# Subdifferentials of Lower Semicontinuous Functionals

#### 9.1 Fréchet Subdifferentials: First Properties

In this section we study another kind of derivative-like concepts.

**Definition 9.1.1** Assume that E is a Banach space,  $f : E \to \overline{\mathbb{R}}$  is proper and l.s.c., and  $\overline{x} \in \text{dom } f$ .

(a) The functional f is said to be *Fréchet subdifferentiable* (*F-subdifferenti-able*) at  $\bar{x}$  if there exists  $x^* \in E^*$ , the *F-subderivative* of f at  $\bar{x}$ , such that

$$\liminf_{y \to o} \frac{f(\bar{x} + y) - f(\bar{x}) - \langle x^*, y \rangle}{\|y\|} \ge 0.$$
(9.1)

(b) The functional f is said to be viscosity subdifferentiable at  $\bar{x}$  if there exist  $x^* \in E^*$ , the viscosity subderivative of f at  $\bar{x}$ , and a C<sup>1</sup>-function  $g: E \to \mathbb{R}$  such that  $g'(\bar{x}) = x^*$  and f - g attains a local minimum at  $\bar{x}$ . If, in particular,

$$g(x) = \langle x^*, x - \bar{x} \rangle - \sigma \|x - \bar{x}\|^2$$

with some positive constant  $\sigma$ , then  $x^*$  is called *proximal subgradient* of f at  $\bar{x}$ . The sets

 $\partial_F f(\bar{x}) :=$  set of all F-subderivatives of f at  $\bar{x}$ ,

- $\partial_V f(\bar{x}) :=$  set of all viscosity subderivatives of f at  $\bar{x}$ ,
- $\partial_P f(\bar{x}) :=$  set of all proximal subgradients of f at  $\bar{x}$

are called *Fréchet subdifferential* (*F-subdifferential*), viscosity subdifferential, and proximal subdifferential of f at  $\bar{x}$ , respectively.

**Remark 9.1.2** Observe that the function g in Definition 9.1.1(b) can always be chosen such that  $(f - g)(\bar{x}) = 0$  (cf. Fig. 9.1).

We study the relationship between the different notions.

### 9

168 9 Subdifferentials of Lower Semicontinuous Functionals



**Proposition 9.1.3** Assume that E is a Banach space,  $f : E \to \overline{\mathbb{R}}$  is proper and l.s.c., and  $\overline{x} \in \text{dom } f$ . Then  $\partial_V f(\overline{x}) \subseteq \partial_F f(\overline{x})$ .

Proof. See Exercise 9.8.1.

**Remark 9.1.4** Notice that  $\partial_F f(\bar{x})$  and  $\partial_V f(\bar{x})$  can be defined as above for any proper, not necessarily l.s.c. functional f. However, if  $\partial_F f(\bar{x})$  (in particular,  $\partial_V f(\bar{x})$ ) is nonempty, then in fact f is l.s.c. at  $\bar{x}$  (see Exercise 9.8.2).

The next result is an immediate consequence of the definition of the viscosity F-subdifferential and Proposition 9.1.3.

**Proposition 9.1.5 (Generalized Fermat Rule)** If the proper l.s.c. functional  $f : E \to \overline{\mathbb{R}}$  attains a local minimum at  $\overline{x}$ , then  $o \in \partial_V f(\overline{x})$  and in particular  $o \in \partial_F f(\overline{x})$ .

We shall now show that we even have  $\partial_V f(\bar{x}) = \partial_F f(\bar{x})$  provided E is a Fréchet smooth Banach space. We start with an auxiliary result.

**Lemma 9.1.6** Let E be a Fréchet smooth Banach space and  $\|\cdot\|$  be an equivalent norm on E that is F-differentiable on  $E \setminus \{o\}$ . Then there exist a functional  $d: E \to \mathbb{R}_+$  and a number  $\alpha > 1$  such that:

(a) d is bounded, L-continuous on E and continuously differentiable on E\{o}.
(b) ||x|| ≤ d(x) ≤ α||x|| if ||x|| ≤ 1 and d(x) = 2 if ||x|| ≥ 1.

*Proof.* Let  $b: E \to \mathbb{R}$  be the bump functional of Lemma 8.4.1. Define  $d: E \to \mathbb{R}_+$  by d(o) := 0 and

$$d(x):=\frac{2}{s(x)}, \quad \text{where} \quad s(x):=\sum_{n=0}^\infty b(nx) \quad \text{for } x\neq o.$$

We show that d has the stated properties:

Ad (b). First notice that the series defining s is locally a finite sum. In fact, if  $\bar{x} \neq o$ , then we have

$$b(nx) = 0 \quad \forall x \in B(\bar{x}, \|\bar{x}\|/2) \quad \forall n \ge 2\|\bar{x}\|.$$
(9.2)

Moreover,  $s(x) \ge b(o) = 1$  for any  $x \ne o$ . Hence d is well defined. We have

 $d(E) \subseteq [0,2]$  and d(x) = 2 whenever  $||x|| \ge 1$ .

Further it is clear that

$$x \neq o \text{ and } b(nx) \neq 0] \implies n < 1/||x||$$

$$(9.3)$$

and so, since  $0 \le b \le 1$ , we conclude that  $s(x) \le 1 + 1/\|x\|$ . Hence  $d(x) \ge 2\|x\|/(1+\|x\|)$ , which shows that  $d(x) \ge \|x\|$  whenever  $\|x\| \le 1$ . Since b(o) = 1 and b is continuous at o, there exists  $\eta > 0$  such that  $b(x) \ge 1/2$  whenever  $\|x\| \le \eta$ . Let  $x \in E$  and  $m \ge 1$  be such that  $\eta/(m+1) < \|x\| \le \eta/m$ . It follows that

$$s(x) \ge \sum_{n=1}^{m} b(nx) \ge \frac{m+1}{2} > \frac{\eta}{2\|x\|}$$

and so  $d(x) < (4/\eta) ||x||$  whenever  $||x|| \le \eta$ . This and the boundedness of d imply that d(x)/||x|| is bounded on  $E \setminus \{o\}$ . This verifies (b).

Ad (a). Since by (9.2) the sum defining s is locally finite, the functional d is continuously differentiable on  $E \setminus \{o\}$ . For any  $x \neq o$  we have

$$d'(x) = -2\left(\sum_{n=0}^{\infty} nb'(nx)\right)\left(\sum_{n=0}^{\infty} b(nx)\right)^{-2} = -\frac{(d(x))^2}{2}\sum_{n=0}^{\infty} nb'(nx).$$

Since b is L-continuous,  $\lambda := \sup\{\|b'(x)\| \mid x \in E\}$  is finite and we obtain for any  $x \neq o$ ,

$$\left\|\sum_{n=0}^{\infty} nb'(nx)\right\| \le \lambda \sum_{n=0}^{\left[\|x\|^{-1}\right]} n \le \lambda \left(1 + \frac{1}{\|x\|}\right)^{2};$$

here the first inequality holds by (9.3). This estimate together with (b) yields

$$||d'(x)|| \le \lambda \max\{\alpha, 2\}^2 (||x|| + 1)^2,$$

showing that d' is bounded on  $B(o, 1) \setminus \{o\}$ . Since d' is zero outside B(o, 1), it follows that d' is bounded on  $E \setminus \{o\}$ . Hence d is L-continuous on E. This verifies (a).

Now we can supplement Proposition 9.1.3.

**Theorem 9.1.7** Let E be a Fréchet smooth Banach space,  $f : E \to \overline{\mathbb{R}}$  be a proper l.s.c. functional, and  $\overline{x} \in \text{dom } f$ . Then  $\partial_V f(\overline{x}) = \partial_F f(\overline{x})$ .

#### 170 9 Subdifferentials of Lower Semicontinuous Functionals

*Proof.* In view of Proposition 9.1.3 it remains to show that  $\partial_F f(\bar{x}) \subseteq \partial_V f(\bar{x})$ . Thus let  $x^* \in \partial_F f(\bar{x})$ . Replacing f with the functional  $\tilde{f} : E \to \mathbb{R}$  defined by

$$\tilde{f}(y) := \sup\{f(\bar{x}+y) - f(\bar{x}) - \langle x^*, y \rangle, -1\}, \quad y \in E,$$

we have  $o \in \partial_F \tilde{f}(o)$ . We show that  $o \in \partial_V \tilde{f}(o)$ . Notice that  $\tilde{f}(\bar{x}) = 0$  and  $\tilde{f}$  is bounded below. By (9.1) we obtain

$$\liminf_{y \to o} \frac{\tilde{f}(y)}{\|y\|} \ge 0. \tag{9.4}$$

Define  $\rho : \mathbb{R}_+ \to \mathbb{R}$  by  $\rho(t) := \inf\{\tilde{f}(y) \mid ||y|| \le t\}$ . Then  $\rho$  is nonincreasing,  $\rho(0) = 0$  and  $\rho \le 0$ . This and (9.4) give

$$\lim_{t \to 0} \frac{\rho(t)}{t} = 0. \tag{9.5}$$

Define  $\rho_1$  and  $\rho_2$  on  $(0, +\infty)$  by

$$\rho_1(t) := \int_t^{\mathrm{e}t} \frac{\rho(s)}{s} \mathrm{d}s, \quad \rho_2(t) := \int_t^{\mathrm{e}t} \frac{\rho_1(s)}{s} \mathrm{d}s.$$

Since  $\rho$  is nonincreasing, we have

$$\rho_1(\mathbf{e}t) = \int_{\mathbf{e}t}^{\mathbf{e}^2 t} \frac{\rho(s)}{s} \mathrm{d}s \ge \rho(\mathbf{e}^2 t) \int_{\mathbf{e}t}^{\mathbf{e}^2 t} \frac{1}{s} \mathrm{d}s = \rho(\mathbf{e}^2 t).$$
(9.6)

Since  $\rho_1$  is also nonincreasing, we obtain analogously  $\rho_1(et) \leq \rho_2(t) \leq 0$ . This and (9.5) yield

$$\lim_{t \downarrow 0} \frac{\rho_2(t)}{t} = \lim_{t \downarrow 0} \frac{\rho_1(t)}{t} = \lim_{t \downarrow 0} \frac{\rho(t)}{t} = 0.$$
(9.7)

Now define  $\tilde{g}: E \to \mathbb{R}$  by  $\tilde{g}(x) := \rho_2(d(x))$  for  $x \neq o$  and  $\tilde{g}(o) := 0$ , where d denotes the functional in Lemma 9.1.6. Recall that  $d(x) \neq 0$  whenever  $x \neq o$ . Since  $\rho_1$  is continuous on  $(0, +\infty)$  and so  $\rho_2$  is continuously differentiable on  $(0, +\infty)$ , the chain rule implies that  $\tilde{g}$  is continuously differentiable on  $E \setminus \{o\}$  with derivative

$$\tilde{g}'(x) = \frac{\rho_1(\mathrm{e}d(x)) - \rho_1(d(x))}{d(x)} \cdot d'(x), \quad x \neq o.$$

The properties of d and (9.7) further imply that  $\lim_{x\to o} \|\tilde{g}'(x)\| = 0$ . Therefore it follows as a consequence of the mean value theorem that  $\tilde{g}$  is also F-differentiable at o with  $\tilde{g}'(o) = o$ , and  $\tilde{g}'$  is continuous at o. Since  $\rho$  is nonincreasing, we have  $\rho_2(t) \leq \rho_1(t) \leq \rho(t)$ ; here, the second inequality follows analogously as (9.6) and the first is a consequence of the second. Let  $||x|| \leq 1$ . Then  $||x|| \leq d(x)$ , and since  $\rho_2$  is nonincreasing (as  $\rho_1$  is nonincreasing), we obtain 9.1 Fréchet Subdifferentials: First Properties 171

$$(\tilde{f} - \tilde{g})(x) = \tilde{f}(x) - \rho_2(d(x)) \ge \tilde{f}(x) - \rho_2(||x||) \ge \tilde{f}(x) - \rho(||x||) \ge 0$$

Since  $0 = (\tilde{f} - \tilde{g})(o)$ , we see that  $\tilde{f} - \tilde{g}$  attains a local minimum at o. Hence  $o \in \partial_V \tilde{f}(o)$  and so  $x^* \in \partial_V f(\bar{x})$ .

**Remark 9.1.8** Let E, f, and  $\bar{x}$  be as in Theorem 9.1.7. Further let  $x^* \in \partial_V f(\bar{x})$ , which by Theorem 9.1.7 is equivalent to  $x^* \in \partial_F f(\bar{x})$ . Then there exists a *concave* C<sup>1</sup> function  $g: E \to \mathbb{R}$  such that  $g'(\bar{x}) = x^*$  and f - g attains a local minimum at  $\bar{x}$  (cf. Fig. 9.1); see Exercise 9.8.4.

In order to have both the limit definition and the viscosity definition of F-subderivatives at our disposal, we shall in view of Theorem 9.1.7 assume that E is a Fréchet smooth Banach space and we denote the common F-subdifferential of f at  $\bar{x}$  by  $\partial_F f(\bar{x})$ .

The relationship to classical concepts is established in Proposition 9.1.9. In this connection recall that

$$\partial_P f(\bar{x}) \subseteq \partial_F f(\bar{x}). \tag{9.8}$$

**Proposition 9.1.9** Assume that E is a Fréchet smooth Banach space and  $f: E \to \overline{\mathbb{R}}$  is proper and l.s.c.

(a) If the directional G-derivative  $f_G(\bar{x}, \cdot)$  of f at  $\bar{x} \in \text{dom } f$  exists on E, then for any  $x^* \in \partial_F f(\bar{x})$  (provided there exists one),

$$\langle x^*, y \rangle \le f_G(\bar{x}, y) \quad \forall y \in E.$$

If, in particular, f is G-differentiable at  $\bar{x} \in \text{dom } f$ , then  $\partial_F f(\bar{x}) \subseteq \{f'(\bar{x})\}$ .

- (b) If  $f \in C^1(U)$ , where  $U \subseteq E$  is nonempty and open, then  $\partial_F f(x) = \{f'(x)\}$ for any  $x \in U$ .
- (c) If  $f \in C^2(U)$ , where  $U \subseteq E$  is nonempty and open, then  $\partial_P f(x) = \partial_F f(x) = \{f'(x)\}$  for any  $x \in U$ .
- (d) If f is convex, then  $\partial_P f(x) = \partial_F f(x) = \partial f(x)$  for any  $x \in \text{dom } f$ .

(e) If f is locally L-continuous on E, then  $\partial_F f(x) \subseteq \partial_\circ f(x)$  for any  $x \in E$ . Proof.

(a) Let  $x^* \in \partial_F f(\bar{x})$  be given. Then there exist a C<sup>1</sup> function g and a number  $\epsilon > 0$  such that  $g'(\bar{x}) = x^*$  and for each  $x \in B(\bar{x}, \epsilon)$  we have

$$(f-g)(x) \ge (f-g)(\bar{x}) \quad \forall x \in \mathcal{B}(\bar{x},\epsilon).$$
(9.9)

Now let  $y \in E$ . Then for each  $\tau > 0$  sufficiently small we have  $\bar{x} + \tau y \in B(\bar{x}, \epsilon)$  and so

$$\frac{1}{\tau} \left( f(\bar{x} + \tau y) - f(\bar{x}) \right) \ge \frac{1}{\tau} \left( g(\bar{x} + \tau y) - g(\bar{x}) \right).$$

Letting  $\tau \downarrow 0$  it follows that  $f_G(\bar{x}, y) \geq \langle g'(\bar{x}), y \rangle = \langle x^*, y \rangle$ . If f is G-differentiable at  $\bar{x}$ , then by linearity the latter inequality passes into  $f'(\bar{x}) = x^*$ .

- 172 9 Subdifferentials of Lower Semicontinuous Functionals
- (b) It is obvious that  $f'(x) \in \partial_F f(x)$  for each  $x \in U$ . This and (a) imply  $\partial_F f(x) = \{f'(x)\}$  for each  $x \in U$ .
- (c) By Proposition 3.5.1 we have  $f'(x) \in \partial_P f(x)$ , which together with (a) and (9.8) verifies the assertion.
- (d) It is evident that  $\partial f(\bar{x}) \subseteq \partial_P f(\bar{x}) \subseteq \partial_F f(\bar{x})$  for each  $\bar{x} \in \text{dom } f$ . Now let  $x^* \in \partial_F f(\bar{x})$  be given. As in the proof of (a) let g and  $\epsilon$  be such that (9.9) holds. Further let  $x \in E$ . If  $\tau \in (0, 1)$  is sufficiently small, then  $(1 \tau)\bar{x} + \tau x \in B(\bar{x}, \epsilon)$  and we obtain using the convexity of f,

$$(1-\tau)f(\bar{x}) + \tau f(x) \ge f((1-\tau)\bar{x} + \tau x) \ge (9.9) f(\bar{x}) + g((1-\tau)\bar{x} + \tau x) - g(\bar{x}).$$

It follows that

$$f(x) - f(\bar{x}) \ge \frac{g(\bar{x} + \tau(x - \bar{x})) - g(\bar{x})}{\tau}.$$

Letting  $\tau \downarrow 0$ , we see that  $f(x) - f(\bar{x}) \ge \langle g'(\bar{x}), x - \bar{x} \rangle = \langle x^*, x - \bar{x} \rangle$ . Since  $x \in E$  was arbitrary, we conclude that  $x^* \in \partial f(\bar{x})$ .

(e) See Exercise 9.8.5.

In Sect. 9.5 we shall establish the relationship between the Fréchet subdifferential and the Clarke subdifferential.

## 9.2 Approximate Sum and Chain Rules

**Convention.** Throughout this section, we assume that *E* is a Fréchet smooth Banach space, and  $\|\cdot\|$  is a norm on *E* that is F-differentiable on  $E \setminus \{o\}$ .

Recall that we write  $\omega_{\bar{x}}(x) := ||x - \bar{x}||$ , and in particular  $\omega(x) := ||x||$ ,  $x \in E$ .

One way to develop subdifferential analysis for l.s.c. functionals is to start with sum rules. It is an easy consequence of the definition of the F-subdifferential that we have

$$\partial_F f_1(\bar{x}) + \partial_F f_2(\bar{x}) \subseteq \partial_F (f_1 + f_2)(\bar{x}).$$

But the reverse inclusion

$$\partial_F (f_1 + f_2)(\bar{x}) \subseteq \partial_F f_1(\bar{x}) + \partial_F f_2(\bar{x}) \tag{9.10}$$

does not hold in general.