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Chapter 2

Signals in the time and frequency domain
From a physical point of view signals are oscillations or waves. They are imprinted with 
certain information by changing according to a certain pattern.

Only electrical or electromagnetic signals are used in information technology. They have 
incomparable advantages compared with other forms of signals – e.g. acoustic signals.

Electric signals ....

•  spread at (almost) the speed of light,

•  can be directed by means of cables to where they are needed,

•  can be transmitted around the world and even into space by means of 
aerials through the atmosphere and vacuum without cables,

•  are unrivalled in the way they can be received, processed and            
transmitted accurately and interference-proof,

•  use hardly any energy compared with other electrical and mechanical 
systems,

•  are processed by the tiniest of chips which can all be manufactured very 
cheaply (fully automated production in large series),

•  when used properly they do not pollute the environment and are not a 
health hazard.

If a signal contains information then there must be an infinite number of different signals 
as there is an infinite variety of information.

If one wanted to know everything about all signals and how they react to processes or 
systems, a course of study would inevitably tend to be infinitely long too. Since this is not 
possible it is necessary to look for a way of describing all signals according to a unified 
pattern.

The FOURIER Principle
The FOURIER Principle makes it possible to regard all signals as composed of the same 
unified "components". Simple experiments with DASYLab or with a signal generator 
("function generator"), an oscilloscope, a loudspeaker with a built-in amplifier and – most 
important ! – your sense of hearing, lead to the insight which the French mathematician, 
natural scientist and advisor to Napoleon discovered mathematically almost two hundred 
years ago. 
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Illustration 21:                           Jean Baptiste FOURIER (1768-1830)                        

Fourier is regarded as one of the founders of mathematical physics. He developed the foundations of the 
mathematical theory of heat conduction and made important contributions to the theory of partial differen-
tial equations. He could not have dreamt of the importance that "his" FOURIER transformation would 
have in natural sciences and technology. 

Periodic oscillations
These experiments are to be carried out with various periodic oscillations.

Periodic oscillations are oscillations which are repeated over and 
over again in the same way after a specific period length T.      
Theoretically – i.e. seen in an idealised way – they last for an        
infinite period of time in the past, the present and the future. In 
practical terms this is never the case but it simplifies the approach.

In the case of many practical applications – for instance, in quartz clocks and other clock 
pulse generators ("timers") or in the case of network AC voltage the length of signal is so 
great that it almost corresponds to the ideal "infinitely long". The precision of measure-
ment of time depends largely on how precisely periodic the reference voltage was and is 
and how periodic it stays.

Although it is very important for many applications, periodic oscillations are not typical 
signals. They hardly provide new  information as their future course can be precisely 
predicted. The greater the uncertainty about the development of the signal at the next 
moment, the greater the information may be that is contained in it. The more we know 
what message will be conveyed  by a source the less the uncertainty and therefore the 
information value. Information often seems associated more with knowledge than with 
the idea of uncertainty. 
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Illustration 22:                                   Important periodic signals

Here you see five important forms of periodic signals, from the top to the bottom: sine, triangle, rectangle, 
saw tooth and (extremely short!) pulses. From a theoretical point of view periodic signals are of infinite 
duration, that is, they extend far into the past and future beyond the illustrated segment. Try to determine 
the period length and frequency of the individual signals.

Surprisingly however, we must say that language and music are not conceivable without 
"near periodic" oscillations inspite of what has just been said. Periodic oscillations are 
easier to describe in their behaviour and that is why we are dealing with them at the 
beginning of this book.

Our ear as a FOURIER-analyzer
By means of very simple experiments it is possible to establish fundamental common 
features of different oscillation and signal forms. Simple instruments to be found in 
almost any collection of teaching aids are adequate for this purpose. 

A function generator is able to produce different periodic AC voltages. It represents the 
source of the signal. The signal can be heard over the loudspeaker and can be seen on the 
screen of the oscilloscope or computer.
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Illustration 23:                                            Signal and information

A generator module produces in the first instance three different signals the lower two of which are subse-
quently "manipulated". The information value of the above signals increases from the top to the bottom. 
The signal above is a sine whose course can be predicted exactly. After a time there is therefore no new 
information. The middle signal is a modulated sine signal, the amplitude follows a certain sinusoidal pat-
tern. Finally the signal bottom right has a rather  "random" course (it is filtered noise). It can be least well 
predicted but contains, for example, all the information about the special characteristics of the filter.  

As an example first choose a periodic sawtooth voltage with the period length T = 10 ms 
(Frequency f = 200Hz). If one listens carefully several  tones of different frequency  can 
be heard. The higher the tone the weaker they seem in this case. If one listens longer one 
finds that the second lowest tone is exactly one octave higher than the lowest, i.e. twice 
as high as the base tone.

In the case of all the other periodic forms of signal there are several tones to be heard 
simultaneously. The triangle signal in Illustration 22 sounds soft and round, very similar 
to a recorder note. The "saw tooth" sounds much sharper, more like the tone of a violin. 
In this signal there are more stronger high tones (overtones) than in the "triangle". 
Apparently the overtones contribute to the sharpness of the tone. 
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Illustration 24:             Geometric model for the way in which a sinusoidal signal arises

Let a pointer rotate uniformly in anti-clockwise direction, beginning in the diagram at 0. When for 
example the numbers express time values in ms the pointer is in position 1 after 70 ms, after 550ms in 
position 4 etc. The period length (of 0 to 6.28) is T = 666ms, i.e. the pointer turns 1.5 times per second. 
Only the projection of the pointer on to the vertical axis can be measured physically. The visible/ 
measurable sine course results from the pointer projections at any given moment. It should be noted that 
the (periodic) sinusoidal signal existed before 0 and continues to exist after 1000 ms as it lasts for an 
infinite length of time in theory! Only a tiny time segment can be represented, here slightly more than the 
period length T. 

There is a single form of AC voltage which only has one audible tone: the sinusoidal 
signal! In these experiments it is only a question of time before we begin to feel 
suspicious. Thus in the "sawtooth" of 100Hz there is an audible sine of 200Hz, 300Hz etc. 
This means that if we could not see that a periodic sawtooth signal had been made audible 
our ear would make us think that we were simultaneously  hearing a sinusoidal signal of 
100 Hz, 200Hz, 300Hz etc.   

Preliminary conclusions:

(1) There is only one single oscillation which contains only one tone: the (periodic) 
sinusoidal signal

(2)  All the other (periodic) signals or oscillations – for instance tones and vowels contain 
several tones. 

(3)  Our ear tells us

•  one tone = one sinusoidal signal

•  this means: several tones = several sinusoidal signals

•  All periodic signals/oscillations apart from the sine contain several     
tones
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Illustration 25:                   Addition of oscillations/signals from uniform components

This is the first Illustration of the FOURIER synthesis. Using the example of a periodic sawtooth signal it 
is shown that sawtooth-like signals arise by adding appropriate sinusoidal signals. Here are the first six of 
the (theoretically) infinite number of sinusoidal signals which are required to obtain a perfect linear  saw-
tooth signal with a sudden change. This example will be further investigated in the next few Illustrations. 
The following can be clearly seen: (a) in some places (there are five visible here) all the sinusoidal func-
tions have the value zero: at those points the "sawtooth" or the sum has the value zero. (b) near the "jump 
zero position"  all the sinusoidal signals on the left and the right point in the same direction, the sum must 
therefore be greatest here. By contrast, all the sinusoidal signals almost completely eliminate each other 
near the  "flank zero position", so that the sum is very small.

From this the FOURIER Principle results which is fundamental for our purposes.

All oscillations/signals can be understood as consisting of  
nothing but sinusoidal signals of differing frequency and  
amplitude.

This has far-reaching consequences for the natural sciences – oscillation and wave 
physics – , technology and mathematics. As will be shown, the FOURIER Principle holds 
good for all signals, i.e. also for non-periodic and one-off signals.

The importance of this principle for signal and communications technology is based on 
its reversal.
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Illustration 26:                     FOURIER synthesis of the sawtooth oscillation

It is worth looking very carefully at this picture. It shows all the cumulative curves beginning with a 
sinusoidal oscillation (N = 1) and ending with N = 8. Eight appropriate sinusoidal oscillations can 
"model" the sawtooth oscillation much more accurately than for example three (N = 3.) Please note – the 
deviation from the ideal sawtooth signal is apparently greatest where this oscillation changes most rap-
idly. First find the cumulative curve for N = 6

If it is known how a given system reacts to sinusoidal signals of 
different frequencies it is also clear how it reacts to all other        
signals because all other signals are made up of nothing but            
sinusoidal oscillations.

Suddenly the entire field of communications engineering seems easier to understand 
because it is enough to to look more closely at the reaction of communications enginee-
ring processes and systems to sinusoidal signals of different frequencies.

It is therefore important for us to know everything about sinusoidal signals. As can be seen 
from Illustration 24 the value of the frequency f results from the angular velocity 
ω = ϕ / t of the rotating pointer. If the value of the full angle (equivalent to 360°) is given 
in rad,  ω = 2π / T or ω = 2 π f  applies.

In total a sinusdoidal signal has three properties. The most important property is quite 
definitely the frequency. It determines acoustically the height of the tone.
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Illustration 27:                             FOURIER synthesis: the more the better!   

Here the first N = 32 sinusoidal signals were added from which a sawtooth signal is composed. At the 
jump position of the "sawtooth" the deviation is greatest. The cumulative function can never change faster 
than the sinusoidal signal with the greatest frequency (it is practically visible as "ripple content"). As the 
"sawtooth" at the jump position can theoretically "change infinitely rapidly", the deviation can only have 
disappeared when the cumulative  function also contains an "infinitely rapidly changing" sinusoidal signal 
(i.e. f −> ∝ ). As that doesn't exist, a perfect sawtooth signal cannot exist either. In nature every change 
takes time!

Terms such as "frequency range" or "frequency response" are well-known. Both concepts 
are only meaningful in the context of sinusoidal signals:

Frequency range: the frequency range which is audible for human beings lies in a 
range of roughly 30 to 20,000Hz (20 kHz). This means that our ear (in conjunction 
with the brain) only hears acoustic sinusoidal signals between 30 and 20,000Hz

Frequency response: if a frequency response for a bass loudspeaker is given as 20 
to 2500 Hz this means that the loudspeaker can only transmit  acoustic waves which 
contains sinusoidal waves between 20 and 2500 Hz.

Note: In contrast to the term frequency range the term frequency response is only 
used in connection with a system capable of oscillation. 

The other two – also important properties – of a sinusoidal signal are:

•  amplitude and

•  phase angle
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Illustration 28:                            Picture-aided FOURIER transformation

The Illustration shows in a very graphic way for periodic signals (T = 1) how the path  into the frequency 
range – the FOURIER transformation – arises.   The time and frequency domain are two different perspec-
tives of the signal. A "playing field" for the (essential) sinusoidal signals of which the periodic "sawtooth" 
signal presented here is composed serves as the pictorial "transformation" between the two areas. The 
time domain results from the addition of all the sine components (harmonics). The frequency domain 
contains the data of the sinusoidal signals (amplitude and phases) plotted via the frequency f. The 
frequency spectrum includes the amplitude spectrum (on the right) and the phase spectrum (on the left); 
both can be read directly on the "playing field". In addition the "cumulative curve" of the first eight 
sinusoidal signals presented here is also entered. As Illustration 26 and Illustration 27 show: the more 
sinusoidal signals contained in the spectrum are added, the smaller is the deviation between the 
cumulative curve and the "sawtooth".

The amplitude – the amount of the maximum value of a sinusoidal signal (is equivalent 
to the length of the pointer rotating in an anti-clockwise direction in Illustration 24) – is 
for example in acoustics a measure of volume, in (traditional) physics and engineering 
quite generally a measure of the average energy contained in the sinusoidal signal.

The phase angle ϕ of a sinusoidal signal is in the final analysis simply a measure of the 
displacement in time of a sinusoidal signal compared with another sinusoidal signal or a 
reference point of time (e.g. t = 0 s).

As a reminder: The phase angle ϕ of the rotating pointer is not     
given in degrees but in "rad" (from radiant: arc of the unit circle 
(r = l), which belongs to this angle).

Frequenzbereich

ZeitbereichTime domain

Frequency domain
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Illustration 29:       "Playing field" of the sawtooth signal with the first 32 harmonic

 The discrepancy between the sawtooth signal and sum curve is clearly smaller than in Illustration 28. See 
IIllustration 27.

•  Circumference of the unit circle  = 2  π  1 = 2 π  rad

•  360 degrees are equivalent to  2 π  rad

•  180 degrees are equivalent to   π  rad

•  1 degree is equivalent to  π/180 = 0.01745  rad

•  x degrees are equivalent to  x ∗ 0.01745 rad

•  for example, 57.3 degrees are equivalent to 1 rad

FOURIER -Transformation: from the time domain to the frequency domain 
and back   
As a result of the FOURIER Principle all oscillations or signals are seen from two 
perspectives, i.e. :

the time domain and the

the frequency domain 

In the time domain information is given on the values of a signal at any given time within 
a certain period of time (time progression of the values at any given moment). 

In the frequency domain the signal is described by the sinusoidal signals of which it is 
composed.
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Illustration 30:                                         Doubling frequency

Here the period length of the sawtooth signal is T = 0.5s (or for example 0.5 ms). The frequency of the 
sawtooth signal is accordingly 2 Hz (or 2 kHz). The distance between the lines in the amplitude and phase 
spectrum is 2 Hz (or 2 kHz). Note the changed phase spectrum. Although it is an oversimplification it is 
possible to say: our eyes see the signal in the time domain on the screen of the oscillograph but our ears 
are clearly on the side of the frequency domain.

As we shall see in the case of many practical problems it is sometimes more useful to con-
sider signals sometimes in the time domain and sometimes in the frequency domain. 

Both ways of presenting this are equally valid, i.e. they both contain all the information. 
However, the information from the time domain occurs in a transformed form in the 
frequency domain and it takes a certain amount of practice to recognise it.

Apart from the very complicated (analogous) "harmonics analysis" measurement 
technique  there is now a calculating procedure (algorithm) to compute the frequency- 
based way of presentation – the spectrum – from the time domain of the signal and vice-
versa. This method is called the FOURIER transformation. It is one of the most important 
signal  processes in physics and technology. 

FOURIER-Transformation (FT):

Method of calculating the (frequency) spectrum of the signal from 
the progression in time.

Inverse FOURIER Transformation (IFT)

Method of calculating the progression of a signal in time from the  
spectrum.
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Illustration 31:                                             Periodic triangle signal

The spectrum appears to consist essentially of one sinusoidal signal. This is not surprising in that the 
triangle signal is similar to the sinusoidal signal. The additional harmonics are responsible for subtle 
differences (see sum curve). For reasons of symmetry the even-numbered harmonics are completely 
absent.

The computer can work out the FT and the IFT for us. We are here only interested in the 
results presented graphically. In the interests of a clear Illustration a presentation has been 
selected in which the time and frequency domain are presented together in a three-dimen-
sional Illustration. 

The FOURIER Principle is particularly well illustrated in this form of representation 
because the essential sinusoidal oscillations which make up a signal are all distributed 
alongside each other. In this way the FT is practically described graphically. It can be 
clearly seen how one can change from the time domain to the spectrum and vice versa. 
This makes it very easy to extrapolate the essential transformation rules.

In addition to the sawtooth signals the cumulative curve of the first 8, 16 or 32 sinusoidal 
signals (harmonics) is included. There is a discrepancy between the ideal sawtooth and 
the cumulative curve of the first 8 or 32 harmonics, i.e. the spectrum does not show all the 
sinusoidal signals of which the (periodic) sawtooth signals consist. 

As particularly Illustration 25 shows the following applies for all periodic signals:

All periodic oscillations/signals contain as sinusoidal compo-
nents all the integer multiples of the base frequency as only these 
fit into the time frame of the period length T. In the case of            
periodic signals all the sinusoidal signals contained in them must 
be repeated after the period length T in the same manner!
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Illustration 32:                              Pulse form without rapid transitions

Within the (periodic) sequence of  GAUSSian pulses each pulse begins and ends gently. For this reason the 
spectrum cannot contain any high frequencies. This characteristic makes GAUSSian pulses so interesting 
for many modern applications. We will come across this pulse form frequently. 

Example: a periodic sawtooth of 100Hz only contains the sinusoidal components 
100 Hz, 200 Hz, 300Hz etc.

The spectrum of periodic oscillations/signals accordingly always consists of lines at equal 
distances from each other. 

                      Periodic signals have line spectra!

The sawtooth and square wave signals contain steps in "an infinitely short space of time" 
from, for example 1 to -1 or from 0 to 1. In order to be able to model "infinitely rapid 
transitions" by means of sinusoidal signals, sinusoidal signals of infinitely high frequency 
would have to be present. Hence it follows: 

Oscillations/signals with step function (transitions in an infinitely 
short period of time) contain (theoretically) sinusoidal signals of 
infinitely high frequency.
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Illustration 33:                Periodic square wave signals with different pulse duty factors 

This Illustration shows how the information from the time domain is to be found in the frequency domain. 
The period length T is to be found in the distance I/T of the lines of the frequency spectrum. As in this 
Illustration T = 1s a line distance of 1Hz results. The pulse duration τ is 1/4 in the upper representation 
and in the lower 1/5 of the period length T. It is striking that every fourth harmonic above (4 Hz, 8Hz etc, 
and every fifth harmonic below (5 Hz, 10 Hz etc) has the value 0.  The zero position is in each case at the 
point l/τ.  It is also possible to determine the period length T and the pulse duration τ  in the frequence 
domain.

As from a physical point of view there are no sinusoidal signals "of a infinitely high 
frequency", in nature there cannot be signals with "infinitely rapid transitions".

Pulse duty cycle

Pulse duty cycle

0,20
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In nature every change, including steps and transitions, needs 
time as signals/oscillations are limited as far as frequency is   
concerned.

As Illustration 26 and Illustration 27 show, the difference between the ideal (periodic) 
sawtooth and the cumulative curve is greatest where the rapid transitions or steps are 
present. 

The sinusoidal signals of high frequency contained in the        
spectrum serve as a rule to model rapid transitions.

Thus, it also follows that

Signals which do not exhibit rapid transitions do not contain high 
frequencies either.

Important periodic oscillations/signals
As a result of the FOURIER Principle it can be taken as a matter of course that the 
sinusoidal oscillation is the most important periodic "signal".

Triangle and sawtooth signals are two other important examples because they both change 
in time in  a linear fashion. Such signals are used in measuring and control technology (for 
example, for the horizontal deflection of the electron beam in a picture tube).

They are easy to produce. For example, a capacitor switched into a constant current source 
is charged linearly.

Their spectra show interesting differences. In the first place the high frequency part of the 
spectrum of the triangle signal is much smaller, because – in contrast to the sawtooth 
signal – no rapid steps occur. While in the case of the (periodic) "sawtooth" all the even 
numbered harmonics are contained in the spectrum, the spectrum of the (periodic) 
"triangle" shows only odd-numbered harmonics (e.g. 100 Hz, 300 Hz, 500 Hz etc). In 
other words, the amplitudes of the even-numbered harmonics equal zero.

Why are the even-numbered harmonics not required here?

The answer lies in the greater symmetry of the triangle signal. At first, the sinusoidal 
signal looks very similar. This is why the spectrum only shows "small adjustments". As 
Illustration 31 shows, only sinusoidal signals can be used as components which exhibit 
this symmetry within the period length T and those are the odd-numbered harmonics.
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Comparison of signals in the time and frequency domain
As a result of digital technology, but also determined by certain modulation processes, 
(periodic) square waves or rectangular pulses have a special importance. If they serve the 
purpose of synchronization or the measurement of time they are aptly called clock signals. 
Typical digital signals are however not periodic. As they are carriers of (constantly 
changing) information they are not periodic or only "temporarily" so.

The so-called pulse duty factor, the quotient from the pulse duration τ and the period 
length T is decisive for the frequency spectrum of (periodic) rectangular pulses. In the 
case of the symmetrical rectangular signal τ/Τ = 1/2 = 0.5. In this case there is symmetry 
as in the case of the (regular) triangle signal and its spectrum therefore contains only the 
odd-numbered harmonics. (see Illustration 34).

We can obtain a better understanding of these relationships by close examination of the 
time and frequency domains in the case of different pulse duty factors τ/T (see 
Illustration 33). In the case of the pulse duty factor 1/4 it is precisely the 4th, the 8th, the 
12th harmonic etc which are missing, in the case of the pulse duty factor 1/5 the 5th, the 
10th the 15th etc, in the case of the pulse duty factor 1/10 the 10th, 20th, 30th harmonic 
(see Illustration 35). 

These "gaps" are termed "zero positions of the spectrum" because the amplitudes formally 
have the value of zero at these positions. Consequently, all the even-numbered harmonics 
are lacking in the case of the symmetrical rectangular signal with the pulse duty factor 1/2

It can now be seen that the core values of the time domain are "hidden" in the frequency 
domain:

The inverse ratio of the period length T is equivalent to the           
distance between the spectral lines in the spectrum. In this              
connection please again look carefully at Illustration 30. The   
frequency line distance ( f = 1/T equals the base frequency f1     
(1st harmonic).

Example:

T = 20 ns results in a base frequency or a frequency line distance of 50 MHz.

The inverse ratio of the pulse duration τ is equivalent to the         
distance Δ Fo between the zero positions in the spectrum:   

Zero position distance Δ Fo = 1 /τ 

This allows one to draw a conclusion about the fundamental and extremely important 
relationship between the time domain and the frequency domain. 
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Illustration 34:    Symmetrical rectangular pulse sequence with varying time reference point t = 0 s

In both representations it is the same signal. The lower one is staggered compared with the upper one by 
T/2. Both representations have a different time reference point t = 0 s. A time displacement of T/2 is 
exactly equivalent to a phase displacement of π. This explains the different phase spectra. On account of 
τ /T = 1/2 all the even-numbered harmonics are lacking (i.e. the zero positions of the spectrum are 2 Hz, 
4Hz etc).

All the large characteristic time values appear small in the         
frequency domain, all the small characteristic time values          
appear large in the frequency domain.

Example: Compare period length T and pulse duration τ
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The confusing phase spectrum
It is also possible to draw an important conclusion with regard to the phase spectrum. As 
Illustration 34 shows, the same signal can have different phase spectra. The phase 
spectrum depends on the time reference point t = 0. 

By contrast, the amplitude spectrum is unaffected by time displacements. 

For this reason the phase spectrum is more confusing and much less revealing than the 
amplitude spectrum. Hence in the following chapters usually only the amplitude spectrum 
will be demonstrated in the frequency domain.

Note:

•     In spite of this, only the two spectral representations together provide all the informa-
tion on the progression of a signal/oscillation in the time domain. The inverse       
FOURIER transformation IFT requires the amplitude and phase spectrum to calculate 
the course of the signal in the time domain.

•     The property of our ear (a FOURIER analyzer!) which scarcely perceives changes in 
the phase spectrum of a signal is a particularly interesting phenomenon. Any             
important change in the amplitude spectrum is immediately noticed. In this connec-
tion you should carry out acoustic experiments with DASYLab.

Interference: nothing to be seen although everything is there. 
The (periodic) rectangular pulses in Illustration 33 have a constant (positive or negative) 
value during the pulse duration τ, but between pulses the value is zero. If we only 
considered these periods of time T – τ, we might easily think that "there cannot be 
anything there when the value is zero", i.e. no sinusoidal signals either.

This would be fundamentally erroneous and this can be demonstrated experimentally. In 
addition, the FOURIER Principle would be wrong (why?). One of the most important 
principles of oscillation and wave physics is involved here:

(Sinusoidal) oscillations and waves may extinguish or strengthen 
each other temporarily and locally (waves) by addition.

In wave physics this principle is called interference. Its importance for oscillation physics 
and signal theory is too rarely pointed out.

Let us first off all look at Illustration 33 again. The cumulative curve of the first 16 
harmonics has everywhere been – intentionally – included. We see that the sums of the 
first 16 harmonics between the pulses equal zero only in a very few places (zero 
crossings), otherwise they deviate a little from zero. Only the sum of an infinite number 
of harmonics can result in zero. On the sinusoidal "playing field" we see that all the 
sinusoidal signals of the spectrum remain unchanged during the entire period length T.
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Illustration 35:                               An exact analysis of relationships.

In this Illustration the important relationships are to be summarised once again and additions made:

•     The pulse duty factor of the (periodic) rectangular pulse sequence is 1/10. The first zero position of the 
spectrum lies at the 10th harmonic. The first 10 harmonics lie at the position t = 0.5 s in phase so that 
in the centre all the "amplitudes" add up towards the bottom. At the first and every further zero position 
a phase step of π rad takes place. This can easily be recognised both in the phase spectrum itself and 
also on the "playing field" . In the middle all the amplitudes overlay each other at the top and after-
wards – from the 20th to the 30th harmonic towards the bottom again etc.

•     The narrower the pulse becomes, the bigger the deviation between the sum of the first (here N = 32) 
harmonics and the rectangular pulse appears. The difference between the latter and the cumulative 
oscillation is biggest where the signal changes most rapidly, for example at or near the pulse flanks.

•     Where the signal is momentarily equivalent to zero – to the right and left of a pulse – all the (infinite 
number of) sinusoidal signals add up to zero; they are present but are eliminated  by interference. If 
one "filters" out the first N = 32 harmonics from all the others this results in the "round" cumulative 
oscillation as represented; it is no longer equivalent to zero to the right and left of the pulse. The ripple 
content of the cumulative oscillation is equal to the highest frequency contained.

Even when the value of signals is equal to zero over a time domain Δt, they nevertheless 
contain sinusoidal oscillations during this time. Strictly speaking, "infinitely" high 
frequencies must also be contained because otherwise only "round" signal progressions 
would result. The "smoothing out effect" is the result of high and very high frequencies.
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In Illustration 35 we see a value ("offset") in the amplitude spectrum at the position 
f = 0.  On the "the playing field" this value is entered as a constant function ("zero 
frequency"). If we were to remove this value −U  − for instance by means of a capacitor 
− the previous zero field would no longer be zero but +U. Thus the following holds true:

If a signal contains a constant part during a period of time Δt the 
spectrum must theoretically contain "infinitely high" frequencies.

In IIllustration 35 there is a (periodic) rectangular pulse with the pulse duty factor 1/10 in 
the time and frequency domain. The (first) zero position in the spectrum is therefore at the 
10th harmonic.

The first zero position of the spectrum is displaced further and further to the right in 
Illustration 36 the smaller the pulse duty factor selected (e.g. 1/100). If the pulse duty 
factor approaches zero we have a (periodic) delta pulse sequence whereby the pulse 
duration approaches zero.

Opposites which have a great deal in common: sine and δ−pulse
Such needle pulses are called δ-pulses (delta-pulses) in the specialised theoretical 
literature. After the sinusoidal signal the δ-pulse is the most important form of oscillation 
or time function. 

The following factors support this:

•     In digital signal processing  (DSP) number-strings are processed at regular time           
intervals (clock pulse frequency). These strings pictorially represent  a sequence of      
pulses of a certain magnitude. Number 17 could for instance be equivalent to a needle 
pulse magnitude of 17. More details will be given later in the chapters on digital signal    
processing.

•     Any signal can theoretically be conceived of as being composed of as a continuous 
sequence of δ−pulses of a certain magnitude following each other. See Illustration 37 
in this connection.

•     A sinusoidal signal in the time domain results in a "needle function" (δ-function) in 
the frequency domain (line spectrum). What is more  –  all periodic oscillations/sig-
nals result in line spectra that are equidistant (appearing at the same intervals) delta 
functions in the frequency domain. 

•     From a theoretical point of view, the δ-pulse is the ideal test signal for all systems. If 
a δ-pulse is connected to the input of a system, the system is tested at the same time 
with all frequencies and, in addition, with the same amplitude. See the following      
pages, especially Illustration 36.

•     The (periodic) δ-pulse contains in the interval Δf = 1/T all the (integer multiples)       
frequencies from zero to infinity always with the same amplitude.
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Illustration 36:                        Steps in the direction of a δ−pulse

The pulse duty factor above is roughly 1/16 above and 1/32 below. Accordingly, the the first zero position 
above is at N = 16, and below at N = 32. The zero position "moves" towards the right with higher frequen-
cies if the pulse becomes narrower. Below, the lines of the spectrum represented seem to have almost 
equally large amplitudes. In the case of a "needle" pulse or δ-pulse the width of the pulse tends towards 
zero, thus the (first) zero position of the spectrum tends toward infinity. Hence, the δ-pulse has an 
"infinitely wide frequency spectrum"; in addition, all the amplitudes are  the same.
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Illustration 37:                              Signal synthesis by means of δ-pulses

Here a sine wave is "assembled" from δ-pulses of an appropriate magnitude following on each other.  This 
is exactly equivalent to the procedure in "digital signal processing" (DSP). Their signals are equivalent to 
"strings of numbers" which, seen from a physical point of view, are equivalent to a rapid sequence of 
measurements of an analog signal; every number gives the "weighted" value of the δ-pulse at a given point 
of time t.

This strange relationship between sinusoidal and needle functions (Uncertainty Principle) 
will be looked at more closely and evaluated in the next chapter.

Note: 

Certain mathematical subtleties result in the δ-pulse being theoretically given an 
amplitude tending to infinity. Physically this also makes a certain sense. An 
"infinitely short" needle pulse cannot have energy unless it were "infinitely high". 
This is also shown by the spectra of narrow periodic rectangular pulses and the 
spectra of δ-pulses. The amplitudes of individual sinusoidal signals are very small 
and hardly visible in the Illustrations, unless we increase the pulse amplitude (to 
extend beyond the screen of the PC). 

For purposes of Illustration we normally choose delta pulses of magnitude "1" in this 
book.
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Illustration 38:           From the periodic signal with a line spectrum to the non-periodic signal with a   
                                                                       continuous spectrum.

On the left in the time domain you see sequences of periodic rectangular pulses from top to bottom. The 
pulse frequency is halved in each case but the pulse width remains constant. Accordingly the distance 
between the spectral lines becomes smaller and smaller (T = 1/f), but the position of the zero positions 
does not change as a result of the constant pulse duration. 
Finally, in the lower sequence a one-time rectangular pulse is depicted. Theoretically it has the period 
length  . The spectral lines lie "infinitely close" to each other, the spectrum is continuous and is 
drawn as a continuous function. 
We have now gone over to the customary (two-dimensional) representation of the time and frequency 
domains. This results in a much more accurate picture in comparison to the "playground" for sinusoidal 
signals used up to now.

T ∞→
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Non-periodic and one-off signals
In actual fact a periodic oscillation cannot be represented in the time domain on a screen. 
In order to be absolutely sure of its periodicity, its behaviour in the past, the present and 
the future would have to be observed. An (idealised) periodic signal repeated itself, 
repeats itself and will repeat itself in the same way. In the time domain only one or a few 
periods are shown on the screen. 

It is quite a different matter in the frequency domain. If the spectrum consists of lines at 
regularly spaced intervals, this immediately signals a periodic oscillation. In order to 
underline this once again – there is at this moment only one (periodic) signal whose 
spectrum contains precisely one line – the sinusoidal signal.

We shall now look at the non-periodic signals which are more interesting from the 
communcations technology point of view. As a reminder: all information-bearing oscilla-
tions (signals) may have a greater information value the more uncertain their future course 
is (see Illustration 23).

In the case of periodic signals their future course is absolutely clear.

In order to understand the spectra of non-periodic signals we use a small mental 
subterfuge. Non-periodic means that the signal does not repeat itself "in the foreseeable 
future". In Illustration 36 we constantly increase the period length T of a rectangular pulse 
without changing its pulse duration until it finally tends "towards infinity". This boils 
down to the sensible idea of not attributing the period length  ("T tends towards 
infinity") to all non-periodic or one-off signals. 

If however the period length becomes greater and greater the distance (f = 1/T between 
the lines in the spectrum gets smaller and smaller until they "fuse". The  amplitudes ("end 
points of lines") no longer form a discrete sequence of lines at regular intervals but now 
form a continuous function (see Illustration 38 ).

Periodic oscillations/signals have a discrete line spectrum      
whereas non-periodic oscillations/signals have a continuous 
spectrum. 

A glance at the spectrum is enough to see what type of oscillation is present – periodic or 
non-periodic. As is so often the case the dividing line between periodic and non-periodic 
is not entirely unproblematical. It is occupied by an important class of signals which are 
termed near-periodic.These include language and music, for instance. 

One-off signals are, as the word says, non-periodic. However, non-periodic signals which 
only change within the period of time under consideration, for instance a bang or a glottal 
stop, are also called non-periodic. 

T ∞→
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Illustration 39:                                         Stochastic noise

The upper picture shows stochastic noise in the time domain (for 1s) and below this the amplitude 
spectrum of the above noise. As the time domain develops randomly regularity of the frequency spectrum 
within the period of time under consideration is not to be expected (otherwise the signal would not be 
stochastic). In spite of many "irregular lines" it is not a typical line spectrum for otherwise the time 
domain would have to be periodic!

Pure randomness: stochastic noise
Noise is a typical and extremely important example of a non-periodic oscillation. It has a 
highly interesting cause, namely a rapid sequence of unpredictable individual events. 

In the roar of a waterfall billions of droplets hit the surface of the water in a completely 
irregular sequence. Every droplet goes "ping" but the overall effect is one of noise. The 
applause of a huge audience may also sound like noise, unless they clap rhythmically to 
demand an encore (which simply represents a certain order, regularity or periodicity!) 
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Electric current in a solid state implies movement of electrons in the metallic crystal grid. 
The movement of an individual electron from an atom to the neighbouring atom takes 
place quite randomly. 

Even though the movement of electrons mainly points in the direction of the physical 
current this process has a stochastic – purely random, unpredictable – component. It 
makes itself heard through noise. There is therefore no pure direct current DC; it is always 
accompanied by noise. Every electronic component produces noise, that is any resistance 
or wire. Noise increases with temperature.

Noise and information
Random noise means something like absolute chaos. It contains no "pre-arranged, 
meaningful pattern" – i.e. no information. 

Stochastic noise has no "conserving tendency", i.e. nothing in a given time segment B 
reminds one of the previous time segment A. In the case of a signal, the next value is 
predictable at least with a certain degree of probability. If for example you think of a text 
like this, where the next letter will be an "e" with a certain degree of probability. 

Stochastic noise is therefore not a "signal" because it contains no 
information bearing pattern – i.e. no information.

Everything about stochastic noise within a given time segment is random and unpredic-
table, i.e. its development in time and its spectrum. Stochastic noise is the "most non- 
periodic" of all signals!

All signals are for the reasons described always (sometimes more or less or too much) 
accompanied by noise. But signals which are accompanied by a lot of noise differ from 
pure stochastic noise in that they display a certain conserving tendency. This is charac-
terised by the pattern which contains the information. 

Noise is the biggest enemy of communications technology            
because it literally "buries" the information of a signal.

One of the most important problems of communications technology is therefore to free 
signals as far as possible from the accompanying noise or to protect or modulate and code 
the signals from the outset in such a way that the information can be retrieved without 
errors in spite of noise in the receiver.
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Illustration 40:                           Conserving tendency of a noisy signal

Both Illustrations – the time domain above, the amplitude spectrum below – describe a noisy signal, that is 
not pure stochastic noise, which displays a conserving tendency (influenced by the signal). This is shown 
by the amplitude spectrum below. A line protruding from the irregular continuous spectrum at 100 Hz can 
clearly be seen. The cause can only be a (periodic) sinusoidal signal of 100 Hz hidden in the noise. It 
forms the feature which conserves a tendency although it is only vaguely visible in the time domain. It 
could be "fished out" of the noise by means of a high-quality bandpass filter.

This is in fact the central theme of "information theory". As it presents itself as a theory 
formulated in purely mathematical terms, we shall not deal with it systematically in this 
book. On the other hand, information is the core term of information and communications 
technology. For this reason important findings of information theory turn up in many 
places in this book. 
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Signals are regularly non-periodic signals. The less their future 
development can be predicted, the greater their information value 
may be. Every signal has a "conserving tendency" which is deter-
mined by the information-bearing pattern. Stochastic noise is by 
contrast completely random, has no "conserving tendency" and is 
therefore not a signal in the true sense.

We should, however, not completely denigrate stochastic noise. Since it has such extreme 
qualities, i.e. it embodies the purely random, it is highly interesting. As we shall see it has 
great importance as a test signal for (linear) systems.  
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Exercises for Chapter 2: 

Exercise 1:

Illustration 41:                                        Sawtooth in time and frequency domain

Here you see the whole DASYLab window displayed. By far the most important circuit 
for analysis and representation of signals in the time and frequency domain is to be found 
at the top of the picture. 

(c) Create this circuit and visualise – as above – a periodic sawtooth without a direct 
voltage offset in the time and frequency domain.

(d) Measure the amplitude spectrum by means of the cursor.  According to what simple 
rule do the amplitudes decrease?
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(e) Measure the distance between the "lines" in the amplitude spectrum in the same 
way. In what way does this depend on the period length of the sawtooth?

(f) Expand the circuit as shown in Illustration 22 and display the amplitude spectra of 
different periodic signals one below the other on a "screen".

Exercise 2:

(a) Create a system using DASYLab  which produces the FOURIER synthesis of a 
sawtooth as in Illustration 25

(b) Create a system using DASYLab which gives you the sum of the first n sinusoidal 
signals (n = 1,2,3,....9) as in Illustration 27

Exercise 3:

Illustration 42:                        Block diagram: Amplitude and phase spectrum

(a)  Try to represent the amplitude spectrum and the phase spectrum of a sawtooth one 
directly beneath the other as in Exercise 1. Select  amplitude spectrum on channel 
0 in the menu of the module "frequency domain" and "phase spectrum" on channel 
1. Select "standard  setting" (sampling rate and block length = 1024 = 210 in the           
A/D button of the upper control bar) and a low frequency (f = 1; 2; 4; 8 Hz. What 
do you discover if you choose a frequency whose value cannot be given as a power 
of two?

(b) Select the different phase modifications π (1800), π/2 (900), π/3 (600) and π/4 (450) 
for the sawtooth in the menu of the generator module and observe the changes in the 
phase spectrum in each case.

(c) Do the phase spectra from Exercise 2 agree with the 3D representation in                    
Illustration 28 ff.? Note deviations and try to find an explanation for the possible        
erroneous calculation of the phase spectrum. 

(d) Experiment with various settings for the sample rate and block length (A/D button 
on the upper control bar, but select both values in the same size, e.g. 32, 256, 1024!)

Exercise 4:

Noise constitutes a pure stochastic signal and is therefore "totally non-periodic".

(a) Examine the amplitude and phase spectra of noise. Is the spectrum continuous? Do 
amplitude and phase spectra display stochastic behaviour?

(b) Examine the amplitude and phase spectrum of lowpass filtered noise (e.g. cutoff  
frequency 50 Hz, Butterworth filter 6th order). Do both exhibit stochastic                 
behaviour? Is the filtered noise also "completely non-periodic"? 
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Exercise 5:

Illustration 43:                    Square wave generator with variable pulse duty factor

(a) Design a square wave signal generator by means of which the pulse duty factor and 
the frequency of the periodic rectangular signal can be set as desired. If necessary 
use the enclosed Illustration to help you.

(b) Interconnect (as above) your square wave signal generator with our standard circuit 
for the analysis and visualisation of signals in the time and frequency domain.

(c) Examine the amplitude spectrum by keeping the frequency of the square wave        
signal constant and making the pulse duration τ smaller and smaller. Observe        
particularly the development of the "zero positions" of the spectrum as shown in     
Illustration 33 ff.

(d) In the amplitude spectrum usually additional small peaks appear between the         
expected spectral lines. Experiment on ways of optically avoiding these, for in-
stance by the selection of suitable scanning rates and block lengths (A/D setting in 
the upper control bar) and signal frequencies and pulse lengths. You will discover 
their cause in Chapter 10 (Digitalisation).

(e) Try to develop a circuit such as that used for the representation of signals in               
Illustration 38 – transition from a line spectrum to a continuous spectrum. Only the 
frequency, not the pulse length should be variable. 
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Exercise 6:

(a) How could one prove using DASYLab that practically all frequencies – i.e.               
sinusoidal oscillations- are present in a noise signal. Try experimenting.

(b) How is is possible to ascertain whether a (periodic) signal is contained in an            
extremely noisy signal? 




