
Preface

Early computer graphics started as a research and application field that was
the domain of only a few experts, for instance in the area of computer aided
design (CAD). Nowadays, any person using a personal computer benefits from
the developments in computer graphics. Operating systems and application
programs with graphical user interfaces (GUIs) belong to the simplest appli-
cations of computer graphics. Visualisation techniques, ranging from simple
histograms to dynamic 3D animations showing changes of winds or currents
over time, use computer graphics in the same manner as popular computer
games. Even those who do not use a personal computer might see the results of
computer graphics on TV or in cinemas where parts of scenes or even a whole
movie might be produced by computer graphics techniques.

Without powerful hardware in the form of fast processors, sufficiently large
memory and special graphics cards, most of these applications would not have
been possible. In addition to these hardware requirements efficient algorithms
as well as programming tools that are easy to use and flexible at the time are
required. Nowadays, a standard personal computer is sufficient to generate im-
pressive graphics and animations using freely available programming platforms
like OpenGL or Java 3D. In addition to at least an elementary understanding
of programming, the use of such platforms also requires basic knowledge about
the underlying background, concepts and methods of computer graphics.

Aims of the book

The aim of this book is to explain the necessary background and principles of
computer graphics combined with direct applications in concrete and simple
examples. Coupling the theory with the practical examples enables the reader
to apply the technical concepts directly and to visually understand what they

vi Preface

mean.
Java 2D and Java 3D build the basis for the practical examples. Wherever

possible, the introduced concepts and theory of computer graphics are imme-
diately followed by their counterparts in Java 2D and Java 3D. However, the
intention of this book is not to provide a complete introduction to Java 2D
or Java 3D, which would both need a multivolume edition themselves without
even touching the underlying theoretical concepts of computer graphics.

In order to directly apply computer graphics concepts introduced in this
book, the book focusses on the parts of Java 2D and Java 3D that are absolutely
relevant for these concepts. Sometimes a simple solution is preferred over the
most general one so that not all possible options and additional parameters
for an implementation will be discussed. The example programs are kept as
simple as possible in order to concentrate on the important concepts and not
to disguise them in complex, but more impressive scenes.

There are some selected additional topics—for instance the computation of
shadows within computer graphics—that are introduced in the book, although
Java 3D does not provide such techniques yet.

Why Java?

There are various reasons for using Java 2D and Java 3D as application plat-
forms. The programming language Java becomes more and more popular in
applications and teaching so that extensions like Java 2D/3D seem to be the
most obvious choice. Many universities use Java as the introductory program-
ming language, not only in computer science, but also in other areas so that
students with a basic knowledge in Java can immediately start to work with
Java 2D/3D. Specifically, for multimedia applications Java is very often the
language of first choice.

Overview

The first chapters of the book focus on aspects of two-dimensional computer
graphics like how to create and draw lines, curves and geometric shapes, han-
dling of colours and techniques for animated graphics.

Chapter 5 and all following chapters cover topics of three-dimensional com-
puter graphics. This includes modelling of 3D objects and scenes, producing
images from virtual 3D scenes, animation, interaction, illumination and shad-
ing. The last chapter introduces selected special topics, for example special
effects like fog, sound effects and stereoscopic viewing.

Preface vii

Guidelines for the reader

In order to be able to apply the computer graphics concepts introduced in this
book, the reader will need only very elementary knowledge of the programming
language Java. The example programs in this book use Java 3D but also Java
2D in the first chapters, since two-dimensional representations are essential for
computer graphics and the geometrical concepts are easier to understand in
two dimensions than in three. The necessary background of Java 2D and Java
3D is included as application sections in this book.

Although the coupling of theory and practice was a main guideline for
writing this book, the book can also be used as an introduction to the gen-
eral concepts of computer graphics without focussing on specific platforms or
learning how to use Java 2D or Java 3D. Skipping all sections and subsections
containing the word “Java” in their headlines, the book will remain completely
self-contained in the sense of a more theoretical basic introduction to computer
graphics. For some of the computer graphics concepts introduced in this book
it is assumed that the reader has basic knowledge about vectors, matrices and
elementary calculus.

Supplemental resources

Including the complete source code of all mentioned example programs would
have led to a thicker, but less readable book. In addition, no one would like to
take the burden of typing the source code again in order to run the examples.
Therefore, the book itself only contains those relevant excerpts of the source
code that are referred to in the text. The complete source code of all example
programs and additional programs can be downloaded from the book web site
at

http://public.rz.fh-wolfenbuettel.de/∼klawonn/computergraphics

This online service also provides additional exercises concerning the theo-
retical background as well programming tasks including sketches of solutions,
teaching material in the form of slides and some files that are needed for the
example programs. The links mentioned in the appendix and further links to
some interesting web sites can also be found at the online service of this book.

Acknowledgements

Over the years, the questions, remarks and proposals of my students had a great
influence on how this book was written. I cannot list all of them by name, but I
would like to mention at least Daniel Beier, Thomas Weber, Jana Volkmer and
especially Dave Bahr for reading the manuscript and their extremely helpful

viii Preface

comments. I also would like to thank Katharina Tschumitschew and Gerry
Gehrmann for designing the online service of the book and for some 3D models
that I could use in my programs. The book was first published in German
and without the encouragement and support of Catherine Brett from Springer
Verlag in London this English version would have been impossible. Thanks also
to Frank Ganz from Springer, who seems to know everything about LATEX. My
very personal thanks go to my parents and my wife Keiko for their love and
for always accepting my sometimes extremely heavy overload of work.

Wolfenbüttel Frank Klawonn
September 2007

2
Basic principles of two-dimensional

graphics

This chapter introduces basic concepts that are required for the understand-
ing of two-dimensional graphics. Almost all output devices for graphics like
computer monitors or printers are pixel-oriented. Therefore, it is crucial to dis-
tinguish between the representation of images on these devices and the model
of the image itself which is usually not pixel-oriented, but defined as scalable
vector graphics, i.e., floating point values are used for coordinates.

2.1 Raster versus vector graphics

Before an object can be shown on a computer monitor or a printer, a model
describing the object’s geometry is required, unless the object is an image
itself. Modelling of geometrical objects is usually done in the framework of
vector-oriented or vector graphics. A more complex object is modelled as a
combination of elementary objects like lines, rectangles, circles, ellipses or arcs.
Each of these elementary objects can be defined by a few coordinates, describing
the location of the object, and some parameters like the radius for a circle. A
very simple description of the house in figure 2.1(a) in terms of vector graphics
is shown in figure 2.1(b). The house can be defined as a sequence of points or
vectors. It must also be specified within the sequence of points whether two
neighbouring points should be connected by a line or not. Dotted lines in figure

8 2. Basic principles of two-dimensional graphics

(a) (b) (c)

Figure 2.1 Original image, vector and pixel graphics

2.1(b) refer to points in the sequence that should not be connected by a line.
The vector graphics-oriented description of objects is not directly suitable

for the representation on a purely pixel-oriented device like an LCD monitor or
printer. From a theoretical point of view, it would be possible to display vector
graphics directly on a CRT1 monitor by running the cathode ray—or, in case of
colour display, the three cathode rays—along the lines defined by the sequence
of points and switch the ray on or off, depending on whether the corresponding
connecting line should be drawn. In this case, the monitor might not be flicker
free anymore since the cathode ray might take too long to refresh the screen
for a more complex image in vector graphics, so that fluorescent spots on the
screen might fade out, before the cathode ray returns. Flicker-free monitors
should have a refresh rate of 60 Hz. If a cathode ray were to run along the
contour lines of objects represented in vector graphics, the refresh rate would
depend on how many lines the objects contain, so that a sufficiently fast refresh
rate could not be guaranteed in this operational mode. Therefore, the cathode
ray scans the screen line by line leading to a guaranteed and constant refresh
rate, independent of the image to be drawn.

Computer monitors, printers and also various formats for storing images like
bitmaps or JPEG are based on raster or raster-oriented graphics, also called
pixel or pixel-oriented graphics. Raster graphics uses a pixel matrix of fixed
size. A colour can be assigned to each pixel of the raster. In the simplest case
of a black-and-white image a pixel takes one of the two values black or white.

In order to display vector-oriented graphics in the form of raster graphics,
all geometrical shapes must be converted into pixels. This procedure is called
scan conversion. On the one hand, this can lead to high computational efforts.
A standard monitor has more than one million pixels. For each of them, it
must be decided which colour to assign to it for each image. On the other
hand, undesired aliasing effects occur in the form of jagged edges, known as
1 Cathode ray tube.

2.1 Raster versus vector graphics 9

jaggies or staircasing. The term aliasing effect originates from the field of signal
processing and refers to artifacts, i.e., superficial undesired effects that can
occur, when a discrete sampling rate is used to measure a continuous signal.
A grey-scale image can be viewed as a two-dimensional signal. In this sense, a
coloured image based on the three colours red, green and blue, is nothing else
than three two-dimensional signals, one for each colour.

Even if an image will be displayed in terms of raster-oriented graphics, it
still has advantages to model and store it in a vector-oriented format. Raster
graphics is bound to a specific resolution. Once the resolution is fixed, the
full information contained in the vector-oriented image cannot be recovered
anymore, leading to serious disadvantages, when the image is displayed on a
device with a different resolution or when the image needs to be enlarged or
scaled down. Figure 2.2 shows the tip of an arrow and its representation in the
form of raster graphics for two different resolutions. If only the more coarse
pixel image in the middle is stored, it is impossible to reconstruct the refined
pixel image on the right-hand side without additional information. One could
only produce an image appearing in the same form as the one in the middle by
simply identifying four pixels of the refined image with one pixel in the coarser
image. If the quotient of the pixel resolution is not an integer number, the
transformation from a raster graphics with one resolution to a raster graphics
with another resolution becomes even more complicated and will lead to new
aliasing effects, even if the new resolution is higher than the original one.

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

Figure 2.2 The tip of an arrow drawn as raster graphics in two different
resolutions

In most cases, when a pixel matrix is considered in this book, each pixel
is represented by a square between the lines of a grid as shown in figure 2.2.
However, sometimes another representation is more convenient where pixels are
illustrated as circles on the points where the lines of the grid cross. Figure 2.3
shows the pixel with the grid coordinates (5,3).

10 2. Basic principles of two-dimensional graphics

�

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8 9

Figure 2.3 An alternative representation for pixels

2.2 The first Java 2D program

Before modelling of two-dimensional objects is discussed in more detail, a short
introduction into how Java 2D can be used to generate images in general is
provided. The first chapters of this book dealing exclusively with problems and
questions of two-dimensional graphics refer to Java 2D. Chapter 5 and the
latter chapters will use Java 3D for three-dimensional modelling, animation
and representations.

It is not the aim of this book to provide a complete introduction to Java 2D
and Java 3D. Instead, the main intention of this book is to enable even those
readers with only very basic knowledge in Java to use and apply the more theo-
retical concepts of computer graphics immediately within the framework of Java
2D and Java 3D. For this reason, the example programs are kept as simple as
possible and not all available options and settings will be explained in detail, in
order to better focus on the main aspects and concepts. For readers who are al-
ready more familiar with Java programming the book provides an introduction
to Java 2D and 3D that enables the reader to study the more advanced options
and possibilities of these two Application Programming Interfaces (APIs) with
the help of specific literature and the API documentations.

Detailed information concerning Java 2D can be found in books like [24, 29],
in the API documentation and the Java tutorial, that are available on the
Internet (see the appendix).

Java 2D is an API belonging to the kernel classes of the Java 2 (formerly
JDK 1.2) and later platforms so that it is not necessary to carry out additional
installations to use Java 2D classes, as long as a Java platform is installed on
the computer.

Java 2D extends some of the AWT2 packages of Java by additional classes
and also introduces new packages within AWT. Java 2D can be viewed as a
2 Abstract Windowing Toolkit.

2.2 The first Java 2D program 11

component under Java’s graphics components AWT and Swing (see figure 2.4).
Although AWT is seldom used anymore, the introductory examples for

Java 2D in this book are based on AWT. The reason is that within AWT it is
easily possible to program simple animations without the technique of double
buffering that will be used later on in this book.

Java2D API

AWT

Swing

Figure 2.4 The Java 2D API extends AWT

AWT components that are displayed on the computer screen contain a
paint method with a Graphics object as its argument. In order to use the
facilities of Java 2D for the corresponding AWT component, it is necessary to
cast this Graphics object into a Graphics2D object. The class Graphics2D

within Java 2D extends the class Graphics. The following simple Java class
SimpleJava2DExample.java demonstrates this simple casting procedure. In
order to keep the printed code examples short, comments are only included in
the programs that can be downloaded from the web site of this book, but not
in the printed versions. The result of this program is shown in figure 2.5.

Figure 2.5 The result of the first Java 2D program

12 2. Basic principles of two-dimensional graphics

import java.awt.*;

public class SimpleJava2DExample extends Frame

{

SimpleJava2DExample()

{

addWindowListener(new MyFinishWindow());

}

public void paint(Graphics g)

{

Graphics2D g2d = (Graphics2D) g;

g2d.drawString("Hello world!",30,50);

}

public static void main(String[] argv)

{

SimpleJava2DExample f = new SimpleJava2DExample();

f.setTitle("The first Java 2D program");

f.setSize(350,80);

f.setVisible(true);

}

}

The method addWindowListener, called in the constructor, enables the
closing of the window by clicking on the cross in the upper right corner. The
method uses a simple additional class MyFinishWindow.java, that can also be
downloaded from the web site of this book. The main method generates the
corresponding window, defines the title of the window, determines its size by
350 pixels in width and 80 pixels in height and finally displays it. This structure
of the main method will be used for all Java 2D examples in this book. For
other programs, it will only be necessary to replace SimpleJava2DExample by
the corresponding class name and—if desired—to change the title of the window
and its size.

The image or graphics to be displayed is defined within the paint method.
The first line of this method will always be the same in all examples here: It
carries out the casting of the Graphics object to a Graphics2D object. The
remaining code lines in the paint method depend on what is to be displayed
and will be different for each program. In the example here, only the text “Hello
worl” is printed at the window coordinates (30,50).

When specifying window coordinates, the following two aspects should be
taken into account.

2.2 The first Java 2D program 13

– The point (0,0) is located in the upper left corner of the window. The window
extends to the right (in the example program 350 pixels) and downwards (in
the example program 80 pixels). This means that the y-axis of the coordinate
system does not point upwards, but downwards since the pixel lines in the
window are counted from the top to the bottom. How to avoid this problem
of an inverted y-axis will be explained later on.

– The window includes margins on all its four sides. Especially the upper mar-
gin, containing the title of the window, is quite broad. It is not possible to
draw anything on or outside these margins within the paint method. Trying
to draw an object on the margin or outside the window will not lead to an
error or exception. The clipping procedure will simply make sure that the
object or its corresponding part is not drawn. Therefore, when a window
of a size of 350 × 80 pixels is defined as in the example program, a slightly
smaller area is available for drawing. The width of the margins depends on
the operating system platform. The example programs avoid this problem
by defining a window that is large enough and by not drawing objects too
close to any of the margins. The exact width of the margins can also be
determined within the class, for instance within the paint method using

Insets ins = this.getInsets();

The width of the left, right, upper and lower margin in pixels is given by
ins.left, ins.right, ins.top and ins.bottom, respectively.

The first example of a Java 2D program did not require any additional
computations before the objects—in this case only text—could be drawn. For
real graphics it is usually necessary to carry out more or less complicated
computations in order to define and position the objects to be displayed. Java
2D distinguishes between the definition of objects and drawing objects. An
object that has been defined will not be drawn or shown in the corresponding
window, until a draw- or fill method is called with the corresponding object
as argument. Therefore, Java 2D also differentiates between modelling objects
based on vector graphics using floating point arithmetics and displaying or
drawing objects on the screen based on raster graphics with scan conversion
and integer arithmetics.

In order to keep the example programs in this book as simple and under-
standable as possible, the computations required for defining and positioning
the geometric objects are carried out directly in the paint method. For more
complex animated graphics, i.e., for graphics with moving or changing objects,
this can lead to flickering effects and also to the effect that the window might
react very slowly, for instance when it should be closed while the animation is
still running. Java assigns a high priority to the paint method so that other

14 2. Basic principles of two-dimensional graphics

events like closing of the window cannot be carried out immediately. In order
to avoid this undesired effect, one can carry out all computations to construct
or position objects outside the paint method and instead call the repaint

method only, when objects have to be drawn. The double buffering technique,
introduced later on in section 4.2, provides an even better solution.

2.3 Basic geometric objects

The basic geometric objects in computer graphics are usually called primi-

tives or graphics output primitives. They include geometric entities like points,
straight and curved lines and areas as well as character strings. The basic prim-
itives are the following ones.

Points that are uniquely defined by their x- and y-coordinate. Points are usu-
ally not drawn themselves. Their main function is the description of other
objects like lines that can be defined by their two endpoints.

Lines, polylines or curves can be defined by two or more points. Whereas for
a line two points are needed, curves require additional control points. Poly-
lines are connected sequences of lines.

Areas are usually bounded by closed polylines or polygons. Areas can be filled
with a colour or a texture.

Figure 2.6 A self-overlapping, a nonconvex and a convex polygon

The simplest curve is a line segment or simply a line. A sequence of line
where the following line starts where the previous one ends is called a poly-

line. If the last line segment of a polyline ends where the first line segment
started, the polyline is called a polygon. For various applications—for instance
for modelling surfaces—additional properties of polygons are required. One of
such properties is that the polygon should not overlap with itself. Convexity is
another important property that is often needed. A polygon or, more generally,
an area or a region is convex if whenever two points are within the region the

2.3 Basic geometric objects 15

connecting line between these two points lies completely inside the region as
well. Figure 2.6 shows a self-overlapping polygon, a nonconvex polygon and
a convex polygon. For the nonconvex polygon two points inside the polygon
are chosen and connected by a dotted line that lies not completely inside the
polygon.

In addition to lines and piecewise linear polylines, curves are also common in
computer graphics. In most cases, curves are defined as parametric polynomials
that can also be attached to each other like lines in a polyline. The precise
definition and computation of these curves will be postponed until chapter 6.
Here it is sufficient to understand the principle of how the parameters of a
curve influence its shape. In addition to the endpoints of the curve, one or
more control points have to be specified. Usually, two control points are used
leading to a cubic curve or only one control point is used in order to define a
quadratic curve. The curve begins and ends in the two specified endpoints. In
general, it will not pass through control points. The control points define the
direction of the curve in the two endpoints.

In the case of a quadratic curve with one control point one can imagine
the lines connecting the control point with the two endpoints. The connecting
lines are the tangents of the quadratic curve in the two endpoints. Figure
2.7 illustrates the definition of a quadratic curve on the left-hand side. The
quadratic curve is given by two endpoints and one control point through which
the curve does not pass. The tangents in the endpoints are also shown here as
dotted lines. For a cubic curve as shown on the right-hand side of the figure,
the tangents in the two endpoints can be defined independently by the two
control points.

Figure 2.7 Definition of quadratic and cubic curves

When fitting quadratic or cubic curves together in order to form a longer,
more complicated curve, it is not sufficient to simply use the endpoint of the
previous curve as a starting point for the next curve. The resulting joint curve
would be continuous, but not smooth, i.e., sharp bends might occur. In order
to avoid sharp bends, the tangent of the endpoint of the previous curve and the

16 2. Basic principles of two-dimensional graphics

following curve must point into the same direction. This means the endpoint,
which is equal to the starting point of the next curve, and the two control
points defining the two tangents must be collinear. This means they must lie
on the same line. Therefore, the first control point of a succeeding curve must
be on the line defined by the last control and endpoint of the previous curve.

In the same way a curve can be fitted to a line without causing a sharp
bend by locating the first control point on the prolongation of the line. Figure
2.8 illustrates this principle.

Figure 2.8 Fitting a cubic curve to a line without sharp bends

Other important curves in computer graphics are circles, ellipses and circu-
lar and elliptic arcs.

In the same sense as polygons, circles and ellipses define areas. Areas are
bounded by a closed curve. When only the shell or margin of the area should
be drawn, there is no difference to drawing arbitrary curves. In contrast to
lines and simple curves, areas can be filled by colours and textures. From the
algorithmic point of view, filling of an area is very different from drawing curves.

Axes-parallel rectangles, whose sides are parallel to the coordinate axes, play
an important role in computer graphics. Although they can be understood as
special cases of polygons, they are simpler to handle since it is already sufficient
to specify two opposing vertices.

Instead of specifying a polygon or the boundary directly in order to define
an area, it is sometimes more convenient to construct a more complicated
area by combining previously defined areas using set-theoretic operations. The
most important operations are union, intersection, difference and symmetric
difference. The union joins two areas to a larger area whereas their intersection

consists of the part belonging to both areas. The difference of an area with
another removes all parts from the first area that also belong to the second area.
The symmetric difference corresponds to a pointwise exclusive OR-operation
applied to the two areas. The symmetric difference is the union of the two
areas without their intersection. Figure 2.9 shows the results of applying these
operations to two areas in the form of a circle and a rectangle.

2.4 Basic geometric objects in Java 2D 17

Figure 2.9 Union, intersection, difference and symmetric difference of a circle
and a rectangle

Geometric transformations like scalings will be discussed in section 2.5.
They provide another way of constructing new areas from already existing
ones.

2.4 Basic geometric objects in Java 2D

All methods for generating geometric objects as they were described in the
previous section are also available within the Java 2D framework. The abstract
class Shape with its various subclasses allows the construction of various two-
dimensional geometric objects. Vector graphics is used to define Shape objects,
whose real-valued coordinates can either be given as float- or double-values.
Shapes will not be drawn until the draw or the fill method is called with
the corresponding Shape as argument in the form graphics2d.draw(shape)

or graphics2d.fill(shape), respectively. The draw method draws only the
margin or circumference of the Shape object, whereas the whole area defined
by the corresponding Shape object is filled, when the fill method is called.

The abstract class Point2D for points is not a subclass of Shape. Points
cannot be drawn directly. If one wants to draw a point, i.e., a single pixel, then a
line from this point to the same point can be drawn instead. Objects of the class
Point2D are mainly used to specify coordinates for other geometric objects. In
most cases, it is also possible to define these coordinates also directly by two
single values determining the x- and the y-coordinate. Therefore, the class
Point2D will not occur very often in the example programs. The abstract class
Point2D is extended by the two classes Point2D.Float and Point2D.Double.
When using the abstract class Point2D it is not necessary to specify whether
coordinates are given as float- or double-values. The same concept is also
used for most of the other geometric objects.

18 2. Basic principles of two-dimensional graphics

The elementary geometric objects in Java 2D introduced in the following
extend the class Shape, so that they can be drawn by applying one of the
methods draw or fill.

The abstract class Line2D defines lines. One way to define a line from point
(x1, y1) to point (x2, y2) is the following:

Line2D.Double line = new Line2D.Double(x1,y1,x2,y2);

The parameters x1, y1, x2 and y2 are of type double. Similarly, Line2D.Float
requires the same parameters, but of type float. It should be emphasised
again that the defined line will not yet be drawn. Only when the method
g2d.draw(line) is called, will the line appear on the screen.

Analogously to lines, quadratic curves are modelled by the abstract class
QuadCurve2D. The definition of a quadratic curve requires two endpoints and
one control point. The quadratic curve is constructed in such a way that it con-
nects the two endpoints (x1, y1) and (x2, y2) and the tangents in the endpoints
meet in the control point (crtlx,crtly), as illustrated by the left curve in figure
2.7. One way to define quadratic curves in Java 2D is the following:

QuadCurve2D.Double qc = new QuadCurve2D.Double(x1,y1,

ctrlx,ctrly,

x2,y2);

Cubic curves need two control points instead of one in order to define the
tangents in the two endpoints independently as shown by the right curve
in figure 2.7. Java 2D provides the abstract class CubicCurve2D for mod-
elling cubic curves. Analogously to the cases of lines and quadratic curves,
CubicCurve2D.Double is a subclass of CubicCurve2D allowing to define a cu-
bic curve in the following way:

CubicCurve2D.Double cc =

new CubicCurve2D.Double(x1,y1,

ctrlx1,ctrly1,

ctrlx2,ctrly2,

x2,y2);

The program CurveDemo.java demonstrates the usage of the classes
Line2D.Double, QuadCurve2D.Double and CubicCurve2D.Double.

The class GeneralPath allows the construction not only of polylines, i.e.,
sequences of lines, but also mixed sequences of lines, quadratic and cubic curves
in Java 2D. A GeneralPath starts in the origin of the coordinate system, i.e., in
the point (0,0). The class GeneralPath provides four basic methods for defining
a sequence of lines, quadratic and cubic curves. Each method will append a
corresponding line or curve to the endpoint of the last element in the sequence
of the GeneralPath. The methods lineTo, quadTo and curveTo append a line,

2.4 Basic geometric objects in Java 2D 19

a quadratic and a cubic curve, respectively, as the next element in the sequence
of the GeneralPath. These methods are used within GeneralPath in the same
way as in Line2D, QuadCurve2D and CubicCurve2D except that the definition
of the first endpoint of the line or curve is omitted since this point is already
determined by the endpoint of the previous line or curve in the GeneralPath.
The coordinates of the points must be specified as float-values. In addition to
these three methods for curves and lines, the class GeneralPath also contains
the method moveTo that allows to jump from the endpoint of the previous
curve to another point without connecting the points by a line or curve. A
GeneralPath must always start with the method moveTo, defining the starting
point of the general path.

Figure 2.10 An example for a GeneralPath

Figure 2.10 shows the outline of a car that was generated by the following
GeneralPath:

GeneralPath gp = new GeneralPath();

//Start at the lower left corner of the car

gp.moveTo(60,120);

gp.lineTo(80,120); //front underbody

gp.quadTo(90,140,100,120); //front wheel

gp.lineTo(160,120); //middle underbody

gp.quadTo(170,140,180,120); //rear wheel

gp.lineTo(200,120); //rear underbody

gp.curveTo(195,100,200,80,160,80); //rear

gp.lineTo(110,80); //roof

gp.lineTo(90,100); //windscreen

gp.lineTo(60,100); //bonnet

gp.lineTo(60,120); //front

20 2. Basic principles of two-dimensional graphics

g2d.draw(gp); //Draw the car

The coordinate system shown in figure 2.10 refers to the window coordi-
nates, so that the y-axis points downwards. The complete class for drawing the
car can be found in the example program GeneralPathCar.java.

An area can be defined by its boundary that might be specified as a
GeneralPath object. In addition to the class GeneralPath Java 2D also pro-
vides classes for axes-parallel rectangles and ellipses as basic geometric objects.

By the class Rectangle2D.Double, extending the abstract class
Rectangle2D, an axes-parallel rectangle can be defined in the following way:

Rectangle2D.Double r2d =

new Rectangle2D.Double(x,y,width,height);

The rectangle is determined by its opposite corners (x, y) and (x + width, y +
height) on the diagonal. Taking into account that the y-axis in the window
where the rectangle will be drawn points downwards, a rectangle is defined
whose upper left corner is located at the position (x, y) and whose lower right
corner is at (x + width, y + height). Figure 2.11 shows a rectangle on the left-
hand side that was defined by

Rectangle2D.Double r2d =

new Rectangle2D.Double(50,60,150,100);

It should be emphasised again that this constructor will only define the rec-
tangle in the same way as for all other Shape objects that were introduced so
far. It is still necessary to call the method g2d.draw(r2d) in order to show the
rectangle in the corresponding window.

Figure 2.11 An example for a rectangle and an ellipse

In the same way as rectangles, axes-parallel ellipses can be defined in Java
2D. An ellipse is determined by its bounding rectangle which can be specified

2.4 Basic geometric objects in Java 2D 21

with the same parameters as Rectangle2D objects. The ellipse shown in figure
2.11 on the right-hand side was generated by

Ellipse2D.Double elli =

new Ellipse2D.Double(250,60,150,100);

For illustration purposes the bounding rectangle that was used to generate
the ellipse is also shown in figure 2.11. The figure was generated by the class
RectangleEllipseExample.java.

A circle is a special case of an ellipse, where the bounding rectangle is a
square. A circle with centre point (x, y) and radius r can be generated by

Ellipse2D.Double circle =

new Ellipse2D.Double(x-r,y-r,2*r,2*r);

With the class Arc2D elliptic arcs and, of course, circular arcs can be defined.

Arc2D.Double arc = new

Arc2D.Double(rect2D,start,extend,type);

– rect2D specifies the bounding rectangle of the corresponding ellipse in the
form of a Rectangle2D.

– start is the angle where the arc is supposed to start relative to the bounding
rectangle viewed as a square. The angle is given as a float-value in terms
of degrees.3 The angle corresponds to the angle with the x-axis only in the
special case when a circular arc is defined, i.e., when the bounding rectangle
is a square. Otherwise, the angle is determined relative to the rectangle. For
example, a starting angle of 45◦ means that the starting point of the arc
lies on the connecting line from the centre of the rectangle to its upper right
corner.

– extend is the opening angle of the arc, i.e., the arc extends from the start
angle start to the angle start + extend. Analogously to the start angle,
extend corresponds to the true angle of the arc only in the case of a circular
arc. The angle start + extend is again interpreted relative to the bounding
rectangle in the same way as start. extend must also be specified as a
float-value in degrees.

– type can take one of the three values Arc2D.OPEN, Arc2D.PIE and
Arc2D.CHORD, specifying whether only the arc itself, the corresponding seg-
ment or the arc with the chord of the ellipse, respectively, should be con-
structed.

3 Arc2D is the only exception where angles are specified in the unit radians. Otherwise
angles in Java 2D and Java 3D must be specified in radiant.

22 2. Basic principles of two-dimensional graphics

Figure 2.12 shows from left to right an arc of an ellipse, a segment and an arc
together with the corresponding chord. In all cases a starting angle of 45◦ and
an opening angle of 90◦ were chosen. For illustration purposes the bounding
rectangle is also shown in the figure. One can see clearly that the arc starts
on the intersection of the ellipse with the line from the centre of the bounding
rectangle to its upper right corner, according to the choice of the starting angle
of 45◦. Obviously, the line defined by the centre point of the rectangle and the
starting point of the ellipse meets the x-axis in a smaller angle than 45◦ since a
flat, but long bounding rectangle was chosen. The same applies to the opening
angle. The actual opening angle is not 90◦, but it corresponds to the angle
between the lines from the centre of the bounding rectangle to its upper right
and to its upper left corner. An example for using the class Arc2D can be found
in the file ArcExample.java, which was also used to generate figure 2.12.

Figure 2.12 An arc of an ellipse, a segment and an arc with its corresponding
chord

An area can be defined as a rectangle, an ellipse or in the form of a
GeneralPath. At the end of section 2.3 a technique for defining areas based on
the set-theoretic operations union, intersection, set difference and symmetric
difference was explained. Applying these operations to already defined areas,
new shapes of areas can be defined. Java 2D offers the class Area for this pur-
pose. From a Shape object s, for instance a Rectangle2D, an Ellipse2D, a
closed GeneralPath or an Arc2D, representing the segment of an ellipse or an
ellipse arc with its chord, an Area object with the same outline can be defined
by

Area a = new Area(Shape s);

The above-mentioned set-theoretic operations can be applied to such Area ob-
jects to generate new areas. Given two Area objects areaA and areaB, the
following methods are available, implementing the corresponding set-theoretic
operations.

– areaA.add(areaB) computes the union of areaA and areaB.

– areaA.intersect(areaB) computes the intersection of areaA and areaB.

2.5 Geometric transformations 23

– areaA.subtract(areaB) yields areaA without the parts lying in areaB, i.e.,
their difference.

– areaA.exclusiveOr(areaB) constructs the union of areaA and areaB with-
out their intersection, i.e., their symmetric difference.

The Area object areaA contains the result of the application of the correspond-
ing set-theoretic operation. An Area object can be used as an argument of the
methods draw, which will only draw the outline of the area, and fill, which
will fill the whole area, in the same way as these methods are used for Shape

objects. The file AreaExample.java, which was also used to generate figure 2.9
on page 17, demonstrates the use of Area objects.

2.5 Geometric transformations

In addition to geometric objects, geometric transformations play a crucial role
in computer graphics. Geometric transformations can be used to position ob-
jects, i.e., to shift them to another position or to rotate them, to change the
shape of objects, for instance to stretch or shrink them in one direction, or to
move objects or change the shape of objects step by step in animated scenes.

Before discussing geometric transformations in more detail, it is necessary
to explain some general conventions. In computer graphics, points as well as
vectors are used. From a purely mathematical point of view, both can be repre-
sented as elements of the space R

n, i.e., as a tuple of real numbers. Especially in
physics, it is very important to distinguish clearly between these two concepts
of points and vectors. In the framework of this book and from the viewpoint
of computer graphics, it is very common to switch between the interpretations
of a tuple of real numbers as a point and as a vector, giving more flexibility in
handling certain matters. A tuple (x1, . . . , xn) ∈ R

n might occur in one equa-
tion as a point and in the next equation it might be interpreted as a vector.
Hopefully, physicists will tolerate the abuse of notation in the context of this
book. For equations within this book, column vectors will be used consistently.
Within the text, points are sometimes written as row vectors in order to avoid
stretching of text lines. In those cases where a point is explicitly understood
as a column vector, the symbol for transposing vectors will be used, i.e., the
point will be written as (x, y)� ∈ R

2 and (x, y, z)� ∈ R
3, respectively.

The dot product of two vectors u and v will be denoted in the following

24 2. Basic principles of two-dimensional graphics

way, which is also very common in statistics:

u� · v = (u1, . . . , un) ·

⎛
⎜⎝

v1

...
vn

⎞
⎟⎠ =

n∑
i=1

ui · vi.

The most important geometric transformations are scaling, rotation, shear-
ing and translation.

A scaling leads to stretching or shrinking of objects in the direction of the
x- and the y-axis. A scaling S(sx, sy) maps the point (x, y) to the point (x′, y′)
given by (

x′

y′

)
=

(
sx · x
sy · y

)
=

(
sx 0
0 sy

)
·
(

x′

y′

)
.

sx is the scaling factor in the direction of the x-axis. If |sx| > 1 holds, then a
stretching in the direction of the x-axis is carried out. For |sx| < 1 shrinking
takes place. If sx is negative, in addition to stretching or shrinking in the x-
direction, a reflection with respect to the y-axis is applied. In the same way,
sy leads to stretching or shrinking in the direction of the y-axis and a negative
value of sy incorporates an additional reflection with respect to the x-axis.

Figure 2.13 Scaling applied to a rectangle

Applying a scaling to an object means that the scaling is carried out point-
wise. The same holds for all other geometric transformations. They carry out
pointwise transformations of objects. As an example, the translation with the
scaling factors sx = 2 and sy = 0.5 is considered, stretching along the x-axis by
the factor 2 and shrinking in the direction of the y-axis by the factor 0.5. The

2.5 Geometric transformations 25

application of this scaling to the rectangle whose lower left corner is located at
the point (80,120) and whose upper right corner is at (180,180) yields a rectan-
gle whose width has doubled with half the original height. But in addition, the
centre of the rectangle is also transformed so that the transformed rectangle
is shifted to the lower right compared to the original rectangle. Figure 2.134

shows the original rectangle and the rectangle after scaling by dashed lines. A
scaling is always carried out with respect to the origin of the coordinate sys-
tem. Applying a scaling to an object that is not centred around the origin of
the coordinate system will lead to a translation of the (centre of the) object in
addition to the scaling.

Another important group of geometric transformations are rotations that
are determined by a single parameter, the rotation angle. The rotation is carried
out anticlockwise around the origin of the coordinate system in case of a positive
angle. A negative angle means that the rotation is carried out in a clockwise
manner. The rotation R(θ) by the angle θ maps the point (x, y) to the point
(x′, y′) given by

(
x′

y′

)
=

(
x · cos(θ) − y · sin(θ)
x · sin(θ) + y · cos(θ)

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
·
(

x

y

)
.

A rotation is always carried out around the origin of the coordinate system.
Therefore, a similar shifting effect as in the case of scalings happens, when an
object is not centred around the origin. In figure 2.14 a rotation by an angle
of 45◦ was carried out, mapping the original rectangle to the rectangle drawn
with dashed lines.

The shear transformation is another elementary geometric transformation
that causes a certain deformation of objects. Similar to scalings, the shear
transformation requires two parameters, however, not on the main diagonal of
the transformation matrix, but on the other two positions. Applying a shear
transformation Sh(sx, sy) to a point (x, y) yields the point (x′, y′) with the new
coordinates

(
x′

y′

)
=

(
x + sx · y
y + sy · x

)
=

(
1 sx

sy 1

)
·
(

x

y

)
.

As in the case of scalings and rotations, shear transformations are carried
out with respect to the origin of the coordinate system, so that an object
that is not centred around the origin will not only be deformed by a shear
transformation, but also shifted. The dashed rectangle is obtained from the
original rectangle in figure 2.15 by applying a shear transformation with the
parameters sx = 1 and sy = 0.

4 The figure is drawn in the usual representation and not in the standard Java 2D
window coordinate representation where the y-axis would point downwards.

26 2. Basic principles of two-dimensional graphics

Figure 2.14 A rotation applied to a rectangle

Figure 2.15 A shear transformation applied to a rectangle

Since sy = 0 was chosen for this shear transformation, the shearing takes
place in the direction of the y-axis. When the shearing should be carried out
in the direction of the x-axis, sx = 0 must hold.

The last elementary or primitive geometric transformation to be considered
here is very simple, but differs from the other three types of elementary trans-
formations that were introduced so far in an important aspect. A translation

T (dx, dy) causes a shift by the vector d = (dx, dy)�. This means the translation

2.5 Geometric transformations 27

maps the point (x, y) to the point
(

x′

y′

)
=

(
x + dx

y + dy

)
=

(
x

y

)
+

(
dx

dy

)
.

In figure 2.16 a translation defined by the vector d = (140, 80)� is applied
to a rectangle, mapping it to the dashed rectangle.

Figure 2.16 Translation of a rectangle

In contrast to the other transformations introduced so far, translations are
not linear, so that they cannot be represented in terms of matrix multipli-
cation. A matrix multiplication will always leave the zero vector unchanged,
whereas a translation will shift all points including the origin of the coordinate
system corresponding to the zero vector. Translations are affine, but not linear
mappings.

Within computer graphics, more complex transformations are usually de-
scribed or generated as compositions of elementary geometric transformations.
A transformation composed of scalings, rotations and shear transformations can
be specified by a single matrix, obtained as the product of the matrices encoding
the corresponding elementary transformations. When also translations are in-
volved, the composition of transformation can no longer be computed by simple
matrix multiplication and represented by a single matrix. If all this was possible
within matrix calculus, this would be a great advantage in terms of memory—
just a single matrix is required to represent a complex transformations—and
in terms of computational efficiency since all that would be needed for fast
computations are efficient implementations of matrix operations.

28 2. Basic principles of two-dimensional graphics

In order to represent also translations in matrix form, another representa-
tion of the coordinates of points is introduced. The next section will discuss
this alternative representation called homogeneous coordinates in more detail.

2.6 Homogeneous coordinates

This section introduces the representation of points in the two-dimensional
plane in homogeneous coordinates. The same concept will also be applied later
on to points in the three-dimensional space for the same reason, to allow the
representation of 3D translations in matrix form. Homogeneous coordinates

use an additional dimension for the representation of points. The point (x, y, z)
in homogeneous coordinates is identified with the point

(x

z
,
y

z

)
in Cartesian

coordinates. The z-component of a point in homogeneous coordinates must not
be zero. When the point (x0, y0) in Cartesian coordinates has to be transformed
into homogeneous coordinates, the representation (x0, y0, 1) can be used. This
is, however, not the only way to represent the point (x0, y0) in homogeneous
coordinates. Any representation of the form (z ·x0, z ·y0, z) where z �= 0 encodes
also the same point. The points {(x, y, z) ∈ R

3 | (x, y, z) = (z · x0, z · y0, z)} lie
on a line in the space R

3 passing through the origin of the coordinate system.
The line is given by the system of equations

x − x0 · z = 0,

y − y0 · z = 0.

Any point on this line, except the origin of the coordinate system, is a represen-
tative in homogenous coordinates of the point (x0, y0) in Cartesian coordinates.
Fixing a value for z for the representation in homogeneous coordinates, for in-
stance z = 1, the Cartesian x/y-plane is represented by a parallel plane with
the corresponding constant z-value.

Figure 2.17 illustrates these relations. All points on the line shown in fig-
ure 2.17 represent the same point in the two-dimensional Cartesian plane R

2.
Choosing a constant value for z, for instance one of the planes shown in figure
2.17, the corresponding plane is a homogeneous representative of the Cartesian
plane R

2.
The origin of the Cartesian coordinate system corresponds to any point of

the form (0, 0, z) (z �= 0) in homogeneous coordinates. This point is no longer a
necessary fixed point of a linear mapping in terms of homogeneous coordinates,
i.e., a linear mapping from R

3 to R
3. The linear mapping can map this point

to another point in homogeneous coordinates.

2.6 Homogeneous coordinates 29

�

�

�

Figure 2.17 Homogeneous coordinates

In homogeneous coordinates a translation can now be written as matrix
multiplication:

⎛
⎝

x′

y′

1

⎞
⎠ =

⎛
⎝

x + dx

y + dy

1

⎞
⎠ =

⎛
⎝

1 0 dx

0 1 dy

0 0 1

⎞
⎠ ·

⎛
⎝

x

y

1

⎞
⎠ .

The other elementary transformation can be extended to homogeneous co-
ordinates in a straightforward manner, leading to the following set of transfor-
mation matrices:

transformation notation matrix

translation T (dx, dy)

⎛
⎝

1 0 dx

0 1 dy

0 0 1

⎞
⎠

scaling S(sx, sy)

⎛
⎝

sx 0 0
0 sy 0
0 0 1

⎞
⎠

rotation R(θ)

⎛
⎝

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎞
⎠

shear transformation S(sx, sy)

⎛
⎝

1 sx 0
sy 1 0
0 0 1

⎞
⎠

Rotations and translations preserve lengths and angles. Scalings and shear
transformations do not preserve lengths and angles in general, but at least
parallel lines will be mapped to parallel lines again.

30 2. Basic principles of two-dimensional graphics

With this matrix representation in homogeneous coordinates, the composi-
tion of geometric transformations can be computed by matrix multiplication.

All matrices, introduced for the elementary geometric transformations are
of the form ⎛

⎝
a c e

b d f

0 0 1

⎞
⎠ . (2.1)

It is easy to verify that the product of two such matrices results again in
a matrix of the same form. Therefore, geometric transformations are usually
represented and stored in this way in computer graphics. This does not only
apply to transformations that operate on the two-dimensional plane, but also
to transformations in the three-dimensional space that will be discussed in
chapter 5. It is now obvious that a graphics card of a computer must—among
other things—be able to carry out matrix operations as fast as possible.

Original Translation 1. Translation, 2. Rotation

Rotation 1. Rotation, 2. Translation

Figure 2.18 Differing results on changing the order for the application of a
translation and a rotation

For the composition of transformations it should be taken into account that
the order in which the transformations are applied is of importance. Matrix mul-

2.7 Applications of transformations 31

tiplication is a noncommutative operation. The right part of figure 2.18 shows
the different results that are obtained, when the order in which translation and
rotation are applied is changed. When first a translation with the translation
vector (40, 20)� and afterwards a rotation by 45◦ is applied, then the rectangle
on the left-hand side of figure 2.18 is mapped to the upper rectangle on the
right. When the rotation is carried out first and afterwards the translation, the
result is the lower right rectangle. This effect occurs in general in all cases,
when geometric transformations of different types are combined. Only when
transformations of the same type, i.e., only rotations, only translations, only
scalings or only shear transformations, are composed, the order in which the
transformations are applied is of no importance.

It should also be taken into account that transformations in matrix nota-
tion or as compositions of mappings are carried out from right to left. The
transformation

(T (dx, dy) ◦ R(θ))(v)

or in matrix notation
⎛
⎝

1 0 dx

0 1 dy

0 0 1

⎞
⎠ ·

⎛
⎝

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎞
⎠ · v

means that first the rotation R(θ) and then the translation T (dx, dy) is applied
to the point v.

2.7 Applications of transformations

This section introduces typical applications and problems that can be solved
using geometric transformations.

In computer graphics it is common to define objects in an arbitrary co-
ordinate system in floating point arithmetics, the so-called world coordinates.
In order to generate an image of specific objects on the computer screen or
another output device, a rectangular clipping region, called viewport, must be
specified. The viewport determines which region of the “object world” is visi-
ble. Therefore, it is necessary to find a transformation that maps the objects
in the viewport, given in world coordinates, to the window coordinates of the
computer screen.

Figure 2.19 illustrates the problem and its solution. The rectangle with the
lower left corner at (xmin, ymin) and the upper right corner at (xmax, ymax) in
the upper left part of the figure defines the viewport or the clipping region, a
window specified in the world coordinate system. This part of the object world

32 2. Basic principles of two-dimensional graphics

�
��

�
�
�
��

�

(xmin, ymin)
�(xmax, ymax)

�

�

x

y

window in the
world coordinate
space

�
��

�

�

�

x

y

window in the
origin of the world
coordinate space

����
�

�

u

v

scaled window in the
origin of the monitor
coordinate space

����
�

(umin, vmin)

�(umax, vmax)

�

�

u

v

final position
of the window

Figure 2.19 From world to window coordinates

should be shown on the computer screen in a window defined by the rectangle
with (umin, vmin) as its lower left and (umax, vmax) as its upper right corner,
given in the coordinates of the computer monitor. These two windows can have
different sizes. Even the shape of the two rectangles does not have to coincide.

The mapping from the viewport to the computer monitor can be realized
as a composition of the following transformations. In the first step, the view-
port window is shifted to the origin of the coordinate system by a suitable
translation. In the next step, the viewport window is scaled in such a way
that it matches the size of the window on the computer screen. Finally, an-
other translation will position the scaled window at the correct location on the
computer screen. Altogether, the following sequence of elementary geometric
transformations has to be carried out:

T (umin, vmin) ◦ S

(
umax − umin

xmax − xmin
,
vmax − vmin

ymax − ymin

)
◦ T (−xmin,−ymin). (2.2)

2.8 Geometric transformations in Java 2D 33

In equation (2.2) ◦ denotes the composition or concatenation of mappings. It
should be noted again that the transformations are carried out from right to
left in this formula.

As mentioned before, rotations R(θ) defined by a rotation matrix as de-
scribed on page 29 will always carry out the rotation around the origin of the
coordinate system. When the centre of the rotation is supposed to be another
point (x0, y0), one can achieve this by applying first a translation shifting the
point (x0, y0) to the origin of the coordinate system, then carry out the ro-
tation around the origin and afterwards reverse the initial translation. This
means that a rotation through the angle θ around the point (x0, y0) can be
implemented by the following composition of transformations:

R(θ, x0, y0) = T (x0, y0) ◦ R(θ) ◦ T (−x0,−y0). (2.3)

In the same way, a scaling can be carried out with respect to the point (x0, y0)
instead of the origin of the coordinate system, by simply replacing the rotation
in (2.3) by the corresponding scaling.

Pixel coordinates within a window on the computer screen are usually spec-
ified in such a way that the first component refers to the pixel column, whereas
the second component refers to the pixel row, where pixel rows are counted
from top to bottom. As a consequence, the x-axis points as usual from left to
right, but the y-axis is oriented in a reverse manner, i.e., it points downwards
instead of upwards. When the specification in standard Cartesian coordinates
is preferred, one can simply apply suitable geometric transformations, before
drawing objects in the window coordinate system. In order to reverse the di-
rection of the y-axis, a reflection with respect to the x-axis has to be carried
out. After this reflection, the y-axis points upwards, but the origin of the coor-
dinate system of the window still remains in the upper left corner, so that only
objects with negative y-components would be visible. Therefore, after the re-
flection a translation is also carried out. The translation is a shift in y-direction
by the height h of the window, measured in pixels. In this way, the origin of
the coordinate system is mapped to the lower left corner of the window. The
reflection is a scaling with the parameters sx = 1 and sy = −1. Altogether the
transformation is given by

T (0, h) ◦ S(1,−1). (2.4)

2.8 Geometric transformations in Java 2D

The class AffineTransform is the basis for geometric transformations in Java
2D where geometric transformations are also implemented by matrices in

34 2. Basic principles of two-dimensional graphics

homogeneous coordinates. The most important constructors are:

– AffineTransform id = new AffineTransform()

generates the identical transformation, that is encoded by the unity matrix.
This default constructor generates a transformation that maps every point
to itself.

– The constructor

AffineTransform at = new AffineTransform(a,d,b,e,c,f)

allows the specification of an arbitrary transformation matrix. The arguments
a, . . . , f define the six Double-parameters of the transformation matrix. The
matrix (2.1) on page 30 shows the assignment of the arguments to the cor-
responding matrix parameters.

The elementary geometric transformations can be generated in the following
way:

Rotation:

– For rotations the class AffineTransform provides the two methods
affTrans.setToRotation(angle) that defines the transformation
affTrans as a rotation through the angle angle around the origin of
the coordinate system and affTrans.setToRotation(angle,x,y) set-
ting the transformation affTrans to a rotation through the angle angle
around the point (x, y), respectively.

– The method affTrans.rotation(angle) and the corresponding method
affTrans.rotation(angle,x,y) extend the transformation
affTrans by a rotation around the origin of the coordinate system or
around the point (x, y). This means that the matrix that encodes the
original transformation affTrans is multiplied from the right by a ma-
trix for the corresponding rotation. As a consequence, when affTrans is
applied to an object, the rotation is carried out first and afterwards the
original transformation in affTrans is applied.

Scaling:

– The method affTrans.setToScale(sx,sy) defines the transformation
affTrans as a scaling with the scaling factors sx for the x- and sy for
the y-axis with respect to the origin of the coordinate system.

– The method affTrans.scale(sx,sy) extends the transformation
affTrans by a corresponding scaling. The extension is to be understood
in the same way as in the case of rotations, i.e., as a matrix multiplication
from the right.

2.8 Geometric transformations in Java 2D 35

Shear transformation:

– The method affTrans.setToShear(sx,sy) defines the transformation
affTrans as a shear transformation with the shear values sx for the x-
and sy for the y-axis with respect to the origin of the coordinate system.

– The method affTrans.shear(sx,sy) extends the transformation
affTrans by a corresponding shear transformation, again in terms of
matrix multiplication from the right.

Translation:

– The method affTrans.setToTranslation(dx,dy) defines the transfor-
mation affTrans as translation by the vector (dx, dy)�.

– The method affTrans.translate(dx,dy) extends the transformation
affTrans by a corresponding translation in the same manner as for ro-
tations, scalings and shear transformations, i.e., as matrix multiplication
from the right.

The following methods for the composition of such affine transformations
are available in the class AffineTransform:

– By at1.concatenate(at2) the affine transformation at2 is appended to the
affine transformation at1 in terms of matrix multiplication from the right,
so that first at2 and then the original transformation at1 is carried out.

– By at1.preConcatenate(at2) the affine transformation at2 is combined
with the affine transformation at1 in the sense of matrix multiplication from
the left. This means that first the original transformation at1 and then at2

is carried out.

In both cases, the composition of the two transformations is stored in at1.
An affine transformation that is defined as an instance affTrans of the class

AffineTransform can be applied to a Shape object s in the following way:

Shape transformedShape = affTrans.createTransformedShape(s);

The method createTransformedShape returns the transformed object again
as an instance of the class Shape.

In the same way, affine transformations can be applied to an Area object
a, for instance in the form

Area transformedArea = affTrans.createTransformedArea(a);

An affine transformation can also be applied to the Graphics2D object g2d
by

36 2. Basic principles of two-dimensional graphics

g2d.transform(affTrans);

In this case, the corresponding affine transformation will be applied to all ob-
jects before they are drawn.

Figures 2.13–2.16 and the images in figure 2.18 were generated using these
methods in the following programs:

– ScalingExample.java,

– RotationExample.java,

– ShearingExample.java,

– TranslationExample.java,

– TransformationOrderExample.java,

– TransformationOrderExampleT.java,

– TransformationOrderExampleRT.java,

– TransformationOrderExampleR.java and

– TransformationOrderExampleTR.java.

In all of these figures a standard Cartesian coordinate system instead of the
window coordinate system was used for the representation of the objects, so
that the y-axis points upwards in the window. In order to achieve this effect, an
affine transformation according to (2.4) was applied to the Graphics2D object
yielding the desired orientation of the y-axis and the desired location of the
origin of the coordinate system.

AffineTransform yUp = new AffineTransform();

yUp.setToScale(1,-1);

AffineTransform translate = new AffineTransform();

translate.setToTranslation(xOffset,windowHeight-yOffset);

yUp.preConcatenate(translate);

g2d.transform(yUp);

In (2.4) the values xOffset and yOffset do not occur. This means they are
assumed to be zero there. Setting both values to zero means that the origin of
the coordinate system is in the lower left corner of the window, a point that is
on the margin of the window and therefore, it is not possible to draw this point.
Thus, the origin of the coordinate system was slightly shifted to the interior of
the window by choosing xOffset=140 and yOffset=150, so that the origin of
the coordinate system is visible inside the window.

2.9 Animation and movements based on transformations 37

2.9 Animation and movements based on
transformations

So far, geometric transformations were only applied in a static manner in or-
der to map one coordinate system to another or to describe positioning and
deformation of objects. Geometric transformations are also suitable to model
moving objects, for instance moving the hands of a clock carrying out a rotation
of 6◦ per second or per minute or 30◦ per hour. Continuous movements must be
decomposed into small stepwise movements which can be described by geomet-
ric transformations. The stepwise changes between two images must be small
enough and the time between two images in a sequence must be short enough
in order to let the movement appear as a continuous or floating movement and
not as jumps from one state to another.

Once the movement of an object is modelled by suitable geometric trans-
formations, the object must be drawn, the transformed object has to be com-
puted, the old object must be deleted and the new transformed object has to
be drawn again. Deleting the old object causes problems for raster graphics.
Deleting means in this case to overwrite the object. In order to overwrite the
pixels of the old object a background image must be specified. For more com-
plex objects, overwriting the pixels belonging to the old object would require
to render the object again in order to determine which pixels were covered
by the old object. Therefore, instead of overwriting single moving objects it is
common to write the complete image buffer again, instead of modifying the old
one. However, the new image is usually not written directly into the window
buffer, but into a virtual buffer which will be copied to the window buffer after
the image has been completed. This technique is also called double buffering

and will be explained in more detail in section 4.2.
As a simple example for a moving object, a moving clock with a single hand

for the seconds is considered sliding from the lower left to the upper right of
a display window. The clock itself consists of a quadratic frame and the single
rectangular hand for the seconds. The hands for minutes and hours could be
modelled in the same way, but are not included here for reasons of simplicity.
A translation is needed in order to move the quadratic frame of the clock from
the lower left to the upper right corner of the window. This translation must
also be applied to the hand for the seconds. In addition to the translation, the
hand must also rotate. Figure 2.20 shows some snapshots of the moving clock.

Assuming that the clock should move in each step two units to the right
and one unit up, this could be modelled by a translation

Tclock,step = T (2, 1).

38 2. Basic principles of two-dimensional graphics

Figure 2.20 A moving clock with a rotating hand

For the hand a rotation of the form

Thand,step = R(−π/180)

is needed in order to turn the hand by −π/180, i.e., by 6◦ clockwise in each
step. One end of the hand is fixed in the centre of the clock which is therefore
also the centre of the rotation. Even if the clock were initially centred in the
origin of the coordinate system, it would move out of the origin after one step
already and the centre of rotation for the hand would no longer be the origin.

There are two possible strategies to describe and handle such composed
movements as in the case of the hand, where a translation as well as a rotation
has to be carried out. One way would be to track the position of the corre-
sponding object—in this case the hand of the clock—and to shift the centre of
the rotation accordingly. In the general case, it is not sufficient to track only
the translation of an object. If, for instance, the object is also supposed to
be scaled along one of its axes, it is also necessary to know the orientation of
the object in order to apply the scaling properly. As an example, the hand of
the clock could get longer or shorter while it is rotating without changing its
width. In the beginning, the corresponding scaling had to be a scaling along
the y-axis. But once the hand starts to rotate, the axis of scaling must also be
rotated. Otherwise the hand would not only become longer or shorter, but also
thicker or thinner.

Although this strategy for modelling continuous movements of objects is
applicable, the following second strategy seems to be more convenient and sim-
pler to implement. The principle of this second strategy is to leave the objects
in their initial positions and to compute accumulated geometric transforma-
tions which are applied to the objects before they are drawn. For the example

2.10 Movements via transformations in Java 2D 39

of the clock one could use three more transformations in addition to the above-
mentioned two transformations:

T
(new)
clock,accTrans = Tclock,step ◦ T

(old)
clock,accTrans

T
(new)
hand,accRotation = Thand,step ◦ T

(old)
hand,accRotation

Thand,acc = Tclock,accTrans ◦ Thand,accRotation.

Tclock,accTrans and Thand,accRotation are initialized by the identical transforma-
tions and are then updated in each step according to the specified equations.
Tclock,accTrans specifies the translation which has to be carried out in order to
shift the clock from the initial position to the actual position. Tclock,accTrans

is applied to the initial frame of the clock that is centred in the origin of the
coordinate system. Thand,accRotation describes the rotation around the origin of
the coordinate system that must be applied to the hand of the clock in or-
der to reach its actual position within the clock centred around the origin. In
addition to this rotation, the hand must also move along with the clock. There-
fore, after rotating the hand around the origin, the corresponding translation
Tclock,accTrans is also applied to the hand. It is important that the rotation is
carried out first and only then the translation is applied.

Scenegraphs as they are introduced in chapter 5 provide a more convenient
alternative to this way of modelling movements and animations.

2.10 Movements via transformations in Java 2D

This section explains how to implement the simple example of the moving clock
of the previous section in Java 2D. Within the book, only the most essential
parts of the source code are shown. The full source code for this example can
be found in the class NonSynchronizedClock.java.

In order to specify the location of the objects and the transformations in
standard coordinates with the y-axis pointing upwards, the transformation yUp

introduced on page 36 is applied to the Graphics2D object.
Initially, the frame of the clock will be centred in the origin of the coordinate

system. It is represented by the object clockFrame of the class Rectangle2D.
The single hand of the clock named clockHand is also generated as an object
from the class Rectangle2D. Its initial position is chosen in such a way that
it starts in the origin of the coordinate system and points upwards with the
y-axis as its centre axis.

The transformations Tclock,step, Thand,step, Tclock,accTrans, Thand,accRotation

and Thand,acc as described above are represented by the objects

40 2. Basic principles of two-dimensional graphics

singleTranslation, singleRotation, accumulatedTranslation,
accumulatedRotation and handTransform, respectively, all belonging to the
class AffineTransform.

The transformation singleTranslation is defined as a translation by the
vector (2, 1)�, whereas singleRotation is a clockwise rotation by an angle of
6◦. Both transformations remain unchanged, while the program is running.

The transformation accumulatedRotation is initialised as the identity. The
transformation accumulatedTranslation could also be initialised as the iden-
tity. But this would lead to the effect that the clock starts its movement centred
in the lower left corner of the window, so that in the beginning only the up-
per left quarter of the clock would be visible. Therefore, a suitable translation
is chosen for the initialisation of accumulatedTranslation ensuring that the
clock is fully visible, when the animation is started.

A loop is used to compute the stepwise changing positions of the clock
and the hand. In this loop, the transformations accumulatedTranslation,
accumulatedRotation and handTransform are updated according to the equa-
tions specified on page 39. This is realised by the following lines of code:

accumulatedTranslation.preConcatenate(singleTranslation);

accumulatedRotation.preConcatenate(singleRotation);

handTransform.setTransform(accumulatedRotation);

handTransform.preConcatenate(accumulatedTranslation);

The first line corresponds to the first equation, the second line to the second
equation and the last two lines implement the last equation.

After the transformations have been updated in this way, the old image
must be deleted and afterwards the frame of the clock and its hand have to be
drawn again. Before these objects are drawn, the corresponding transformations
are applied to them making sure that they are positioned at their updated
locations.

g2d.draw(accumulatedTranslation.createTransformedShape(

clockFrame));

g2d.fill(handTransform.createTransformedShape(clockHand));

The initial objects clockFrame and clockHand for the frame of the clock and
for its hand, respectively, are not changed in the loop. Only the transformations
applied to them change and the updated transformations are used to generate
new objects of the class Shape that are drawn in each step.

The implementation proposed here has various disadvantages. Since all com-
putations for the animation are carried within the paint method, this might
lead to flickering and it might also be difficult to stop the animation since the
paint method has a high priority in order to avoid showing half-ready images.

2.11 Interpolators for continuous changes 41

For MAC computers the animation might not work at all since all computa-
tions in the paint method will be carried out completely, before anything is
drawn on the screen. The program NonSynchronizedClock.java also uses a
very primitive sustain method for the intermediate time between two frames.
This method implements active waiting which should be avoided in program-
ming. The double buffering technique introduced in section 4.2 offers a much
better solution than the one provided here which was only presented for reasons
of simplicity.

2.11 Interpolators for continuous changes

The previous two sections have demonstrated how moving objects can be mod-
elled on the basis of suitable transformations. Single stepwise transformations
describe the changes of the objects from one image frame to the next one.
The composition of these stepwise transformations determines the complete
movement of an object.

But there are also other ways to model movements or changes of objects in
animated graphics. An alternative approach is based on the two descriptions of
the initial state of the considered object and of its desired final state. The aim
is then to find an animation that shows a continuous transition of the object
from the initial to its final state. The movement of an object along a line can
either be modelled by small stepwise translations to be carried out between
two image frames as in the previous two sections or by simply specifying the
initial and the end position of the object and then carrying out interpolations
between these two positions. In the example of the clock from the previous
two sections, one would not define the transformation Tclock,step = T (2, 1) to
be applied repeatedly to the clock in a sequence of, for instance, 100 images.
Instead, it would be sufficient to specify the initial and the end position of the
object, say p0 = (0, 0)� and p1 = (200, 100)�.

The points pα on the connecting line between the points p0 and p1 are
simply the convex combinations of these two points given by

pα = (1 − α) · p0 + α · p1, α ∈ [0, 1].

α = 0 yields the initial point p0, α = 1 leads to the end point p1 and α = 0.5
defines the point in the middle between p0 and p1.

This principle of convex combinations can be applied not only to points or
vectors, but also to matrices. Later on, in section 4.7 the principle of convex
combinations will also be applied to colours to generate continuous changes
from one colour to another.

42 2. Basic principles of two-dimensional graphics

In order to understand how convex combinations applied to matrices can be
used to generate animations, two affine transformations are considered, given by
the matrices M0 and M1 in homogeneous coordinates. The convex combination
Mα of the two matrices is defined as

Mα = (1 − α) · M0 + α · M1, α ∈ [0, 1].

Note that Mα is again a matrix describing an affine transformation in homoge-
neous coordinates. In the simplest case, the two matrices encode translations
mapping an object to its initial and its desired final position. The matrices Mα

correspond to intermediate translations. Mα places the object on the points on
the line connecting the initial and the end position. For α = 0, Mα maps the
object to its initial position and for α = 1 to its final position.

However, convex combinations are not restricted to translations. In princi-
ple, the matrices M0 and M1 can represent any two affine transformations that
do not even have to belong to the same type of transformation. One could be
a rotation, the other a scaling combined with a shearing.

In this way, a continuous transformation can be implemented between two
objects obtained from the same object by applying two different transforma-
tions. Figure 2.21 illustrates this process for two ellipses that were both gener-
ated from the same basic object—also an ellipse—by applying different scalings
and transformations. The ellipse in the upper left corner is obtained from the
basic ellipse by applying the first transformation, whereas the second transfor-
mation yields the ellipse in the lower right corner. Applying convex combina-
tions of these two transformations to the basic ellipse leads to the ellipses in
between.

Figure 2.21 Changing one ellipse to another by convex combinations of trans-
formations

Another technique for continuous interpolation between two objects S and
S′ assumes that both objects are determined by n points P1 = (x1, y1), . . . , Pn =
(xn, yn) and P ′

1 = (x′
1, y

′
1), . . . , P

′
n = (x′

n, y′
n), respectively, and by lines or

2.11 Interpolators for continuous changes 43

quadratic and cubic curves defined using these points. It is important that the
lines or curves in both objects are determined by the corresponding points.
This means, if a quadratic curve defined by the points P1, P3 and P8 is part of
object S, then the corresponding quadratic curve defined by the points P ′

1, P ′
3

and P ′
8 must be part of object S′.

Figure 2.22 Two letters each defined by five points and two quadratic curves

Figure 2.22 shows two simple objects in the form of the two letters D and C.
For each of them five control points P1, . . . , P5 and P1′, . . . , P5′, respectively,
are specified. Both letters are described by two quadratic curves:

– One curve uses the corresponding first and second point as endpoints and
the third point as control point. In the case of the letter D the three points
are P1, P2 and P3, respectively, for the letter C the corresponding points
are P1′, P2′ and P3′, respectively.

– The other quadratic curve of each letter has the corresponding first and
fourth point as endpoints and the corresponding fifth point as control point.

In order to continuously transform the two objects—in this case the letters
D and C—into each other, convex combinations are applied again. Instead of
having convex combinations of transformations as in the previous example of
the ellipses, here convex combinations between pairs of corresponding points
Pi and P ′

i are considered.

P
(α)
i = (1 − α) · Pi + α · P ′

i .

44 2. Basic principles of two-dimensional graphics

For an intermediate image α ∈ [0, 1] the corresponding lines or curves are now
drawn on the basis of the points P

(α)
i . In the example of transforming the letter

D into the letter C one would draw two quadratic curves, one defined by the
points P

(α)
1 , P

(α)
2 and P

(α)
3 , the other defined by the points P

(α)
4 , P

(α)
5 and

P
(α)
3 .

Figure 2.23 shows intermediate images obtained for the convex combina-
tions with α = 0, 0.2, 0.4, 0.6, 0.8, 1 based on the points and the corresponding
quadratic curves as illustrated in figure 2.22.

Figure 2.23 Stepwise transformation of two letters into each other

Further applications of interpolators in connection with colours and raster
graphics will be introduced in section 4.7.

2.12 Implementation of interpolators in Java 2D

This sections explains in more detail how the two techniques for interpolators
introduced in the previous section can be implemented in Java 2D.

The first example of a continuous transition from one ellipse to
another as illustrated in figure 2.21 is realised in the class
ConvexCombTransforms.java. In the first part of the program the basic ellipse
elli and two affine transformations initialTransform and finalTransform

are defined. The two transformations transform the basic ellipse into the initial
ellipse in the beginning of the animation and the final ellipse at the end of the
animation. In order to compute the convex combinations of the two transforma-
tions the corresponding matrices are required. They are obtained by applying
the method getMatrix to initialTransform and finalTransform.

double[] initialMatrix = new double[6];

initialTransform.getMatrix(initialMatrix);

2.13 Single or double precision 45

double[] finalMatrix = new double[6];

finalTransform.getMatrix(finalMatrix);

The coefficients of the two matrices are stored in the one-dimensional arrays
initialMatrix and finalMatrix according to the representation of transfor-
mation matrices (2.1) on page 30. The intermediate images are generated in a
loop where in each step a new convex combination of the two arrays is com-
puted. The arrays are treated in the same way as vectors5 so that their convex
combination yields an array of the same length. The elements of this new array
can again be interpreted as the coefficients of a transformation matrix in ho-
mogeneous coordinates. This transformation is then applied to the basic ellipse
and in each step of the loop the resulting transformed ellipse is drawn.

The transformation of the letter D into the letter C is implemented
in the class DToCMorphing.java. Figure 2.22 showing the initial state—the
letter D—and the final state—the letter C—was generated by the classes
SimpleLetterD.java and SimpleLetterC.java. For the transformation of the
two letters into each other, two arrays are defined for each letter, one array for
the x-coordinates of the control points and one array for the y-coordinates. An-
other two arrays are needed for the computation of the convex combinations
of the control points. In each step of the loop the new convex combination is
computed and the computed control points are used to draw the corresponding
quadratic curves to generate the corresponding intermediate image.

2.13 Single or double precision

For longer animated graphics with moving objects a large number of transfor-
mations have to be applied successively. This means that a large number of
matrix multiplications must be carried out. Although the roundoff error for a
single matrix multiplication might be negligible, roundoff errors can accumu-
late over time and might lead to undesired effects. In most cases such roundoff
errors will be noticeable in the graphics to be drawn since the numerical com-
putations to be carried out in computer graphics are usually not critical from
the numerical point of view. Inverting a matrix to reverse a transformation
is an example for an exception where roundoff errors might have serious ef-
fects on the graphics, when the matrix is badly conditioned. But most of the
calculations in computer graphics do not encounter such problems.

For illustration purposes the example of the second hand of a clock is con-
sidered. The hand is 100 units or pixels long. The tip of the hand is at the point
5 Vectors in the mathematical sense, not as the class Vector in Java.

46 2. Basic principles of two-dimensional graphics

time x y

double

1 minute 99.99999999999973 −4.8572257327350600E-14
2 minutes 99.99999999999939 −9.2981178312356860E-14
3 minutes 99.99999999999906 −1.3739009929736312E-13
4 minutes 99.99999999999876 −1.4571677198205180E-13
5 minutes 99.99999999999857 −2.2204460492503130E-13
6 minutes 99.99999999999829 −2.9143354396410360E-13
7 minutes 99.99999999999803 −3.1641356201816960E-13
8 minutes 99.99999999999771 −3.7331249203020890E-13
9 minutes 99.99999999999747 −4.2604808569990380E-13
10 minutes 99.99999999999715 −4.5657921887709560E-13
8 hours 99.99999999986587 −2.9524993561125257E-11

float

1 minute 100.00008 −1.1175871E-5
2 minutes 100.00020 −1.4901161E-5
3 minutes 100.00032 −1.8626451E-5
4 minutes 100.00044 −1.1920929E-5
5 minutes 100.00056 −8.9406970E-6
6 minutes 100.00068 −3.1292439E-5
7 minutes 100.00085 −5.3644180E-5
8 minutes 100.00100 −7.2270630E-5
9 minutes 100.00108 −8.0466270E-5
10 minutes 100.00113 −8.4191560E-5
8 hours 100.00328 −1.9669533E-4

Table 2.1 Effects of roundoff errors

(100, 0) in the beginning. The hand is rotated clockwise around the origin by 6◦

per second. This means that the transformation R(−6◦) in terms of a rotation
matrix is applied each time. After every full minute—after 60 multiplications of
the rotations matrix by itself—the hand should return to its original position.

Table 2.1 shows the computed positions of the tip of the hand after various
time intervals using double (double) and single (float) precision. In both
cases the roundoff errors are negligible, especially when taking into account
that drawing in raster graphics will require rounding to integer values in the
end anyway. Even after eight hours demanding 28800 matrix multiplications,
single precision will still be sufficient to obtain the exact values in terms of
raster graphics. This is only valid if the accumulated rotation is applied to the
hand in its initial position or if the new position of the hand is stored in vector

2.13 Single or double precision 47

graphics, i.e., using floating point arithmetic, and every second a single rotation
by 6◦ is applied to the updated position of the hand. If the coordinates of the
hand are stored in raster graphics using only integer values and a single rotation
by 6◦ is applied to the updated hand in pixel coordinates every second, already
after one minute a wrong position of (95,−2) instead of (100, 0) is calculated.

Although computations with double precision values are less error-prone,
the accuracy of single precision is sufficient for most applications in computer
graphics taking into account that raster graphics will require rounding numbers
to integer values in the end, so that numerical errors less than 0.5 are invisible
anyway.

Especially for three-dimensional scenes with complex objects a very large
number of points is needed to define the objects. In this case the memory
requirements very often have a higher priority and single precision is preferred
over double precision in order to reduce the amount of memory needed for
storing the objects.

48 2. Basic principles of two-dimensional graphics

2.14 Exercises

Exercise 2.1

Use a GeneralPath to draw a rectangle with rounded corners.

Exercise 2.2

A simple two-dimensional solar system model with one sun and one planet
should be animated. The centre of the sun is located in the origin of the coor-
dinate system. The spherical planet with a radius of 10 units rotates anticlock-
wise around the sun on a circular orbit with constant speed. The radius of the
planet’s orbit (the distance between the centres of the sun and the planet) is
200 units. In the beginning of the animation the centre of the planet is located
at the point (200, 0). During one rotation around the sun, the planet rotates
365 times anticlockwise around its own axes. Consider the point on the planet
that is closest to the sun in the beginning of the animation. Use geometric
transformations to describe where the point will be located after the planet
has finished one third of its orbit.

Exercise 2.3

Choose the constant c in the matrix

⎛
⎝

c 0 6
0 c 4
0 0 c

⎞
⎠

in such a way that the matrix represents a translation by the vector (3, 2)� in
homogeneous coordinates.

Exercise 2.4

Use Java 2D for an animation illustrating the movement of the point in exercise
2.2.

Exercise 2.5

Use Java 2D to animate a beating heart that moves along a line in a window
on the computer screen.

Exercise 2.6

Apply the technique for transforming one letter into another as illustrated in
figure 2.22 for the letters D and C to other letters, for instance your initials.

