
Preface

Nowadays, huge amount of multimedia data are being constantly generated in
various forms from various places around the world. With ever increasing com-
plexity and variability of multimedia data, traditional rule-based approaches
where humans have to discover the domain knowledge and encode it into a
set of programming rules are too costly and incompetent for analyzing the
contents, and gaining the intelligence of this glut of multimedia data.

The challenges in data complexity and variability have led to revolutions
in machine learning techniques. In the past decade, we have seen many new
developments in machine learning theories and algorithms, such as boosting,
regressions, Support Vector Machines, graphical models, etc. These develop-
ments have achieved great successes in a variety of applications in terms of the
improvement of data classification accuracies, and the modeling of complex,
structured data sets. Such notable successes in a wide range of areas have
aroused people’s enthusiasms in machine learning, and have led to a spate of
new machine learning text books. Noteworthily, among the ever growing list
of machine learning books, many of them attempt to encompass most parts
of the entire spectrum of machine learning techniques, resulting in a shallow,
incomplete coverage of many important topics, whereas many others choose
to dig deeply into a specific branch of machine learning in all aspects, result-
ing in excessive theoretical analysis and mathematical rigor at the expense of
loosing the overall picture and the usability of the books. Furthermore, despite
a large number of machine learning books, there is yet a text book dedicated
to the audience of the multimedia community to address unique problems and
interesting applications of machine learning techniques in this area.
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The objectives we set for this book are two-fold: (1) bring together those
important machine learning techniques that are particularly powerful and
effective for modeling multimedia data; and (2) showcase their applications
to common tasks of multimedia content analysis. Multimedia data, such as
digital images, audio streams, motion video programs, etc, exhibit much richer
structures than simple, isolated data items. For example, a digital image is
composed of a number of pixels that collectively convey certain visual content
to viewers. A TV video program consists of both audio and image streams that
complementally unfold the underlying story and information. To recognize the
visual content of a digital image, or to understand the underlying story of a
video program, we may need to label sets of pixels or groups of image and audio
frames jointly because the label of each element is strongly correlated with the
labels of the neighboring elements. In machine learning field, there are certain
techniques that are able to explicitly exploit the spatial, temporal structures,
and to model the correlations among different elements of the target problems.
In this book, we strive to provide a systematic coverage on this class of machine
learning techniques in an intuitive fashion, and demonstrate their applications
through various case studies.

There are different ways to categorize machine learning techniques. Chap-
ter 1 presents an overview of machine learning methods through four different
categorizations: (1) Unsupervised versus supervised; (2) Generative versus
discriminative; (3) Models for i.i.d. data versus models for structured data;
and (4) Model-based versus modeless. Each of the above four categorizations
represents a specific branch of machine learning methodologies that stem from
different assumptions/philosophies and aim at different problems. These cate-
gorizations are not mutually exclusive, and many machine learning techniques
can be labeled with multiple categories simultaneously. In describing these
categorizations, we strive to incorporate some of the latest developments in
machine learning philosophies and paradigms.

The main body of this book is composed of three parts: I. unsupervised
learning, II. Generative models, and III. Discriminative models. In Part I, we
present two important branches of unsupervised learning techniques: dimen-
sion reduction and data clustering, which are generic enabling tools for many
multimedia content analysis tasks. Dimension reduction techniques are com-
monly used for exploratory data analysis, visualization, pattern recognition,
etc. Such techniques are particularly useful for multimedia content analysis be-
cause multimedia data are usually represented by feature vectors of extremely
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high dimensions. The curse of dimensionality usually results in deteriorated
performances for content analysis and classification tasks. Dimension reduc-
tion techniques are able to transform the high dimensional raw feature space
into a new space with much lower dimensions where noise and irrelevant
information are diminished. In Chapter 2, we describe three representative
techniques: Singular Value Decomposition (SVD), Independent Component
Analysis (ICA), and Dimension Reduction by Locally Linear Embedding
(LLE). We also apply the three techniques to a subset of handwritten dig-
its, and reveal their characteristics by comparing the subspaces generated by
these techniques.

Data clustering can be considered as unsupervised data classification that
is able to partition a given data set into a predefined number of clusters based
on the intrinsic distribution of the data set. There exist a variety of data
clustering techniques in the literature. In Chapter 3, instead of providing a
comprehensive coverage on all kinds of data clustering methods, we focus on
two state-of-the-art methodologies in this field: spectral clustering, and clus-
tering based on non-negative matrix factorization (NMF). Spectral clustering
evolves from the spectral graph partitioning theory that aims to find the best
cuts of the graph that optimize certain predefined objective functions. The
solution is usually obtained by computing the eigenvectors of a graph affin-
ity matrix defined on the given problem, which possess many interesting and
preferable algebraic properties. On the other hand, NMF-based data cluster-
ing strives to generate semantically meaningful data partitions by exploring
the desirable properties of the non-negative matrix factorization. Theoretically
speaking, because the non-negative matrix factorization does not require the
derived factor-space to be orthogonal, it is more likely to generate the set of
factor vectors that capture the main distributions of the given data set.

In the first half of Chapter 3, we provide a systematic coverage on four
representative spectral clustering techniques from the aspects of problem for-
mulation, objective functions, and solution computations. We also reveal the
characteristics of these spectral clustering techniques through analytical ex-
aminations of their objective functions. In the second half of Chapter 3, we
describe two NMF-based data clustering techniques, which stem from our orig-
inal works in recent years. At the end of this chapter, we provide a case study
where the spectral and NMF clustering techniques are applied to the text
clustering task, and their performance comparisons are conducted through
experimental evaluations.
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In Part II and III, we focus on various graphical models that are aimed
to explicitly model the spatial, temporal structures of the given data set, and
therefore are particularly effective for modeling multimedia data. Graphical
models can be further categorized as either generative or discriminative. In
Part II, we provide a comprehensive coverage on generative graphical mod-
els. We start by introducing basic concepts, frameworks, and terminologies of
graphical models in Chapter 4, followed by in-depth coverages of the most ba-
sic graphical models: Markov Chains and Markov Random Fields in Chapter
5 and 6, respectively. In these two chapters, we also describe two important
applications of Markov Chains and Markov Random Fields, namely Markov
Chain Monte Carlo Simulation (MCMC) and Gibbs Sampling. MCMC and
Gibbs Sampling are the two powerful data sampling techniques that enable
us to conduct inferences for complex problems for which one can not ob-
tain closed-form descriptions of their probability distributions. In Chapter 7,
we present the Hidden Markov Model (HMM), one of the most commonly
used graphical models in speech and video content analysis, with detailed
descriptions of the forward-backward and the Viterbi algorithms for training
and finding solutions of the HMM. In Chapter 8, we introduce more general
graphical models and the popular algorithms such as sum-production, max-
product, etc. that can effectively carry out inference and training on graphical
models.

In recent years, there have been research works that strive to overcome
the drawbacks of generative graphical models by extending the models into
discriminative ones. In Part III, we begin with the introduction of the Con-
ditional Random Field (CRF) in Chapter 9, a pioneer work in this field.
In the last chapter of this book, we present an innovative work, Max-Margin
Markov Networks (M3-nets), which strives to combine the advantages of both
the graphical models and the Support Vector Machines (SVMs). SVMs are
known for their abilities to use high-dimensional feature spaces, and for their
strong theoretical generalization guarantees, while graphical models have the
advantages of effectively exploiting problem structures and modeling corre-
lations among inter-dependent variables. By implanting the kernels, and in-
troducing a margin-based objective function, which are the core ingredients
of SVMs, M3-nets successfully inherit the advantages of the two frameworks.
In Chapter 10, we first describe the concepts and algorithms of SVMs and
Kernel methods, and then provide an in-depth coverage of the M3-nets. At
the end of the chapter, we also provide our insights into why discriminative
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graphical models generally outperform generative models, and M3-nets are
generally better than discriminative models.

This book is devoted to students and researchers who want to apply ma-
chine learning techniques to multimedia content analysis. We assume that the
reader has basic knowledge in statistics, linear algebra, and calculus. We do
not attempt to write a comprehensive catalog covering the entire spectrum of
machine learning techniques, but rather to focus on the learning methods that
are powerful and effective for modeling multimedia data. We strive to write
this book in an intuitive fashion, emphasizing concepts and algorithms rather
than mathematical completeness. We also provide comments and discussions
on characteristics of various methods described in this book to help the reader
to get insights and essences of the methods. To further increase the usability
of this book, we include case studies in many chapters to demonstrate exam-
ple applications of respective techniques to real multimedia problems, and to
illustrate factors to be considered in real implementations.

California, U.S.A. Yihong Gong
May 2007 Wei Xu
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Dimension Reduction

Dimension reduction is an important research topic in the area of unsuper-
vised learning. Dimension reduction techniques aim to find a low-dimensional
subspace that best represents a given set of data points. These techniques
have a broad range of applications including data compression, visualization,
exploratory data analysis, pattern recognition, etc.

In this chapter, we present three representative dimension reduction tech-
niques: Singular Value Decomposition (SVD), Independent Component Analy-
sis (ICA), and Local Linear Embedding (LLE). Dimension reduction based on
singular value decomposition is also referred to as principal component analy-
sis (PCA) by many papers in the literature. We start the chapter by discussing
the goals and objectives of dimension reduction techniques, followed by de-
tailed descriptions of SVD, ICA, and LLE. In the last section of the chapter,
we provide a case study where the three techniques are applied to the same
data set and the subspaces generated by these techniques are compared to
reveal their characteristics.

2.1 Objectives

The ultimate goal of statistical machine learning is to create a model that
is able to explain a given phenomenon, or to model the behavior of a given
system. An observation x ∈ R

p obtained from the phenomenon/system can be
considered as a set of indirect measurements of an underlying source s ∈ R

q.
Since we generally have no ideas on what measurements will be useful for
modeling the given phenomemon/system, we usually attempt to measure all
we can get from the target, resulting in a q that is often larger than p.
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Since an observation x is a set of indirect measurements of a latent source
s, its elements may be distorted by noises, and may contain strong correlations
or redundancies. Using x in analysis will not only result in poor performance
accuracies, but also incur excessive modeling costs for estimating an excessive
number of model parameters, some of which are redundant.

The primary goal of dimension reduction is to find a low-dimensional sub-
space R

p′ ∈ R
p that is optimal for representing the given data set with respect

to a certain criterion function. The use of different criterion functions leads
to different types of dimension reduction techniques.

Besides the above primary goal, one is often interested in inferencing the
latent source s itself from the set of observations x1, . . . ,xn ∈ R

p. Consider a
meeting room with two microphones and two simultaneous talking people. The
two microphones pick up two different mixtures x1, x2 of the two independent
sources s1, s2. It will be very useful if we can estimate the two original speech
signals s1 and s2 using the recorded (observed) signals x1 and x2. This is an
example of the classical cocktail party problem, and independent component
analysis is intended to provide solutions to blind source separations.

2.2 Singular Value Decomposition

Assume that x1, . . . ,xn ∈ R
p are a set of centered data points1, and that we

want to find a k-dimensional subspace to represent these data points with the
least loss of information. Standard PCA strives to find a p×k linear projection
matrix Vk so that the sum of squared distances from the data points xi to
their projections is minimized:

L(Vk) =
n∑

i=1

||xi − VkVT
k xi||2 . (2.1)

In (2.1), VT
k xi is the projection of xi onto the k-dimensional subspace spanned

by the column vectors of Vk, and VkVT
k xi is the representation of the pro-

jected vector VT
k xi in the original p-dimensional space. It can be easily verified

that (2.1) can be rewritten as (see Problem 2.2 at the end of the chapter):

n∑

i=1

||xi − VkVT
k xi||2 =

n∑

i=1

||xi||2 −
n∑

i=1

||VkVT
k xi||2 . (2.2)

1 A centered vector xc is generated by subtracting the mean vector m from the

original vector x: xc = x − m, so that xc is a zero-mean vector.
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This means that minimizing L(Vk) is equivalent to maximizing the term∑n
i=1 ||VkVT

k xi||2, which is the empirical variance of these projections. There-
fore, the projection matrix Vk that minimizes L(Vk) is the one that maxi-
mizes the variance in the projected space.

The solution Vk can be computed by Singular Value Decomposition
(SVD). Denote by X the n × p matrix where the i’th row corresponds to the
observation xi. The singular value decomposition of the matrix X is defined
as:

X = UDVT , (2.3)

where U is an n × p orthogonal matrix (UT U = I) whose column vectors ui

are called the left singular vectors, V is a p×p orthogonal matrix (VT V = I)
whose column vectors vj are called the right singular vectors, and D is a p×p

diagonal matrix with the singular values d1 ≥ d2 · · · dp ≥ 0 as its diagonal
elements.

For a given number k, the matrix Vk that is composed of the first k

columns of V constitutes the rank k solution to (2.1). This result stems from
the following famous theorem [11].

Theorem 2.1. Let the SVD of matrix X be given by (2.3), U =
[u1 u2 · · · up], D = diag(d1, d2, . . . , dp), V = [v1 v2 · · · vp ], and rank(X) =
r. Matrix Xτ defined below is the closest rank-τ matrix to X in terms of the
Euclidean and Frobenius norms.

Xτ =
τ∑

i=1

uidivT
i . (2.4)

The use of τ -largest singular values to approximate the original matrix
with (2.4) has more implications than just dimension reduction. Discarding
small singular values is equivalent to discarding linearly semi-dependent or
practically nonessential axes of the original feature space. Axes with small
singular values usually represent either non-essential features or noise within
the data set. The truncated SVD, in one sense, captures the most salient un-
derlying structure, yet at the same time removes the noise or trivial variations
in the data set. Minor differences between data points will be ignored, and
data points with similar features will be mapped near to each other in the τ -
dimensional partial singular vector space. Similarity comparison between data
points in this partial singular vector space will certainly yield better results
than in the raw feature space.

The singular value decomposition in (2.3) has the following interpretations:
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• Column j of the matrix UD (n-dimensional) corresponds to the projected
values of the n data points xi onto the j’th right singular vector vj . This
is because XV = UD, Xvj is the projection of X onto vj , which equals
the j’th column of UD.

• Similarly, row j of the matrix DVT (p-dimensional) corresponds to the
projected values of the p column vectors of X onto the j’th left singular
vector uj . This is because UT X = DVT , uT

j X is the projection of X onto
uj , which equals the j’th row of DVT .

• The left singular vectors uj and the diagonal elements of the matrix D2

are the eigenvectors and eigenvalues of the kernel matrix XXT 2. This is
because

XXT = UDVT VDUT = UD2UT ⇒ XXT U = UD2 .

• Similarly, the right singular vectors vj and the diagonal elements of the
matrix D2 are the eigenvectors and eigenvalues of the covariance matrix
XT X of the n data points. This is because

XT X = VDUT UDVT = VD2VT ⇒ XT XV = VD2 .

It can be verified that for each column vi of V, the following equality holds
(see Problem 2.3 at the end of the chapter):

var(Xvi) = d2
i , (2.5)

where di is the i’th eigenvalue. This means that the columns v1, v2, · · · of
V correspond to the directions with the largest, second largest, · · · sample
variances, which confirms that the matrix Vk that is composed of the first k

columns of V does constitute the rank k solution to (2.1).
We use a synthetic data set to demonstrate the effect of singular value

decomposition. Figure 2.1 shows two parallel Gaussian distributions in a 3-D
space. These two Gaussian distributions have similar shapes, with the mass
stretching mainly along one direction. Figure 2.2 shows the subspace spanned
by the first two principal components found by the singular value decomposi-
tion. The horizontal and the vertical axes correspond to the first and second
principal components, respectively, which are the axes with the largest, and
second largest variances.

2 We call XXT a kernel matrix because its (i, j)’th element is dot product xi · xj

of the data points xi and xj .
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Fig. 2.1. A synthetic data set in a 3-D space
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Fig. 2.2. The subspace spanned by the first two principal components

2.3 Independent Component Analysis

Independent component analysis aims to estimate the latent source from a set
of observations [12]. Assume that we observe n linear mixtures of n indepen-
dent components s1, s2, . . . , sn,

x1 = a11s1 + a12s2 + · · · + a1nsn

x2 = a21s1 + a22s2 + · · · + a2nsn

...
...

xn = an1s1 + an2s2 + · · · + annsn . (2.6)

Without loss of generality, we assume that both the mixture variables and the
independent components have zero mean. If this is not true, we can always
center the mixture variables xi by subtracting the sample means, which makes
the independent components si zero mean as well.

Let x be the vector of the observed (mixture) variables x1, x2, . . . , xn, s
the vector of the latent variables (independent components) s1, s2, . . . , sn, and
A the matrix of the mixture coefficients aij . Using the vector-matrix notation,
(2.6) can be written as

x = As . (2.7)

The ICA model is a generative model because it describes how the observed
data are generated by a process of mixing the latent components si. In (2.7),
both the mixing matrix A and the latent vector s are unknown, and we must
estimate both A and s using the observed vector x.
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It is clear from (2.7) that the ICA model is ambiguous because given any
diagonal n × n matrix R, we have

x = As

= AR−1Rs

= A∗s∗ . (2.8)

To make the solution unique, we add the constraint that requires each latent
variable si to have the unit variance: E[s2

i ] = 1,∀i. Note that this constraint
still leaves the ambiguity of sign: we can multiply the latent variables by
−1 without affecting the model. Fortunately, this ambiguity is not a serious
problem in many applications.

The key assumption for ICA is that the latent variables si are statistically
independent, and must have non-Gaussian distributions (see Sect. 2.3.2 for
explanations). The standard ICA model also assumes that the mixing matrix
A is square, but this assumption can be sometimes relaxed, as explained in
[12]. With these assumptions, the ICA problem can be formulated as: Find a
matrix A such that the latent variables obtained by

s = A−1x (2.9)

are as independent and non-Gaussian as possible.
There are several metrics that can be used to measure the degrees of

independence and non-Gaussianity. Here we provide three metrics that have
been widely utilized in ICA implementations [12].

Kurtosis

Kurtosis is a classical measure of non-Gaussianity. The kurtosis of a random
variable y is defined by

kurt(y) = E[y4] − 3(E[y2])2 . (2.10)

For a variable y with unit variance, kurt(y) = E[y4] − 3, which is simply a
normalized version of the fourth moment E[y4].

Kurtosis is zero for Gaussian variables, and non-zero for most (but not
all) non-Gaussian random variables. Negative kurtosis values typically corre-
spond to spiky probabilistic distributions that have a sharp peak and a long,
low-altitude tail, while positive kurtosis values typically correspond to flat
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probabilistic distributions that have a rather flat peak, and taper off gradu-
ally.

Kurtosis has some drawback in practice. It is very sensitive to outliers,
meaning that a few data points in the tails of a distribution may largely affect
its value. Therefore, kurtosis is not a robust measure of non-Gaussianity.

Negentropy

The differential entropy H(y) of a random vector y is given by

H(y) = −
∫

P (y) log P (y)dy , (2.11)

where P (y) is the probabilistic density distribution of y. Entropy is a mea-
surement of the degree of information on a random variable. The more random
(i.e. unpredictable and unstructured) the variable is, the larger its entropy.
A well-known result in the information theory says that among all random
variables with an equal variance, Gaussian variables have the maximum en-
tropy. This means that entropy can be used as a measure of non-Gaussianity.
Inspired by this observation, Hyvarinen and Oja introduced the negentropy
J(y) defined by [13]

J(y) = H(yg) − H(y) , (2.12)

where yg is a Gaussian random variable with the same covariance matrix as
y. Negentropy is always non-negative, and becomes zero if and only if y is a
Gaussian variable.

Although negentropy is well justified, and has certain preferable statisti-
cal properties, its estimation, however, is problematic because it requires an
estimation of the probabilistic density distribution P (y), which is difficult to
obtain for all but very simple problems.

In [13], Hyvarinen proposed a simple approximation to negentropy that
can be estimated on empirical data. For a random variable y with zero mean
and unit variance, the approximation is given by

J(y) ≈ (E[G(y)] − E[G(yg)])2 , (2.13)

where yg is a Gaussian variable with zero mean and unit variable, and G(y) =
1
a log cosh(ay) for 1 ≤ a ≤ 2.
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Mutual Information

The mutual information I between the components of a random vector y =
[y1, y2, . . . , yn]T is defined as

I(y1, y2, . . . , yn) =
n∑

i=1

H(yi) − H(y) . (2.14)

The quantity I(y1, y2, . . . , yn) is equivalent to the famous Kullback-Leibler
divergence between the joint density p(y) and the product of its marginal
densities

∏n
i=1 p(yi), which is an independent version of p(y). It is always

non-negative, and becomes zero if and only if the variables are statistically
independent.

Mutual information can be interpreted as a metric of the code length
reduction from the information theory’s point of view. The terms H(yi) give
the code lengths for the components yi when they are coded separately, and
H(y) gives the code length when all the components are coded together.
Mutual information shows what code length reduction is obtained by coding
the whole vector instead of the separate components. If the components yi

are mutually independent, meaning that they give no information on each
other, then

∑n
i=1 H(yi) = H(y), and there will be no code length reduction

no matter whether the components yi are coded separately or jointly.
An important property of mutual information is that, for an invertible

linear transformation y = Wx we have

I(y1, y2, . . . , yn) =
n∑

i=1

H(yi) − H(x) − log |detW| . (2.15)

If both x and y have the identity covariance matrix I, then W is a orthogonal
matrix (see the derivation of (2.17)), and I(y1, y2, . . . , yn) becomes

I(y1, y2, . . . , yn) =
n∑

i=1

H(yi) − H(x) . (2.16)

This property implies that computation cost can be reduced if we conduct the
whitening pre-processing before estimating the latent variables using (2.9) (see
Sect. 2.3.1 for more descriptions).

2.3.1 Preprocessing

The most basic and necessary preprocessing is to center the observed variables
x, which means that we subtract x with its mean vector m = E[x] to make
x a zero-mean vector.
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Another useful preprocessing is to first whiten the observed variables x
before estimating A in (2.9). This means that we transform the observed
variables x linearly into new variables x̃ = Bx such that E[x̃x̃T ] = I. The
whitening preprocessing transforms the mixing matrix A in (2.9) into an
orthogonal matrix. This can be seen from

I = E[x̃x̃T ] = E[Bx(Bx)T ]

= E[BAs(BAs)T ]

= E[Ãs(Ãs)T ]

= ÃE[ssT ]Ã
T

= ÃÃ
T

, (2.17)

where Ã = BA, and the last equality is derived from the assumption that the
latent variables s are independent, have zero mean and unit variance.

Transforming the mixing matrix A into an orthogonal one reduces the
number of parameters to be estimated. An n × n orthogonal matrix contains
n(n − 1)/2 degrees of freedom, while an arbitrary matrix of the same size
contains n2 elements (parameters). For matrixes with large dimensions, the
whitening preprocessing roughly reduces the number of parameters to be es-
timated to half, which dramatically decreases the complexity of the problem.

The whitening preprocessing can be always accomplished using the eigen-
value decomposition of the covariance matrix E[xxT ] = EDET , where E is the
orthogonal matrix of the eigenvectors of E[xxT ], and D = diag(d1, d2, . . . , dn)
is the diagonal matrix of its eigenvalues. It is easy to verify that the vector x̃
given by

x̃ = ED−1/2ET x (2.18)

satisfies E[x̃x̃T ] = I, and therefore, it is the whitened version of x.

2.3.2 Why Gaussian is Forbidden

As demonstrated by (2.8), there exist certain ambiguities with the ICA for-
mulation. The assumption of statistical independence of the latent variables
s serves to remove these ambiguities. Intuitively, the assumption of non-
correlation determines the covariances (the second-degree cross-moments) of a
multivariate distribution, while the assumption of statistical independence de-
termines all of the cross-moments. These extra moment conditions allow us to
remove the ambiguities, and to uniquely identify elements of the mixing matrix
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Fig. 2.3. The subspace spanned by the two independent components

A. The additional moment conditions, however, do not help Gaussian distri-
butions because they are determined by the second-degree moments alone,
and do not involve higher degree cross-moments. As a result, any Gaussian
independent components can be only determined up to a rotation.

In summary, ICA aims to find a linear projection A of the observed data x
such that the projected data s = A−1x look as far from Gaussian, and as in-
dependent as possible. This amounts to maximizing one of the non-Gaussian,
independence metrics introduced in this section. Maximizing these metrics can
be achieved using the standard gradient decent algorithm and its variations.
An algorithm that efficiently computes the latent variables s by maximizing
the approximation of negentropy given by (2.13) can be found in [12].

Figure 2.3 shows the subspace obtained by applying the ICA algorithm to
the synthetic data set shown in Fig. 2.1. The data distribution in the figure
confirms that the two axes of this subspace correspond to the two directions
that provide the maximum statistical independence.
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2.4 Dimension Reduction by Locally Linear Embedding

Many complex data represented by high-dimensional spaces typically have
a much more compact description. Coherent structures in the world lead to
strong correlations between components of objects (such as neighboring pixels
in images), generating observations that lie on or close to a smooth low-
dimensional manifold. Finding such a low-dimensional manifold for the given
data set can not only provide a better insight into the internal structure of
the data set, but also dramatically reduce the number of parameters to be
estimated for constructing reasoning models.

In this section, we present one of the latest techniques for manifold com-
putations: dimension reduction by locally linear embedding (LLE) [14]. The
LLE method strives to compute a low-dimensional embedding of the high-
dimensional inputs which preserves the neighborhood structure of the origi-
nal space. The method also does not have the local minimum problem, and
guarantees to generate the globally optimal solution.

The LLE algorithm is based on simple geometric intuitions. Consider a
manifold in a high dimensional feature space, such as the one shown in Fig.
2.4. Such a manifold can be decomposed into many small patches. If each
patch is small enough, it can be approximated as a linear patch. Assume that
a data set sampled from the manifold consists of N real-valued, D-dimensional
vectors xi. If we have sufficient data points such that the manifold is well-
sampled, we expect each data point and its neighbors to lie on or close to
a locally linear patch of the manifold. Therefore, each data point xi can be
reconstructed as a linear combination of its neighbors xj

xi ≈
∑

j

wijxj , (2.19)

and the local geometry of each patch can be characterized by the linear co-
efficients wij . The LLE algorithm strives to find the matrix W of the linear
coefficients wij for all the data points xi by minimizing the following recon-
struction error

E(W) =
∑

i

||xi −
∑

j

wijxj ||2 . (2.20)

The minimization of the reconstruction error E(W) is conducted subject
two the following two constraints:

1. Each data point xi is reconstructed only from its neighbors, enforcing
wij = 0 if xj does not belong to the set of neighbors of xi.
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Fig. 2.4. An example of manifold. (a) shows a manifold in a 3-D space. (b) shows

the projected manifold in the 2-D subspace generated by the LLE algorithm
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2. The rows of the weight matrix W sum to one:
∑

j wij = 1.

The set of neighbors for each data point can be obtained either by choosing
the K nearest neighbors in Euclidean distance, or by selecting data points
within a fixed radius, or by using certain prior knowledge. The LLE algorithm
described in [14] reconstructs each data point using its K nearest neighbors.

The optimal weights wij subject to the above two constraints can be ob-
tained by solving a least-squares problem, and the result is given by

wij =
∑

k

C−1
jk (xi · xk + λ) , (2.21)

where C−1 is the inverse of the neighborhood correlation matrix C = {cjk},
cjk = xj · xk, C−1

jk is the (j, k)’th element of the inverse matrix C−1, and

λ =
1−

∑
jk C−1

jk (xi·xk)
∑

jk C−1
jk

.

The constrained weights that minimize the reconstruction error E(W)
have the important property that for any data points, they are invariant to
rotations, rescalings, and translations of the data points and their neighbors.
Note that the invariance to translations is specifically enforced by the sum-
to-one constraint on the rows of the weight matrix W.

After obtaining the weight matrix W, the next step is to find a linear
mapping that maps the high-dimensional coordinates of each neighborhood
to global internal coordinates on the manifold of lower dimensionality d << D.
The linear mapping may consist of a translation, rotation, rescaling, etc. By
design, the reconstruction weights wij reflect intrinsic geometric properties of
the data that are invariant to exactly these transformations. Therefore, we
expect their characterization of local geometry in the original data space to
be equally valid for local patches on the manifold. In particular, the same
weights wij that reconstruct the data point xi in the original D-dimensional
space should also reconstruct its embedded manifold coordinates in the lower
d-dimensional space.

Based on the above idea, LLE constructs a neighborhood-preserving map-
ping matrix Y = [y1,y2, . . . ,yN ] that minimizes the following embedded cost
function

Θ(Y) =
∑

i

||yi −
∑

j

wijyj ||2 , (2.22)

where yi is the global internal coordinates of the data point xi on the manifold.
This cost function, like (2.20), is based on locally linear reconstruction errors,
but here we fix the weights wij while optimizing the mapping matrix Y. To
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Fig. 2.5. The 2-D manifold obtained by the LLE algorithm

make the problem well-posed, the optimization is performed subject to the
following two constraints:

1. The coordinates yi are centered to the origin:
∑

i yi = 0. This is to remove
the freedom that yi can be translated by a constant displacement without
affecting the cost Θ(Y).

2. The mapping matrix Y has an unit covariance matrix: YYT = I.

With the above two constraints, the optimal embedding, up to a global
rotation of the embedding space, is obtained by computing the bottom d + 1
eigenvectors of the matrix M = [mij ], where

mij = δij − wij − wji +
∑

k

wkiwkj , (2.23)

and δij is 1 if i = j and 0 otherwise. The detailed mathematical derivations
can be found in [14].
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In summary, given the user’s input on the number of dimensions d of
the manifold and the number of neighbors K for each data point, the LLE
algorithm consists of the following three major steps:

1. For each data point xi, choose the K nearest neighbors as its neighborhood
set.

2. Use (2.21) to compute the optimal weights wij .
3. Use (2.23) to compute the matrix M, and the embedding vectors yi.
4. Repeat Step 1 ∼ 3 until all the data points are processed.

Figure 2.5 shows the 2-D manifold obtained by applying the LLE algorithm
to the synthetic data set shown in Fig. 2.1. The data distribution in the figure
is almost identical to the one shown in Fig. 2.2 if we flip the space vertically.
This indicates that the 2-D manifold is formed by preserving the first two
principal components, and discarding the least important one of the original
space.

2.5 Case Study

In this section, we provide a case study where the three dimension reduction
techniques described in this chapter, namely SVD, ICA, and LLE, are applied
to a subset of handwritten digits from the MNIST database [15]. The MNIST
database has a total of 60,000 handwritten digits, each of which is normalized
to a 28 × 28 gray-scale image with each pixel ranging in intensity from 0 to
255. Preprocessing is conducted to center each handwritten digit within the
28 × 28 image. Among the 60,000 handwritten digits, there are 5421 fives in
the MNIST database, from which we have randomly selected 539 images to
form our experimental test set.

Figure 2.6 shows the subspace generated by the singular value decomposi-
tion. In this figure, (a) shows the subspace spanned by the first two principal
components, where the circled points are the projected images closest to the
vertices of a square grid, and (b) displays the images corresponding to the
circled points in (a). Plot (b) allows us to visualize the natures of the first
two principal components. We see that the horizontal axis mainly accounts
for the length of the upper and lower tails of digit five, while the vertical axis
accounts for character thickness. Although there are a total of 784 possible
principal components, the first 50 components account for approximately 90%
of the variation in handwritten fives.
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Fig. 2.6. The subspace generated by the singular value decomposition. (a) shows

the subspace spanned by the first two principal components. The circled points are

the projected images closest to the vertices of a square grid. (b) displays the images

corresponding to the circled points in (a)
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Fig. 2.7. The subspace generated by the independent component analysis. (a) shows

the subspace spanned by the two independent components. The circled points are

the projected images closest to the vertices of a square grid. (b) displays the images

corresponding to the circled points in (a)
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Fig. 2.8. The subspace generated by the locally linear embedding method. (a) shows

the two-dimensional linear embedded space. The circled points are the projected

images closest to the vertices of a square grid. (b) displays the images corresponding

to the circled points in (a)
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Figure 2.7 shows the subspace spanned by the two independent compo-
nents. Same as Fig. 2.6, we superimpose a square grid on the space, and
display the projected images that are closest to the vertices of the grid. It is
not surprising that the subspace shown in (a) has a long-tailed distribution,
because ICA specifically looks for non-Gaussian distributions. The sample im-
ages displayed in (b) do not show salient trends along the horizontal and the
vertical axes, and we are unable to tell the physical implications of the two
axes.

Figure 2.8 shows the two-dimensional subspace generated by the locally
linear embedding method. From (b) we see that the horizontal axis mainly
accounts for the lengths of the upper and lower tails, and the vertical axis
accounts for the width of the handwritten fives.

Problems

2.1. Let X ∈ R2 follows uniform distribution in region |X1 + 2X2| ≤ 1.
a) What is the principle components of X?
b) What is the independent components of X?

2.2. For an orthogonal linear projection matrix VT V = I, prove

‖x − VVT x‖2 = ‖x‖2 − ‖VVT x‖2 .

2.3. The singular value decomposition of a matrix X is defined as

X = UDVT .

Prove that for each column vi of V, the following equality holds:

var(Xvi) = d2
i ,

where di is the i’th eigenvalue.

2.4. Let X and Y be two Gaussian random variable. Show that the mutual
information between X and Y is:

I(X,Y ) =
1
2

log
1

1 − ρ2

where ρ = Cov(X,Y )√
V ar(X)V ar(Y )

is the correlation coefficient between X and Y .
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2.5. Let A be an M × N matrix, w = [w1, w2, . . . , wN ]T an N dimensional
vector, b an M dimensional vector. Find the solution for the following con-
strained optimization problem

min
w

‖Aw − b‖2 ,

subject to constraint
∑

i wi = 1.

2.6. Let P (X,Y ) be the joint distribution function of random variables X

and Y . f(X,Y ) = log P (X,Y ). Assume f is twice differentiable. Prove that
∂2f

∂x∂y = 0 if and only if X and Y are independent.

2.7. Let X1 and X2 be two independent random variables with the distri-
bution functions P (X) and Q(X). Assume f(X) = log P (X) and g(X) =
log Q(X) are twice differentiable. Prove that (a) and (b) are equivalent

(a) X1 and X2 are two Gaussian random variables with the same variance.
(b) For any A ∈ R2×2 such that AAT = I, [Y1Y2]T = A[X1X2]T transforms

X1 and X2 into two independent random variables Y1 and Y2. (Hint: Use
Problem 2.6).

2.8. Show that the LLE algorithm is rotational and translational invariant,
i.e., LLE will find the same result if the original data is subject to some
rotation and/or translation.

2.9. Show that kernel trick can be applied to principle component analysis,
i.e., the principle components can be obtained from inner products between
the data vectors without the need of referring to the original vectors.


