these, including appropriate dependencies.
The orchestration can be specified in several different ways. The most straightfor-
ward, and least flexible, is to make a design time choice of which service providers
to use, and hard-code the integration logic in the service requester agent. A more
flexible way is to use a declarative workflow language to describe the process of
integrating the interactions with the chosen service providers. This is the approach
taken by BPEL [14]. This is more easily maintainable, but suffers from the draw-
back that if one of the chosen service providers is unavailable, then the overall ser-
vice orchestration will fail. A more robust approach, advocated by WSMF [11], is
not to select the service providers in advance within the orchestration, but instead
merely include descriptions of their required functionality. When the orchestration is
executed, appropriate service providers are dynamically discovered and selected at
run-time.

Having an explicit description of a service orchestration in terms of some process
language has a further advantage. It means that the orchestration can exist indepen-
dently of a specific requester agent, and be passed between agents as a data structure.
This approach is used to a great extent by the OWL-S virtual machine [12]. Rather
than the service requester being responsible for generating an orchestration, any party
can produce one, showing how several services can be combined to produce a more
complex service. In particular, in the case where a single service provider offers a
variety of services, it is more appropriate for the provider to take responsibility to
show how they can be combined in different ways. If this is done in some agreed
standard process language, such as the OWL-S process model [13], and a service
requester has access to a means to interpret that process language, such as the OWL-S
virtual machine, then any such service requester can make use of the complex
service.

6.3.6 Mediation

When an interaction between two parties takes place, there may be further need
for mediation. There are four forms of mediation which could be necessary: data
mediation, ontology mediation, choreography mediation and process mediation. We
will now briefly introduce each.



6 Goals and Vision 167

Data Mediation

A message or fragment of data represents the information it carries in some specific
syntactic format. Different service providers may expect different syntactic formats
for their messages, even though the information carried is equivalent. Data mediation
consists of transforming from one syntactic format to another.

Ontology Mediation

When two parties describe services, they make different choices with regard to the
vocabulary of terms, and therefore ontology, used to do so. As a result, if one party
is to reason with a description produced by the other party, then some additional
reasoning will be necessary to translate between the two approaches. This additional
reasoning is termed ontology mediation.

Protocol Mediation

Two components which are to interact with each other (such as a service requester
and service provider) may each have been designed with a particular interaction
choreography in mind. Unless agreement was reached between the two designers
(either directly or indirectly through the adoption of a standard) then it is unlikely
that the two choreographies will be identical. Protocol mediation is mediation which
reconciles these two choreographies, by translating a message sequence used by one
into a different message sequence used by the other to accomplish the same end.

Process Mediation

Behind any interaction, each party has some internal process which manages the rea-
soning and resources necessary to bring about that interaction. (In many domains of
application, this will correspond to a business process.) In some cases, even though
the two parties are able to interact via some protocol, there may be some differ-
ence between their processes which means this interaction will not succeed. Process
mediation is mediation which reconciles the differences in such processes. This is the
hardest form of mediation, and may in many cases be impossible without engaging
in process re-engineering.

Mediation of these four different kinds is only possible automatically if the mes-
sages and choreographies are annotated semantically. It is key to enabling service
interaction to take place automatically, and so forms a core part of the Semantic Web
Services research programme. Further discussion will be provided in Chap. 10.

Up to now, we have discussed interactions between service provider and ser-
vice requester in general terms, without considering the underlying goals of the
interaction. This is because there are several different goals an interaction can have
behind it. As the relationship between service provider and service requester pro-
gresses, different goals are required. For that reason, we now turn to this relationship.



168 Chris Preist

6.3.7 Life cycle

The life cycle of the relationship between service requester and service provider goes
through four phases: modelling, discovery, service definition and service delivery.
During discovery, a requester attempts to locate possible providers able to give it
the service it requires. During service definition, the requester and provider interact
to define the details of the service which is to be provided. During service delivery,
different kinds of interactions can occur which are associated with the provision of
the service.

Service Modelling Phase

At the outset of the discovery phase, a service requester prepares a description of the
service it is interested in receiving. Because it is unlikely that all details of the service
will be known at the outset (e.g., the provider of the service is not known, and the
cost of the service may not be known), the description will be of an abstract service.
This abstract service description makes up the service requirement description of
the service requester. Similarly, service providers create abstract service descriptions
representing the service they are able to provide. This is referred to as the service
offer description. Note that both the service requirement description and the service
offer description are simply descriptions of a service, and hence use the same con-
cepts and relations in the description. However, in each case, the service description
plays a different role. In the first case, it describes a service which is being looked
for, and in the second case it describes a service which is being provided.

Service Discovery Phase

If the requirement description of a requester and the offer description of a provider
are in some sense compatible, then there is a match and the two parties could go
on to the service definition phase. There are different ways of deciding whether two
descriptions are compatible; these will be discussed in Chap. 8.

To illustrate this, consider Scenario A. The bank is looking for a service provider
able to send a message to the customer. Let us say the customer has chosen to
receive the message via text. The bank’s requester agent creates a service require-
ment description stating that it wants to send a text message of length 112 characters
to a number on Telefonica Movistar, a Spanish mobile network. A provider advertises
a service offer description stating that it is able to send text messages of maximum
length 120 characters to Telefonica Movistar numbers at a cost of e 0.1. These two
are potentially compatible, so a match should be made during discovery.

There are also different architectures which can be used to carry out discovery.
The most common is a centralised discovery `service’ which is contacted by the
requester using a simple message exchange protocol.



6 Goals and Vision 169

Service De�nition Phase

During discovery, a requester may identify several providers which are potentially
able to meet their needs. From the set of providers identified, the requester may
contact one or more of these and enter into a service definition conversation with
them. Selection of which to contact may simply be random, or may involve some
analysis of the service providers and choice of which appear in some sense `best’.
(Recall in Scenario D, the investor chose the cheaper but older service for stock
quotes, because low cost was more important than having immediate information.)
If service definition fails with those selected, the requester has the option to later
contact others which were not initially selected, and try with those.

The service definition phase involves taking an abstract service description of
a provider and refining it so that it describes a specific service which meets the
requester’s needs. One way of conceptualising this is to think of the abstract ser-
vice as having attributes which must be instantiated. In Scenario C, the shipment
service would have attributes including weight of crate, departure and arrival ports,
departure and arrival times, and price. The selection of the values these attributes
take is the role of the service definition phase. Sometimes, it is not necessary to
specify a specific value, but some constraint on a value is adequate. (In Scenario C,
the arrival time might be specified as between 18.00 and 22.00.) This process takes
place through a conversation governed by a service definition choreography.

When a requester enters into service definition phase with several possible
providers, it will often be in an attempt to explore what options the different par-
ties provide in order to select the best. (Recall in Scenario B, the service requester
agent making a stationery purchase goes through the motions of preparing an order
and receiving a quote with several providers.) The requester will complete the ser-
vice definition phase with only one of them, terminating the conversations with those
it has not selected.

If the service definition phase is successfully completed between two parties,
they have agreed a service to be delivered by the provider to the requester, and
can enter into the service delivery phase. Some of the attributes may not be fully
defined, merely constrained. (In Scenario C, the freight forwarder may specify that
the crate must be lighter than 500 Kg.) In this case, it means that one party (usually
the provider) will allow the other to make a selection of attribute value during the
delivery phase. (In Scenario C, the requester will inform the freight forwarder of the
final crate weight in the advance shipment notification message it sends just before
dispatch.) There may be a formal representation of the agreed service description,
which can form part of a contract between the two parties [16].

In many cases, a service definition conversation will not be necessary. The
description of the service by the provider will define fixed values for all the attributes
the provider cares about. The only flexibility in the description will be where a
provider is willing to allow a requester to freely choose. Effectively, the provider
gives a `take it or leave it’ description of the service it provides, and the requester
simply selects one. This can be seen in Scenario D. There is no service definition con-



170 Chris Preist

versation between the investment software and the service provider agents. Instead,
the investor simply selects which to use based on his/her preferences.

In some cases, the conversation will involve iterative definition of the service,
selecting from options to create a complete description piece-by-piece. This can be
seen in Scenario B, where the shopping-trolley metaphor is used during service def-
inition. Through an exchange of messages between the two parties, the requester
browses the wares, selects some, gets a final quote and agrees (or not) to purchase
them.

Less often, the conversation may involve negotiation of certain parameters, such
as price. Negotiation involves the iterative relaxing of constraints on values until
some agreement is reached. Negotiation is an important area of agent technology
research,but detailed discussion is beyond the scope of this chapter.

Service Delivery Phase

When the definition of a service has been agreed, then service delivery can take place.
It may be immediate, as in Scenario A where the text message is sent as soon as the
bank confirms its selection. Alternatively, it may take place a while after service def-
inition has been completed, as in Scenario C where the agreement to carry a crate in
a certain ship may be made days or weeks before the actual voyage. Service delivery
may take place entirely off-line, with no communication, as in Scenario A where the
text message is sent by the provider without any further exchange of messages. Alter-
natively, it may involve communication between the two parties. If communication
takes place, this is again governed by an interaction choreography.

Several different types of interaction can occur during service delivery, and each
is governed by a choreography:

1. The service delivery choreography covers the exchange of messages associated
directly with the delivery of the service. In some cases, the service is provided
directly by this exchange of messages, as in Scenario D where the stock quote
data will be carried within a reply message from the quotation Web Service. In
other cases, the exchange of messages is linked with activities occurring in the
real world, as in Scenario C where the messages initiate and control (to a limited
extent) the movement of a crate from Portsmouth to St Petersburg.

2. A monitoring choreography covers the exchange of messages which allow the
service requester to receive information regarding the progress of the service
from the provider. In Scenario C, there is a RosettaNet message exchange, `Ship-
ment Status Message’, which allows the service requester to get information
about the progress of the shipment from the freight forwarder. This is an exam-
ple of a monitoring choreography.

3. A cancellation/renegotiation choreography allows the service requester, in cer-
tain circumstances, to cancel or alter the service which they are receiving from
the provider. In Scenario B, we can imagine (as in Amazon) that the purchaser
has the option to review, modify or cancel their order through an exchange of
messages, provided the order has not entered the dispatching process.



6 Goals and Vision 171

6.4 Architecture for Semantic Web Services

Having introduced the concepts used in Semantic Web Services, we now consider
an architecture which can be used to develop and deploy applications. Inevitably, by
moving from a conceptual level to an architecture, certain design decisions will be
made. We do not claim that this is the only way to make such decisions.

In Multi Agent Systems research, a distinction is made between a micro-
architecture and a macro-architecture. A micro-architecture is the internal
component-based architecture of an individual entity within a community. A macro-
architecture is the structure of the overall community, considering each entity within
it as a black box. It is also helpful to consider this distinction in Semantic Web Ser-
vices. In an open community, it is necessary to standardise the macro-architecture
to some extent, but the micro-architecture can be more flexible, with differences in
design between various community members.

6.4.1 Macro-Architecture

Initially, we will present the macro-architecture for our community. In our commu-
nity, there are three possible roles that a software entity can have: service requester
agent, service provider agent and discovery provider agent. In general, an entity may
have more than one role; however, for clarity we will consider each role separately.

To recap from the previous section, a service requester agent acts on behalf of
an individual or organisation to procure a service. It receives a service requirement
description from its owner, and interacts with other agents in an attempt to fulfil the
requirement it has been given. It has some model, in an ontology, of the domain of
the service and also has some model of the kind of actions that can be taken (through
message exchange) in this domain.

A service provider agent is able to provide a service on behalf of an organisa-
tion. It has a service offer description in some domain ontology (ideally, the same as
the requester agent), which describes at an abstract level the kind of services it can
provide. It also has a means to generate more concrete descriptions of the precise
services it can deliver. Furthermore, it has a formal description of the message proto-
col used to deliver the service. This includes mappings from the content of messages
into concepts within the domain ontology. It also includes mappings from message
exchange sequences into actions. In Scenario C, a field in the initial Advance Ship-
ment Notification (ASN) message might map onto the `weight’ attribute of the `crate’
concept within the domain. The sequence consisting of one party sending the ASN
and the other party acknowledging receipt may correspond to a `notify shipment’
action in the domain ontology.

A discovery provider agent has access to descriptions of service offers, together
with references to provider agents able to provide these services. These service offer
descriptions are all in some domain ontology associated with the discovery provider
agent. Within this ontology is a `service description’ concept which effectively acts
as a template for the descriptions of services that the discovery provider can contain.



172 Chris Preist

We illustrate the macro-architecture by specifying the interactions which can take
place between the different agents. These interactions are roughly in order of the life
cycle progression introduced in the previous section.

1. Provider agent registering a service offer description

A simple message exchange protocol is used between a provider agent and a
discovery agent. The provider agent sends a register message to the discovery
agent, containing a service offer description in the ontology of the discovery
agent and a URI for the provider agent. The discovery agent replies with an
accept message if it is able to accept and store the description, reject otherwise.
It will only reject a description if the description is not a valid concept in its
ontology, or there is some practical reason it can’t accept it, such as lack of
memory. Prior to this, if the provider agent is not aware of the ontology used
by the discovery agent, it can send a requestOntology message to the discovery
agent. The agent replies with an informOntology message containing the section
of the ontology relevant to the service description. If this is a different ontology
from that used by the service provider agent, then ontology mediation will be
necessary. We assume this takes place within the provider agent. However, in
general it could take place using a third party or within the discovery agent.

2. Requester agent finding possible providers

Discovery takes place through a simple exchange protocol between a service
requester agent and a discovery agent. The requester agent sends a request-
Providers message containing a service requirement description in the ontology
used by the discovery agent. (As above, it can find out what this is using a
requestOntology/informOntology exchange. It may then require ontology medi-
ation, which we assume takes place within the requester agent.) The discovery
agent responds with an informProviders message containing a list of URIs of
service provider agents. These correspond to those provider agents which have
offer descriptions stored within the discovery agent which match (using the dis-
covery agent’s algorithm) with the service requirement description.

3. Requester and provider agents define service

Following discovery, the requester agent exchanges messages with one or more
provider agents to define the service it will receive, and to select which provider
agent to use. In our architecture, we assume a single simple service definition
protocol is used by all requester and provider agents. This protocol is ade-
quate for very many service definition tasks; however, in the general case this
assumption is unrealistic and multiple protocols (and possibly protocol medi-
ation) would be necessary. The FIPA standards [17] provide various possible
negotiation protocols which could be used at this stage. Our simple protocol
consists of two rounds of message exchange. Initially, the service requester agent
sends a requestServices message to each provider agent. The message contains



6 Goals and Vision 173

a service requirement description. The provider agent replies with an inform-
Services message, which contain (almost) concrete service descriptions of the
services it is able to provide that meet the needs of the requester. If the requester
wishes to select one of these, it replies with a selectService message containing
the required service, and the provider responds with confirm. The confirm mes-
sage contains a URI referencing where the description of the choreographies
which will be used during service delivery are to be found. If the requester does
not select one within a certain time window, sending no response to the provider,
this is taken as cancelling. Note that this protocol does not allow negotiation–it
simply allows the service provider to list a set of potentially interesting concrete
services to the requester, and allows the requester to select one of these. Note
also that our protocol does not capture Scenario B, intelligent procurement. The
service selection protocol used in this example is a shopping-trolley protocol.
While this is a natural protocol for human users (who are interested in brows-
ing, and looking at one item at a time), it is less essential for software entities
interacting with the service provider. We can imagine an alternative access proto-
col to shopping sites, similar to the one described here, where a requester agent
submits a list of product descriptions it is interested in, receives a list back of
relevant available products, selects a subset and places an order. However, in
practice, many sites will continue to use the shopping-trolley metaphor meaning
that protocol mediation will be important at this stage. For the purposes of the
architecture presented here, we ignore this additional complexity and assume all
parties use the same service specification protocol.

4. Service delivery

Service delivery starts when one party (depending on the choreography used)
sends an initiating message. Unlike previous stages, many different choreogra-
phies can be used depending on the domain of application of the service. In
Scenarios A and D, the choreography is simply a single message exchange cor-
responding to `do the service’, with a reply being `I have done the service and
here is the result.’ Scenario B is similar, except the response is `I will do the
service’ (and it takes place off-line, via mail.) In Scenario C, the choreography
used at this stage will correspond to the sequence of messages specified by the
RosettaNet standard.

Because of the large variety of choreographies which are possible during service
delivery, it is at this stage that protocol mediation will play the largest role. This will
particularly be the case where the choreography can be more complex, as in Sce-
nario C. For the purposes of this architecture, we assume that any protocol mediation
that is required will take place in the service requester agent and use the choreogra-
phy descriptions referenced by the provider agent. However, mediation can equally
well take place within the provider or within a third party.

Given this assumption, then the macro-architecture appears as follows. Each ser-
vice provider has a description of the service delivery choreography associated with



174 Chris Preist

each service it can provide. At the end of the service definition protocol, as a param-
eter of the confirm message, it informs the requester of a URI which references this
description. The requester is then responsible for accessing this description, inter-
preting it and engaging in a message exchange with the provider which satisfies the
requirements of the choreography described.

6.4.2 Micro- Architecture

Having described the macro- architecture, we now turn to the micro- architecture of
the system. We look at two of the three roles that software entities can have –
requester agent and provider agent – and present a micro- architecture for each. The
micro- architecture of the discovery service provider agent will be covered in Chap. 8.
Note that, unlike the macro- architecture, a micro- architecture is not normative within
a community. The macro- architecture defines the exchange of messages between
entities of different roles, and if the community is to function effectively, this must be
agreed and adhered to (though the provision of protocol mediation within the macro-
architecture allows some flexibility). The micro- architecture of each agent, however,
need not follow some pre- agreed structure. The community can function perfectly
well with any internal structure, provided the functionality the micro- architecture
implements does indeed correspond to the requirements of the macro- architecture.

Figure 6.1 illustrates our architecture for the service requester agent. At the heart
of the agent is the application logic, which is responsible for decision- making with

Application Logic

Discovery and Definition
ComponentService

Requirement
Description

Delivery Component

Provider
Choreography

Description

Message Lift/
Lower

Message
Transport
Routines

Knowledge Base

Fig. 6.1. Architecture of service requester agent



6 Goals and Vision 175

regard to which service to select and how to make use of it. This can include integra-
tion with other back-end systems within the organisation which the service requester
agent represents. It may also access and assert information in the knowledge base.
In other cases, the application logic will be provided by a user interacting through
a user interface; the requester agent effectively acts as an online proxy for the user,
and relays any important decision-making problems to them, acting on their choice.

The first role of the application logic is to define a service requirement descrip-
tion for the service it needs. When this has been done, it passes the description to the
discovery and definition component. This component is responsible for managing
the discovery and service definition choreographies, and sends appropriate messages
to do this as described in the macro-architecture above. The message format and
contents are prepared using the messaging lift/lower component and passed to the
transport routines for transmission via an appropriate transportation protocol. Often,
but not exclusively, these transportation routines will use WSDL Web Service tech-
nology for communicating with the service provider. At points where a decision is
required – namely when one or more provider is to be chosen to contact after dis-
covery and when a service is to be chosen during the selection process – the decision
is passed for the application logic to be made. The message lift/lower component
performs data mediation. When it receives incoming messages, it translates their
contents into semantic information according to an ontology and stores these in the
Knowledge Base. It generates the content of outgoing messages by using facts in
the Knowledge Base to fill fields according to some message schema. When a ser-
vice has been defined, the application logic initiates the delivery process by passing
the URI identifying the delivery choreography to the delivery component. Unlike the
discovery and selection component, which contains hard-wired logic for a single pro-
tocol, the delivery component is able to carry out protocol mediation. It accesses the
description of the choreography given by the service provider. This shows how mes-
sage contents map onto the domain ontology of the knowledge base, and also shows
how sequences of messages correspond to actions within this domain ontology. State
machines describe the order in which actions can take place. The application logic
can request the execution of an action. This will result in the delivery component
initiating an exchange of messages with the service provider. The content of a mes-
sage will be instantiated by accessing the knowledge base and `lowering’ the rele-
vant information into the required message format using the lift/lower component.
The message can then be passed to the transport routines for transmission. When a
message is received as part of such an exchange, the contents of the message will
be `lifted’ into the knowledge base using the lift/lower component and the deliv-
ery component will note the progress of the message exchange. When an exchange
terminates (either through successful completion or through some failure) the appli-
cation logic is informed of this. The delivery component also handles messages from
the provider which are not part of an exchange initiated by the requester. These cor-
respond to actions within the domain which the provider is initiating. The delivery
component identifies which action they are initiating, `lifts’ the message content to
the knowledge base and informs the application logic. It replies (possibly after a
decision from the application logic of how to respond) by `lowering’ content into a



176 Chris Preist

message, which is then passed to the transport routines. Full details of this process,
and the architecture used, are given in Chap. 10.

We now turn our attention to the provider agent (Fig. 6.2). Because, in our
architecture, we assume that protocol mediation takes place within the requester,
the provider can be simpler. It also has an application logic component at its heart,
which is responsible for deciding which services to offer a given requester and also
for the provisioning of the service itself. As in the case of the requester, this will
often involve integration with a variety of back- end systems belonging to the ser-
vice provider’s organisation. Initially, the application logic prepares a service offer
description and registers this with the discovery service provider. It also prepares a
choreography description associated with this service, and publishes it on the web,
giving it a URI. From that point on, in our architecture, the provider agent is reactive.
The service definition component has an interface (often, though not exclusively, pro-
vided by Web Service WSDL technology) which allows a requester to submit a ser-
vice requirement description. On receipt of this, the application logic prepares a set
of possible services which satisfy the requirement, and this is sent to the requester
through the definition component interface. If the definition component receives a
selection message from the requester, it responds with a confirm containing the URI
of the choreography description which it obtains from the application logic. The ser-
vice delivery protocol is executed by the service delivery component, again via an
interface which may or may not use WSDL Web Service technology. Unlike the
requester agent, the provider agent does not need to carry out protocol mediation so
the protocol can be hard- wired in the component. Message contents are still lifted
into the knowledge base, for access by the application logic. The application logic
is informed of the progress of the conversation, requested to initiate internal actions

Application Logic

Discovery and Definition Component

Delivery Component

Provider
Choreography

Description

Message
Transport
Routines

Service Offer
Description

Fig. 6.2. Architecture of service provider agent



6 Goals and Vision 177

to bring about the service, and also consulted if a decision is necessary during the
execution of the protocol. In this way, the micro architectures of the two types of
actor can animate the conversations required by the macro-architecture. The macro-
architecture in turn embodies the concepts introduced in our conceptual model of
Semantic Web Services.

6.5 Outlook

In this chapter, we have presented a conceptual model for Semantic Web Services
which is driven from a requirements analysis of several scenarios. Using this con-
ceptual model, we have developed a technical architecture which could be used to
deploy applications of Semantic Web Services. We have introduced the key notions
of discovery, service description, mediation and composition, and shown how they
form part of a service life cycle within our conceptual model. Subsequent chapters
will provide more details of these ideas, and present the techniques available to make
them real.

The architecture presented in this chapter is one possible embodiment of the con-
ceptual model, but others are possible. This particular embodiment has been imple-
mented as part of the EU Semantic Web–enabled Web Services program, and has
been used to create a demonstrator of Semantic Web Services technology in the
domain of logistics supply chain management [5]. If Semantic Web Services are to
be deployed effectively on a large scale, it will be necessary for the community to
reach agreement about how to do this. A conceptual model and flexible architecture
will be a necessary part of this agreement. We believe the ideas presented in this
chapter are a step in this direction.

References

1. S. McIlraith and D. Martin. Bringing Semantics to Web Services. IEEE Intelligent Sys-
tems, 18(1):90–93, 2003.

2. M. Paolucci and K. Sycara. Autonomous Semantic Web Services. IEEE Internet Com-
puting, September 2003:34–41.

3. S. McIlraith and T.C. Son. Adapting Golog for Composition of Semantic Web Services.
Proceedings 8th International Conference on Knowledge Representation and Reasoning,
482–493, 2002.

4. J.M. Lopez-Cobo, S. Losada, O. Corcho, R. Benjamins, M. Nino and J. Contreras.
Semantic Web Services for Financial Overdrawn Alerting. Proceedings of the 3rd Inter-
national Semantic Web Conference (ISWC-2004), 782–796, Hiroshima, Japan, 2004.

5. C. Preist, J. Esplugas-Cuadrado, S.A. Battle, S. Grimm and S.K. Williams. Automated
Business-to-Business Integration of a Logistics Supply Chain using Semantic Web Ser-
vices Technology. Proceedings of the 4th International Semantic Web Conference (ISWC-
2005), Galway, Ireland, 2005.

6. C. Preist. A Conceptual Architecture for Semantic Web Services. Proceedings of the 3rd
International Semantic Web Conference (ISWC-2004), 395–409, Hiroshima, Japan, 2004.



178 Chris Preist

7. M. Wooldridge and N.R. Jennings. Agent Theories, Architectures, and Languages:
A Survey. in Intelligent Agents, Proceedings of the ECAI-94 Workshop on Agent Theories,
Architectures, and Languages, Springer-Verlag, Lecture Notes in Artificial Intelligence,
Vol. 890, Pages 1–39, 1995.

8. N.R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, C. Sierra and M. Wooldridge.
Automated Negotiation: Prospects, Methods and Challenges. International Journal of
Group Decision and Negotiation, 10(2):199–215, 2001.

9. E.H. Durfee. Planning in Distributed Artificial Intelligence. Foundations of Distributed
Artificial Intelligence:231–245, John Wiley, 1996.

10. M. Barbuceanu and W. Lo. A Multi-Attribute Utility Theoretic Negotiation Architecture
for Electronic Commerce. Proceedings Fourth International Conference on Autonomous
Agents (AGENTS 2000):239–246, 2000.

11. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF Electronic
Commerce: Research and Applications, 1:113–137, 2002.

12. M. Paolucci, A. Ankolekar, N. Srinivasan and K. Sycara. The DAML-S Virtual Machine
Proceedings of the 2nd International Semantic Web Conference (ISWC-2003), 290–305,
Florida, USA, 2003.

13. http://www.daml.org/services/owl-s/
14. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,

D. Smith, S. Thatte, I. Trrickovic and S. Weerawarana. Business Process Execution Lan-
guage for Web Services - Version 1.1. BEA Systems, IBM, Microsoft, SAP AG and Sibel
Systems Whitepaper, 5 May 2003.

15. D. Trastour, C. Bartolini and C. Preist. Semantic Web Support for the B2B E-Commerce
Pre-Contractual Lifecycle Computer Networks, 42(5):661–673, 2003.

16. B. Grosof and T. Poon. SweetDeal: Representing Agent Contracts with Exceptions Using
Semantic Web Rules, Ontologies and Process Descriptions. International Journal of Elec-
tronic Commerce, 8(4):61–98, 2004.

17. The Foundation for Intelligent Physical Agents http://www.fipa.org/

http://www.daml.org/services/owl-s/
http://www.fipa.org/

	Goals and Vision Combining Web Services with Semantic Web Technology



