3.5.3.12 Generalized skeletal abnormalities (VII)
(Apert and Poland syndromes, Arthrogryposis etc.) – 479

3.5.4 Dislocations of the shoulder – 480

3.5.5 Growth disturbances of the upper extremities – 484
3.5.5.1 Panner’s disease – 484
3.5.5.2 Osteochondrosis dissecans of the capitellum – 484
3.5.5.3 Lunatomalacia – 485

3.5.6 Neuromuscular disorders of the upper extremity – 485
3.5.6.1 Primarily spastic paralyses – 486
3.5.6.2 Primarily flaccid paralyses – 490

3.5.7 Fractures of the upper extremities – 494
3.5.7.1 Scapular fractures – 494
3.5.7.2 Clavicular fractures – 494
3.5.7.3 Proximal humeral fractures – 495
3.5.7.4 Humeral shaft fractures – 497
3.5.7.5 Elbow fractures – 498
3.5.7.6 Supracondylar humeral fractures – 499
3.5.7.7 Epicondylar humeral fractures – 503
3.5.7.8 Transcondylar humeral fractures – 504
3.5.7.9 Radial head and neck fractures – 507
3.5.7.10 Olecranon fractures – 508
3.5.7.11 Elbow dislocations – 509
3.5.7.12 Radial head dislocations (Monteggia lesions) – 510
3.5.7.13 Forearm shaft fractures – 512
3.5.7.14 Distal forearm fractures – 515
3.5.7.15 Fractures of the carpal bones – 517
3.5.7.16 Fractures of the metacarpals and phalanges – 518

3.5.8 Tumors of the upper extremities – 522
3.1 Spine, trunk

3.1.1 Examination of the back

History

- **Trauma history**: Has trauma occurred?
 - When did the trauma occur?
 - What was the patient doing (sport, playing, normal routine)?
 - Direct or indirect trauma?
- **Pain history**: Where is the pain located (neck, upper thoracic spine, lower thoracic spine, lumbar spine, lumbosacral spine)? When does it occur? Is it related to loading or movement, or does it also occur at rest (e.g., while sitting) or even at night? If so, does the pain occur only while changing position, or does the pain cause the patient to wake up at night? Does the pain occur on coughing or sneezing?
- **Sports history**: What sports does the patient practice outside school? If spondylolysis is suspected ask specifically about the following activities: gymnastics, figure skating, ballet, javelin-throwing. If Scheuermann disease is suspected ask specifically whether the patient is involved in cycle racing or rowing.
- **Neurological symptoms**: Is a leg weakness present and, if so, since when? Are there problems of micturition or defecation?

Inspection

After the gait analysis (Chapter 2.1.3), the standing patient’s back is inspected from behind.

- **To ensure that the patient’s back is at eye-level, the examiner himself should not stand but preferably sit on a chair of the appropriate height** (Fig. 3.1).

- **Inspection from behind**: We observe the position of the shoulders, the height of the scapulae and particularly the symmetry of the waist triangles. Were ok for pigmentation over the spinous processes, especially over the lumbar spine, as this can be an indication of (usually pathological) kyphosis in this area. A hairy nevus in this area can be a sign of an intraspinal anomaly.

- **Inspection from the side**: We assess the sagittal curves and establish a postural type: normal (physiological) back, hollow back (increased thoracic kyphosis and lumbar lordosis), fully rounded back (kyphosis extending down to the lumbar area), hollow-flat back (hyperlordosis of the lumbar spine with reduced kyphosis of the thoracic spine, common in small children), flat back (reduced kyphosis of the thoracic spine and lordosis of the lumbar spine; Fig. 3.2).

 - **If the sagittal curves can be corrected by bending backwards or forwards, then postural variants are involved rather than (fixed) pathological changes. N.B.: beware of overdiagnosis and overtreatment!**

We observe whether a ventral or dorsal overhang is present (Fig. 3.3) and the extent of the pelvic tilt (Fig. 3.4).
A vertical line from the center of the shoulders should pass through the center of the ankle. The forward and downward pelvic tilt is approx. 30° in relation to the horizontal. A reduction in this tilt is an indication of lumbar kyphosis (e.g., in lumbar Scheuermann disease) or of spondylolisthesis.

In order to assess posture-related muscle performance, Matthiass has proposed the arm-raising test. The child is asked to stand as straight as possible and raise his arms and keep them in a horizontal position. He should try and maintain this position for 30 seconds. A child or adolescent with normal postural capacity is able to maintain this position, in contrast with a child with postural weakness (Fig. 3.5).

We now ask the child to bend down as far as possible while keeping the knees perfectly straight. We now measure the finger-floor distance (FFD; Fig. 3.6). Normally, children and adolescents should be able to touch the floor with their fingertips or even place the whole palm of their hand on the floor. If this is not possible, we measure the distance from the fingertips to the floor in

![Fig. 3.5a–c. Arm-raising test according to Matthiass: The child is asked to stand as straight as possible and raise his arms and keep them in a horizontal position. He should try to maintain this position for 30 seconds. A child or adolescent with normal postural performance is able to maintain this position (a), in the case of a postural weakness this posture is lost (b), while a child with extremely weak muscles cannot even adopt the upright posture (c)](image1)

![Fig. 3.2a–e. Postural types: a normal back, b hollow back, c rounded back, d hollow-flat back, e flat back)](image2)

![Fig. 3.4. Pelvic tilt: The forward and downward pelvic tilt in relation to the horizontal is normally approx. 20°–30°)](image3)

![Fig. 3.3a. Ventral and b dorsal overhang: A vertical line from the center of the shoulders falls in front of or behind the center of the ankle)](image4)
3.1.1 - Examination of the back

- **Fig. 3.6.** Finger-floor distance (FFD): The patient bends down as far as possible without bending the knees. The distance between the floor and the fingertips is measured. Normal value = 0 cm

- **Fig. 3.7.** Straightening of the kyphosis: While in a forward-bending position the patient clasps his hands behind his neck (to prevent the shoulders from being pulled forward by the arms) and tries to look up at the ceiling without changing this flexed position at the hip. Ideally, the patient is held in this position with a hand placed at the apex of the kyphosis and then asked to bend back («look up at the ceiling»). We can then observe whether the thoracic kyphosis is straightened out or whether a fixed kyphosis is present.

- **Fig. 3.8.** Height of the iliac crests: Extended index fingers are positioned on both sides of the ilium. The thumbs are extended and abduced at right angles to serve as pointers. If one iliac crest is lower than the other this will be reflected in the difference in the height of the thumbs. However, since it can be difficult to establish the precise difference, we place boards under the shorter leg until the iliac crests on both sides are at the same level and the two thumbs are likewise at the same height. The thickness of the boards corresponds to the leg length discrepancy in centimeters.
When measuring leg length indirectly it is extremely important to ensure that both the knee and hip joints are fully extended, unless this is rendered impossible because of flexion contractures.

Vertical alignment
A cord with a symmetrical weight is placed against the vertebra prominens, and we assess whether the weight is in line with the anal cleft or, if not, how many fingerwidths it deviates to the right or left (Fig. 3.9).

Examination of mobility

- **Examination of mobility from behind**
 We examine the maximum lateral inclination of the standing patient’s spine from behind (Fig. 3.10). We observe whether the whole spinal column curves harmoniously to the side or whether individual segments are fixed and do not move with the rest of the spine (indication of fixed scoliosis). The pelvis must be fixed in order to evaluate trunk rotation. The rotation of the shoulder girdle in relation to the frontal plane is measured in degrees and is best observed from above (Fig. 3.11).
 The patient is now asked to bend forward until the thoracic spine forms the horizon. The symmetry of the thorax is assessed. Protrusion of the rib cage on one side is termed a rib prominence. Using a protractor (or – if available – a scoliometer or inclinometer) we measure the angle between the rib prominence and the horizontal (the latter can be determined parallel to a door or window frame in the examination room; Fig. 3.12).
3.1.1 · Examination of the back

A rib prominence of more than 2° together with a horizontal pelvis is a reliable indication of a fixed rotation of the vertebral bodies. A rib prominence of 5° or more represents a serious case of scoliosis and requires radiographic investigation. The patient is now asked to continue bending forward until the lumbar spine forms the horizon so that we can then identify any lumbar prominence. Here, too, it is important that the pelvis is horizontal. If one leg is shorter than the other, the leg length discrepancy must be corrected using a board of appropriate thickness. The lumbar prominence is also measured with a protractor. An angle of 5° or more requires x-ray examination.

Examination of the mobility of the cervical spine
The head rotation to both sides is ideally measured from above with the patient in a sitting position (Fig. 3.13). The rotation can be actively (ask the patient to turn his head) or passively (by holding the sides of the head with both hands and turning to either side). Normal value: 60° – 80°. Observe any tensing of the sternocleidomastoid muscle at the same time.

Lateral inclination of the head: This can be measured actively or passively. The deviation from the midline is stated in degrees. Normal value: 40° – 50°. Observe any tensing of the sternocleidomastoid muscle at the same time.

Inclination of the head: The chin-sternum distance is measured (in centimeters or finger widths; normal value: 0 cm). Reclination: Estimate the angle in relation to the axis of the body in degrees. Normal value: 40° – 60°.
Schober measurement
The Schober test is used to determine the mobility of the spine in the sagittal plane and involves measurement of the stretching of the skin over the thoracic and lumbar spine. An initial mark is made over spinous process S1 and a second mark 10 cm above the first. The distance between these skin marks increases as the patient bends forward, reaching a maximum of 15–17 cm. Thoracic spine: A mark is made over spinous process C7, and a second mark is made 30 cm below this. As the patient bends forward the distance between the two increases by 2–3 cm (Fig. 3.16). The maximum reclination of the spine is measured as shown in Fig. 3.17. We observe whether the patient complains of pain in a round the lumbosacral junction (indication of spondylolysis).

Palpation
We palpate the spinous processes and establish whether pain is elicited on pressure, percussion or vibration. To check pain on vibration we grasp the spinous processes between forefinger and thumb and move them back and forth. If the patient finds this painful, particularly around the lumbosacral junction, this is an important indication of possible spondylolysis.

During palpation, the skin moisture, temperature and elasticity of the skin are assessed and any dermatographic urticaria noted.

Heel-drop test
The patient is asked to stand on tiptoe and the examiner rests his hands on the patient’s shoulders. The patient is now asked to drop onto his heels while the examiner simultaneously presses down on the shoulders. This maneuver will elicit any vibration-related pain in the spine caused by inflammation, tumors or herniated disks.

Iliosacral joints
We check for pain on pressure or percussion and pain on compression from the side and sagittally. Mennell sign: In disorders of this joint, pain is elicited if the hip on the same side is overextended.

Neurological examination
A complete examination of the spine, trunk (Table 3.1) also includes at least a cursory investigation of the neurological status. A very rough (and quick) indication of a motor disorder can be obtained by checking the patient’s ability to walk on tiptoes or on heels. The most important aspects of the neurological examination from the orthopaedic standpoint are described in chapter 2.1.2.
3.1.2 Radiography of the spine

The following standard spinal x-rays are recorded:

- **Cervical spine, AP and lateral:**
 The patient can either stand or lie down for the AP x-ray of the cervical spine. The central x-ray beam is targeted on the 4th cervical vertebra (at the level of the Adam's apple) and is inclined towards the head at an angle of 15°–20°. ([Fig. 3.18 left](fig:3.18)). For the lateral x-ray, the patient can either stand, sit or lie down, and hold his head up straight in a neutral position. The central beam is targeted horizontally on C4 (chin height; [Fig. 3.18 right](fig:3.18)).

- **Transbuccal x-ray of the dens:**
 For the specialist dens x-ray the patient is placed on his back with the head in the neutral position. With the patient's mouth opened as wide as possible, the central beam is vertically aligned with the center of the open mouth ([Fig. 3.19a](fig:3.19a)). While the x-ray is recorded, the patient is asked to say “ah”, causing the tongue to press against the floor of the mouth thereby preventing its shadow from being projected onto vertebral bodies C1 and C2. The dens, axis, lateral masses of the atlas and the atlantoaxial joints will be clearly visible on the resulting x-ray.

- **Functional x-rays of the cervical spine from the side during maximum inclination and reclination:**
 If instability or a ligamentous injury is suspected, the cervical spine is x-rayed (on the awake patient) from the side, while the patient is sitting up and during maximum inclination and reclination ([Fig. 3.19b](fig:3.19b)).

- **Thoracic spine, AP and lateral:**
The AP and lateral x-rays of the thoracic spine should, if possible, be recorded while the patient is standing. For the AP view, the central beam is targeted perpendicularly onto a point approx. 3 cm above the xiphoid process of the sternum. For the lateral x-ray of the thoracic spine, the patient is asked to raise his arms. The central beam is targeted horizontally at the level of the 6th thoracic vertebra and tilted towards the head at an angle of about 10°. The resulting x-ray shows the vertebral bodies and the intervertebral disks viewed from the side ([Fig. 3.20](fig:3.20)).

- **Lumbar spine, AP and lateral:**
The AP and lateral x-rays of the lumbar spine should likewise be recorded while the patient is standing. For

Table 3.1. Examination protocol for the back

<table>
<thead>
<tr>
<th>Examination position</th>
<th>Examination</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>II. Standing from behind</td>
<td>Shoulders pulled forward? Sagittal curves? Transition between front/back</td>
<td>Contracture of the pectoralis muscles? Scheuermann’s disease? Contracture of psoas or hamstrings?</td>
</tr>
<tr>
<td>From the side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. Mobility</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1 · Spine, trunk

Fig. 3.18. Recording lateral and AP x-rays of the cervical spine. (after [1])

Fig. 3.19a, b. Recording cervical spine x-rays. a Radiographic technique for the transbuccal view of the dens, b Functional lateral x-rays of the cervical spine in maximum reclination (left) and inclination (right)

Fig. 3.20. Recording thoracic spine x-rays, lateral (left) and AP (right). (after [1])

Fig. 3.21. Recording lumbar spine x-rays, lateral (left) and AP (right). (after [1])
3.1.2 · Radiography of the spine

3.1.2.1 Radiography of the spine

- **Thoracolumbar junction, lateral:**
 For this x-ray the central beam is targeted on T12.

- **Lumbar-sacral junction, lateral:**
 For this x-ray the lateral beam path is centered on L5.

- **Oblique x-rays of the lumbar-sacral junction:**
 For the oblique x-rays of the lumbar spine, the patient lies on his side on the examination table and then turns 45° to the right so that the small vertebral joints on the right are viewed (similarly, raising the left side will enable the joint views on the left to be viewed). The central beam is targeted vertically onto the center of L3 (Fig. 3.22). See Fig. 3.68 and 3.69 for examples and explanations.

- **Whole spine, AP and lateral:**
 With children and younger adolescents it is possible to depict the whole spine on a single normal cassette. The central beam points to T12. If deformities are present, this overview is more useful for evaluating the statics of the spine than individual images of the thoracic and lumbar spine. Here, too, wide cassettes should be used so that the iliac crest is included in the x-ray. For full-grown patients the spine must be x-rayed using combined films in special cassettes. Since the distance from the x-ray tube is considerable, this not only has a adverse effect on image quality, but also involves a high dose of radioactivity. We only record such x-rays in exceptional cases.

- **CT of the spine:**
 CT is extremely useful in fractures for revealing fragments in the spinal canal. They are also effective for identifying intraosseous tumors.

- **Myelo-CT:**
 Myelo-CT has largely superseded the conventional myelogram when it comes to viewing any impediment in the spinal canal resulting from a neurological lesion.

- **Angiogram:**
 Angiograms can be recorded conventionally, as M R angiograms or, using a more recent technique, as CT angiograms, which produce the best view of the blood vessels. Such images are required in certain tumors or for depicting the artery of Adamkiewicz prior to vertebrectomies.

- **MRI of the spine:**
 The MRI scan is used for cases of inflammation and tumors (primarily for the imaging of the soft tissue components) and for revealing intraspinal anomalies before scoliosis operations (particularly for congenital scolioses).

- **Bone scan:**
 The technetium scan is useful for revealing small tumors that are not clearly depicted with conventional imaging techniques (e.g. osteoblastomas) or in the search for metastases.

- **Ultrasound scans:**
 Ultrasound scans are recorded in cases of a suspected spinal abscess or seroma.

Reference

![Fig. 3.22. Positioning of the patient and targeting of the central beam in oblique x-rays of the lumbar-sacral junction (after [1])]
3.1.3 Can the »nut croissant« be straightened out by admonitions? – or: To what extent is a bent back acceptable? – Postural problems in adolescents

The body is the visible manifestation of the soul.
(Christian Morgenstern, Steps)

The back – a mirror of the soul?

Parents’ concerns about the posture or the shape of the back of their offspring are one of the commonest reasons for a visit to the pediatrician or the orthopaedist. Their worries are essentially attributable to two main factors: On the one hand they are worried that an non-correctable deformity of the spine might result from the poor posture, as an expression of some sinister frame of mind. On the other hand, it is generally known that back pain is one of the commonest conditions suffered in adulthood and one that might possibly be prevented by a proper attitude to alienating oneself in childhood and adolescence.

But why are parents so worried about their child’s appearance, particularly in relation to back problems, even though the back is usually covered by clothing and thus less exposed than, say, the face or the hands? – The back has special symbolic significance in linguistic usage and is, to a particularly great extent, the »visible manifestation of the soul«, as Christian Morgenstern puts it. A »good« posture for the spine is »upright«, just as a person’s character can be described as »upright«. This also reflects the relationship between truth and dishonesty.

But terms associated with the back can also be used to describe emotion-provoking activities and properties that are closely related to a person’s state of mind. Linguists are unable to explain whether the language actually creates this link between physical posture and mental outlook. We also find »crooked« characters in literature. Victor Hugo, in particular, made a hunchback the lead character in two of his works: Quasimodo in Notre-Dame de Paris and the court jester in Le Roi s’amuse. The latter play was used as the basis for Giuseppe Verdi’s famous opera Rigoletto. And the French poet Paul Féval has a hunchback as the main character in Le Bossu. But in these literary examples the hunched back does not represent the manifestation of a sinister soul. Quite the opposite, since they are kind-hearted sensitive individuals who have been disadvantaged by nature and brutally exploited by others because of their inability to defend themselves.

But while the body is indisputably an expression of the soul, the connections are much more multilayered and complex than suggested by the vernacular language. Viewed at a superficial level, nature can be at variance with linguistic usage. Thus, parents always want their child to adopt a posture that is not drooping or loutish, but upright. But the drooping and loutish posture of the adolescent is precisely an expression of the desire not to »bend« to the will of his parents.

Economic significance of back pain

Lumbar back pain is one of the commonest conditions suffered by adults and the number one reason for lost productivity. Thus, according to an epidemiological study, 66% of the employees stated that they had suffered back pain in the previous 12 months [5]. And a group of individuals in their twenties (Swiss recruits and soldiers) showed a prevalence of 69% for lumbar back pain [7]. In the USA, the loss of earnings is estimated

1 Nut croissant: term used in Switzerland for a croissant filled with nuts. The expression »nut croissant figure« is commonly used in Switzerland to refer to a particularly drooping, kyphotic posture.
at around 10 billion dollars [8]. In Switzerland, too, back pain in t he second com monest cause of dis ability, after accidents. A h ig h prevalence of lumbar b ack pain, at 48.2%, has b een reported for industrial workers in Russia [9], indicating that back pain is not a specialty of the West, although it is clearly a much more serious problem in industrial nations than in the developing world. The significance of back pain evidently tends to parallel the degree of industrialization.

In Oman, the demand for back treatment has risen dramatically since the oil boom [2], a finding that is also of major economic significance. According to a Canadian statistical survey, approximately 30% of the total amount paid in 1981 as compensation for loss of earnings in the form of disability pensions was paid to back patients [1].

For all of the reasons outlined above, it is perfectly understandable that parents are worried about what could happen to their children’s backs in future.

Evolution of upright walking and posture

Humans are unique among all living creatures in exhibiting an erect posture. While primates evidently developed the mechanism for maintaining the trunk in an upright position at a very early stage, only humans are capable of standing and walking upright on two legs for prolonged periods. This species-specific bipedal, erect posture freed up the hands so that humans could use these for tasks other than locomotion. In fact, this discriminating use of the hand was probably the very first evolutionary step. A secondary consequence of this unique advantage of an upright posture was the development of the brain and upright walking. The use of hands as tools and also the use of tools with the hands was therefore the first step in the evolution of man, some 5 million years ago, from the primate to Homo erectus, the precursor of today’s Homo sapiens.

This upright posture caused the eyes to be shifted forwards, thereby widening the field of vision and eventually producing binocular, stereoscopic vision. Compared to quadrupeds and the climbing anthropoid ape, humans have better acuity, acoustics and tactile spatial orientation. From the phylogenetic standpoint, the adoption of an erect posture in humans did not simply involve a rotation of 90° at the hip, but primarily around the lumbosacral junction as a result of the similar shape of the 5th lumbar and 1st sacral vertebrae. The sacrum is the resting point about which this erect posture is achieved.

The development of the upright posture requires a specially-shaped spinal column. The double-S-shaped human spine differs from the single-S-shaped spine of the quadruped in its additional lumbar lordosis. Although this lumbar lordosis is not absolutely essential for an upright posture, it came about primarily for functional reasons. The shape of the spine is the optimal design for the corresponding dynamic loads. The cervical and lumbar lordosis, and also the thoracic kyphosis, act like links in elastic springs. Any major deviations from these functionally-adapted curves in the spine are mechanically inappropriate and result in adverse loading conditions.

The upright posture also has implications for other organs as well as the spine. Thus the iliac wings in humans are much wider than in quadrupeds, since it has to help carry the internal organs. The detorsion of the femoral neck during growth is another phenomenon specific to humans. In fact, humans have paid dearly for this unique advantage of an upright posture and have evidently not yet completely come to terms with this evolutionary step. Man’s unique erect posture not only contributes to his special dominant role in nature, at the same time it has become a direct potential disease factor, whose implications cannot yet be fully grasped.

Postural development in children

The phylogenetic development of the back is imitated during maturation from the fetus to the child and then from the child to the adult. In the uterus, the fetus is in a flexed position and the spinal column is completely kyphotic. The neonate also holds the shoulders, elbows, hips and knees in flexion, causing the spine, apart from the cervical section, to be held in kyphosis, as is also the case...
with quadrupeds. Flexion contractures of up to 30° are physiological. At a later stage, the neck, back and femoral extensors are the first to be strengthened, providing the infant with the ability to sit up, albeit with total kyphosis of the back. At this stage the lumbar lordosis is still lacking, which is a physiological finding during this period before the start of walking.

Once the baby starts walking, the lumbar lordosis itself starts to develop. But this process does not fully parallel the strengthening of the muscles, and a hyperlordosis usually forms at this stage as a result of gravity acting on the ventral side. In toddlers this hyperlordosis is often not compensated by a hyperkyphosis of the thoracic spine, resulting in the scenario of the “hollow back.” This type of posture in the toddler is characterized by the physiological weakness of the muscles and the general laxity of the ligaments that is typical of the constitution at this stage. In toddlers this hyperlordosis is often not compensated by a hyperkyphosis of the thoracic spine, resulting in the scenario of the “hollow back.” This type of posture in the toddler is characterized by the physiological weakness of the muscles and the general laxity of the ligaments that is typical of the constitution at this stage.

An important characteristic feature of the infant is the asymmetrical tonic neck reflex. The persistence of this reflex can lead to an asymmetrical development of the muscles and the condition known as resolving infantile scoliosis. Resolving infantile scoliosis is a single arc-shaped curvature of the whole spine resulting from the asymmetrical tone of the muscles. The curvature is associated with little rotation and occurs with a left- or right-sided convex curve with equal frequency. If the child is held by the head and feet, the opposite side can be made to curve. Resolving infantile scoliosis usually forms at this stage as a result of gravity acting on the ventral side. In toddlers this hyperlordosis is often not compensated by a hyperkyphosis of the thoracic spine, resulting in the scenario of the “hollow back.” This type of posture in the toddler is characterized by the physiological weakness of the muscles and the general laxity of the ligaments that is typical of the constitution at this stage.

The prognosis for resolving infantile scoliosis is very good, as almost all of these curvatures disappear during the first year of life. This did not always use the case. Some cases of apparently resolving infantile scoliosis persisted and developed into progressive idiopathic infantile scoliosis, a condition that used to be particularly common in Great Britain [6]. The observation that the difference between the angle made by the ribs and the spine when seen from the side is greater in the progressive forms than in cases that spontaneously resolve themselves means that the progressive forms can be detected at an early stage (Chapter 3.1.4).

The condition of progressive infantile scoliosis has almost disappeared even in Scotland, where the condition was particularly common. While the progressive form of the disease has a poor prognosis, resolving infantile scoliosis is not associated with any long-term sequelae. It is completely unrelated to idiopathic adolescent scoliosis, and patients with a history of resolving infantile scoliosis show no increased risk of developing idiopathic adolescent scoliosis in later life.

Postural types in the adolescent

Posture is influenced by the following factors:

- **The shape of the bony skeleton**
 The shape is determined by genetic factors (the mother: “His father has exactly the same crooked back”). The position of the sacrum, which in turn is dependent on the pelvic tilt, also plays an important role. The steeper the sacrum, the less pronounced the sagittal curvatures (lordosis and kyphosis).

- **Ligamentous apparatus**
 Posture can be active or passive. If our muscles are not activated, then we simply “hang” from our ligaments. Such a posture can best be adopted by overstretching the hips, sticking out the tummy, positioning the lumbar spine in hyperlordosis and tilting the upper body backward to offset the forward shifting of the center of gravity. If the center of gravity is shifted forward or backward we talk of a ventral or dorsal overhang (Chapter 3.1.1). This posture cannot be adopted passively, however, since it is unstable and must be compensated for by muscle activity.
3.1.3 · Can the »nut croissant« be straightened out by admonitions?

Muscles

The state of the muscles has a considerable influence on our posture. Strong muscles with good tone can maintain an active erect posture throughout the day. The condition of the muscles depends partly on constitutional factors and partly on the training status. But one other factor needs to be taken into account in relation to the growing body: The muscles, together with the skeleton, undergo substantial length growth but are unable to increase in width to the same extent. Consequently, a certain muscle weakness is physiological in the growing child. Only on completion of the growth phase can the »muscle corset« be trained and built up in the optimal way. Postural insufficiency is frequently associated with an intoeing gait and reduced hip flexion [4].

Pelvic tilt

The pelvic tilt is closely related to the steepness of the sacrum. Straightening the pelvis reduces the lumbar lordosis and the thoracic kyphosis as well (Fig. 3.24, 3.25).

Influence of the psyche

Posture is not a constant anatomical feature of an individual. Apart from constitutional factors, posture represents a snapshot that depends not only on muscular activity but, to a very great extent, on psychological status. As previously mentioned, linguistic usage also highlights this link. A state of mind characterized by joy, happiness, success, self-confidence, trust and optimism tends to affect the erect posture and the associated efficient postural pattern. By contrast, worries, conflicts, depression, failures and feelings of inferiority produce precisely the opposite effect and promote poor postural patterns.

Another special factor comes into play in adolescents: Puberty is a stage of life marked by internal conflicts associated with finding one’s own personality. Since an important element in this process is the loosening of the bond with the parents, a certain protesting posture in respect of the parents can be considered physiological.

Since a straight posture is usually considered the ideal by parents, the in ternal protest against the parents’ world manifests itself in the form of an – often ostentatiously – poor posture (particularily while sitting). The poor posture resulting from the physiological muscle weakness of the growing body is further emphasized by »casual« sitting. The more frequently the parents admonish the child with »sit up straight«, the quicker he or she resumes the »nut croissant« position. It is striking to observe how children with a very pronounced kyphotic posture are very frequently withdrawn and have one very dominating parent. When such adolescents are questioned about their symptoms or problems during the consultation, the mother or father will constantly reply on their behalf. It is noticable that the child is clearly overwhelmed by the mother or father.

But other problems can also cause adolescents to adopt a very kyphotic posture, e.g. if a female unconsciously tries to conceal her breasts by hunching her shoulders forward and folding her arms in front of her. Some girls are unable to accept the growth of...
their own breasts. This is particularly apparent if the girl has a very dominant mother who herself has large breasts. But also a funnel or keeled chest can cause the girl to adopt a permanently kyphotic posture in the unconscious desire to conceal this part of her body.

Social aspects

Not every social class or era has the same concept of the ideal posture. Since ancient times, statues and paintings have tended to present the ideal of an upright posture. In European royal dynasties, a stiff posture was often promoted by constraining the individual in a brace. But the social notions of the ideal posture have changed since then, and the ideals of the modern age are frequently characterized by a markedly «casual» posture.

As already mentioned, posture represents a »snapshot«. Every individual can adopt a variety of postures. The standing posture can be subdivided into the following stages (Fig. 3.26–3.28):

- habitual posture,
- passive posture,
- actively straightened posture.

We can also distinguish between constitutional postural types (normal back, hollow back, rounded back, flat back, hollow-flat back, chapter 3.1.1).

The classification of the first 4 back shapes dates back to the 19th century (Staffel 1889 [2]). These are physiological variants with essentially no pathological significance. We have added the 5th back shape since it is a relatively common physiological variant, particularly in children. Instead of a »normal back« perhaps we should rather refer to a harmonious back. Using the term »normal back« can easily give the impression that the other back shapes are abnormal, which is certainly not the case by definition, since these are, after all, types of posture. We only speak of a pathological shape if there is fixed hyperkyphosis of the thoracic spine, a permanent absence of lumbar lordosis or even a kyphosis in this area. The investigation of the correctability or fixation of individual segments is described in chapter 3.1.1.

Pathological significance of poor posture

Whether »poor posture« actually exists is a matter of considerable dispute. Since back symptoms are common in adults and have also increased over the past few decades, the discussion of this subject is highly topical. Unfortunately, there is a scarcity of scientifically established hard facts and, on the other hand, widely diverging opinions based on subjective impressions. However, a number of factors in recent years have thrown some light on the subject.

Various widely-held traditional views first need to be corrected somewhat:

- The development of structural scoliosis has nothing to do with posture. A poor posture cannot induce idiopathic adolescent scoliosis. Scoliosis is known to result from a discrepancy between the growth of the vertebral body anteriorly and the growth of the posterior elements, resulting primarily in lordosis. Adolescents with scoliosis are therefore considered to have a progressive rotation of the vertebral bodies and have nothing to do with posture (Chapter 3.1.4). A leg length discrepancy may possibly promote lumbar scoliosis. This is definitively the case with uncompensated differences of more than 2 cm. Whether it applies for differences of less than 2 cm is controversial, and it is possible that the leg length discrepancy only influences the direction of the scoliosis rather than its development.

- Of the physiological postural types, a part from the harmonious posture, the hollow back has a much better prognosis than the flat back. Although the flat back is the esthetic ideal, the future prospects in terms of subsequent symptoms are much better for a rounded back or for the flat back than for the other types of posture, which is markedly sagittal curvature, gives the pectoral muscles the absorbing properties of the former. Lumbar disk damage occurs more frequently with this back shape and is also often associated with pain. The problem arises primarily from the kyphosing of the lumbar spine. The lack of lordosis shifts the center of gravity forward, which means that the lumbar paravertebral muscles have to work harder to maintain posture. The kyphosing of the lumbar spine is also very pronounced during sitting.
The development of a fixed kyphosis can be influenced by posture. A permanent kyphotic posture can trigger Scheuermann disease as early as puberty. Although the prognosis in terms of symptoms is not bad in Scheuermann disease as early as puberty, it becomes increasingly worse the further down one goes, and lumbar Scheuermann disease is associated with a very high risk of subsequent chronic lumbar back pain. Usually the condition results in elimination of the lumbar lordosis, or else kyphosis in this area. This is extremely undesirable from the mechanical standpoint because of the forward-shifting of the center of gravity. It has to be offset by lordosing of the thoracic spine and considerable postural work by the paravertebral muscles in the lumbar area. The shock-absorbing properties of these muscles are also poor.

Therapeutic options

Of the factors that determine posture, we can influence two in particular:
- the status of the muscles,
- possibly the psychological factors.

All other parameters are given and we have no way of influencing them.

As regards the muscles, we should always bear in mind that a certain amount of physiological muscle weakness is associated with growth.

Muscles can only be strengthened by activity. Such activity must be undertaken by the child or adolescent and cannot be imbued into the child from the outside. Consequently, the crucial factor in determining whether activity takes place or not is the child’s motivation. The surest way of demotivating the child is to compel it to undertake an activity against its will.

Since physical therapy is no t an attractive type of activity, it is pointless to prescribe months, or else years, of physical therapy, at the expense of the child's surance funds, when the child is not remotely motivated. The outcome will be a complete lack of any effect on the muscles. Equally questionable in my view are the so-called therapeutic options provided in many schools. Since all students attending such less on a regular basis, it is self-evident that such lessons are unlikely to motivate the students to keep active, it would be much more useful to encourage the adolescent to exercise within the context of a sport that affords him or her a certain amount of pleasure. Although the type of sport selected is not ultimately important, activities in which the arms are also used are preferable. Swimming is best, of course, although other ball-based sports such as baseball, basketball or volleyball are extremely beneficial. Sports that exercise the muscles on one side of the body, e.g. tennis, are also perfectly appropriate since, as already mentioned, there is no need to worry at all about the possibility of scoliosis developing as a result of the unilateral muscle tension. Even scoliosis patients should be allowed to play tennis. The important thing is the pleasure gained from this sport. Passive and non-athletic children do not like taking part in ball-based sports, especially those involving swimming or possibly attending a fitness center on a regular basis. This a voids the problem of their having to constantly measure themselves against their peers.

One particular factor that promotes passivity is the considerable amount of time spent sitting at school or in the home. The lumbar spine tends to kYPHOS when sitting passively. Certain useful measures can be implemented in only a very small proportion of schools: An inclined writing surface reduces the kyphosis of the spine by preventing slouching, while a ball chair also promotes lordotic sitting and stimulates the sitter to constantly perform slight compensatory movements; a kneeling chair with support for the lower leg also promotes lordotic sitting (see Fig. 3.29). Such aids promote a habitual lordotic sitting or posture that reduces positive effects in the long term.

In theory, psychological factors can also be influenced, although this is much more difficult. Since fixed hyperkyphosis of the thoracic spine is often indicative of a conflict between the adolescent and a parent, the doctor must proceed very cautiously. Psychological counseling can prove worthwhile on occasion however. Another potential fruitful strategy is motivating the adolescent to take up sport in order to meet other relevant individuals who could serve as new positive models. In most cases, however, it is not at all difficult to expose often defeated conflicts, particularly since both sides (parents and child) frequently adopt a highly defensive attitude. What is certain, however, is that constant admonitions to sit up straight are counterproductive.

In other words, the question posed at the start, i.e. whether the »nut croissant« posture can be straightened out by admonitions, can be answered resoundingly in the negative. A permanent improvement in posture will only be achieved if the adolescent is motivated to take part in enjoyable activities.

References

3.1.4 Idiopathic scolioses

Definition

Condition involving lateral bending of the spine of >10° of unknown origin. There are two basic clinical pictures of scoliosis:

- A rare form in which the deformity starts as early as infancy or childhood (infantile or juvenile scoliosis). Boys and girls are equally affected by this type. Scolioses at the thoracic level frequently have their convexity to the left and are associated with kyphosis.

- The more common adolescent form starts during puberty. Girls are mainly affected and the thoracic form is always right convex. This type of scoliosis is usually associated with lordosis.
3.1.4 - Idiopathic scolioses

Classification

Classification by age at onset (according to the American Scoliosis Research Society):
- Infantile: 0–3 years
- Juvenile: 4–10 years
- Adolescent over 10 years old

Because juvenile scolioses are extremely rare (and do not behave according to a typical pattern), the British Scoliosis Society classifies only two entities:
- Early onset: 0–7 years
- Late onset over 7 years old

The condition known as resolving infantile scoliosis is not classed as an idiopathic scoliosis but is a special type of scoliotic posture. However, since it can progress to infantile idiopathic scoliosis it is discussed here.

Resolving infantile scoliosis

Resolving infantile scoliosis occurs at the age of a few months, but has become relatively rare in the west as a result of the frequent use of the prone position. Resolving infantile scoliosis is characterized by a long, usually left-convex, thoracolumbar, C-shaped arch with little rotation. The rib vertebral angle difference (RVAD) according to Mehta [68] is measured to distinguish it from progressive infantile scoliosis (see Fig. 3.30). The prognosis is good and a spontaneous recovery can be expected in over 96% of cases. Isolated cases can progress to infantile idiopathic scoliosis.

Infantile (early onset) scoliosis

This rare type is located in the thoracic area in 98% of cases and occurs 1.5 times more frequently in boys than in girls. In 76% of cases the scoliosis is left convex and often associated with a kyphosis. In the infant, an rib vertebral angle difference according to Mehta of more than 20° [68] indicates that the condition is not the benign resolving infantile scoliosis, but rather a progressive form of infantile idiopathic scoliosis (Fig. 3.30). The characteristic features of infantile scoliosis differ from those of the adolescent form to such an extent that it can clearly be considered as a different disease. The prognosis for infantile scoliosis is very poor. Despite brace treatment, it will often undergo substantial progression, resulting in the need for surgery even at an early age in many cases.

Juvenile scoliosis

If the scoliosis occurs between the ages of 4 and 10, the juvenile form is considered to be present. Girls are only slightly more frequently affected than boys. In addition to the thoracic location, lumbar and S-shaped curves also occur. The prognosis is poor. Only 5% of scolioses are non-progressive, while the rest increase annually by 1–3° up to age 10, and by 5–10° a year during the pubertal growth spurt [88].

Adolescent (late onset) idiopathic scoliosis

This is by far the commonest form of scoliosis and is characterized by the following features:
- It is usually located at the thoracic level and almost without exception involves a right-convex curve.
- It occurs less commonly at the thoracolumbar and lumbar levels, and such cases show a marked tendency to go out of alignment. Sometimes these scolioses are not truly idiopathic but occur secondarily to leg length discrepancies or a lumbosacral junction anomaly.
- In around 10% of cases, adolescent scoliosis is S-shaped, i.e. there are 2 primary curves: Since the lumbar curve is usually more rotated than the thoracic curve, S-shaped scolioses are less conspicuous in cosmetic respects than C-shaped thoracic scolioses of the same severity.
- It is almost always associated with relative lordosis (for the thoracic level, an overall kyphotic angle of less than 20° is considered to be relative lordosis).
- It always involves rotation, whereby the posterior parts of the vertebral bodies are always rotated towards the concave side of the curve (if this is not the case then a structural idiopathic scoliosis is not present); for a given degree of curvature, the rotation is always more pronounced at the lumbar level than the thoracic level.
- Adolescent scoliosis probably develops as the result of a disparity between the growth of the posterior and anterior vertebral body sections; the diminished growth of the posterior sections forces the vertebral bodies to deviate laterally and to rotate. Instead of a scoliosis, one might describe this as a rotational lordosis.