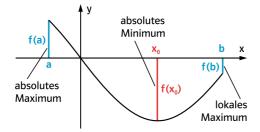
Kurvenuntersuchung

Randextremwerte, absolute Extrempunkte

Ist eine stetige Funktion f an einer Randstelle definiert, so ist diese Stelle in der Regel eine lokale Extremstelle.

Ein Funktionswert $f(x_0)$ heißt *absolutes Maximum* bzw. absolutes Minimum, wenn für alle x-Werte aus der Definitionsmenge D_f gilt:

 $f(x) \le f(x_0)$ bzw. $f(x) \ge f(x_0)$



Kriterien für lokale Maxima, Minima

Die Funktion f sei in I zweimal differenzierbar. f hat an einer inneren Stelle x₀ ein lokales Maximum, wenn

 $f'(x_0) = 0$ und

f'(x) > 0 für $x < x_0$ und f'(x) < 0 für $x > x_0$ ist,

d.h. f'(x) wechselt beim Überschreiten der Stelle x₀ das Vorzeichen von plus nach minus oder wenn

 $f'(x_0) = 0$ und $f''(x_0) < 0$ ist.

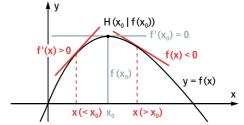
Die Funktion f sei in I zweimal differenzierbar. f hat an einer inneren Stelle x₀ ein lokales Minimum, wenn

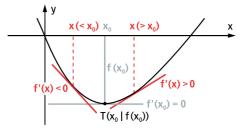
 $f'(x_0) = 0$ und

f'(x) < 0 für $x < x_0$ und f'(x) > 0 für $x > x_0$ ist

d.h. f'(x) wechselt beim Überschreiten der Stelle x_0 das Vorzeichen von minus nach plus oder wenn

 $f'(x_0) = 0$ und $f''(x_0) > 0$ ist.





Rechtskurve, Linkskurve, Wendepunkt

Der Graph einer differenzierbaren Funktion f beschreibt auf einem Intervall I eine Linkskurve (Rechtskurve), wenn f' streng monoton wachsend (fallend) ist. Die Funktion f heißt dann konvex (konkav).

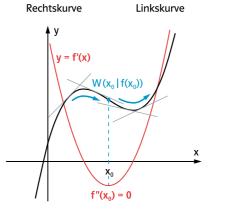
Wenn f in einem Intervall I zweimal differenzierbar ist und für alle $x \in I$ gilt: f''(x) > 0 (f''(x) < 0), so ist der Graph von f auf I eine Linkskurve (Rechtskurve).

Ein Wendepunkt ist ein Extrempunkt der 1. Ableitung von f. Eine dreimal in x_0 differenzierbare Funktion f hat in x_0 einen Wendepunkt, wenn

 $f''(x_0) = 0$ ist und

f"(x) beim Überschreiten der Stelle x₀ das Vorzeichen wechselt oder wenn

 $f''(x_0) = 0$ und $f'''(x_0) \neq 0$ ist.



Kurvenuntersuchung

Schnittpunkte zweier Graphen

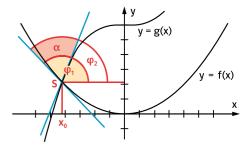
Man ermittelt die Schnittpunkte der Graphen zweier Funktionen f und g, indem man die Lösungen der Gleichung f(x) = g(x) ermittelt. Dies führt auf die Bestimmung der Nullstellen der Differenzfunktion f - g: f(x) - g(x) = 0. Ist x_0 eine Schnittstelle, so ist $S(x_0 | f(x_0))$ der zugehörige Schnittpunkt.

Der **Schnittwinkel** in einem Schnittpunkt S $(x_0 | f(x_0))$ ist der Winkel, den die Tangenten im Punkt S miteinander einschließen:

$$\tan{(\alpha)} = \left| \frac{f'(x_0) - g'(x_0)}{1 + f'(x_0) \cdot g'(x_0)} \right| \text{ für } f'(x_0) \cdot g'(x_0) \neq -1$$

Sonderfälle:

Berührung für $f'(x_0) = g'(x_0)$, **Orthogonalität** für $f'(x_0) \cdot g'(x_0) = -1$



Integral und Flächeninhalt

Stammfunktionen

F heißt Stammfunktion einer Funktion f auf einem Intervall I, falls dort F'(x) = f(x) gilt. Ist F eine Stammfunktion von f, so ist auch G mit G(x) = F(x) + c eine Stammfunktion von f. Statt Stammfunktion sagt man auch unbestimmtes Integral.

Stammfunktionen von Grundfunktionen

Funktion f	Stammfunktion F
f(x) = a; a konstant	$F(x) = a \cdot x$
$f(x) = x^n \text{ mit } n \in \mathbb{N}$	$F(x) = \frac{1}{n+1} \cdot x^{n+1}$
$f(x) = x^{-n} \text{ mit } n \in \mathbb{N} \text{ mit } n \neq 1$	$F(x) = \frac{1}{-n+1} \cdot x^{-n+1}$
$f(x) = \frac{1}{x}$	$F(x) = \ln(x)$
$f(x) = x^r \text{ mit } r \in \mathbb{R} \setminus \{-1\}$	$F(x) = \frac{1}{r+1} \cdot x^{r+1}$
$f(x) = \sqrt{x}$	$F(x) = \frac{2}{3}x \sqrt{x}$
$f(x) = e^x$	$F(x) = e^x$
$f(x) = \ln(x)$	$F(x) = x \cdot \ln(x) - x$
$f(x) = a^{x_i} \ a > 0, \ a + 1$	$F(x) = \frac{1}{\ln(a)} \cdot a^x$
$f(x) = \log_a(x) = \frac{\ln(x)}{\ln(a)}$	$F(x) = \frac{1}{\ln(a)} \cdot (x \cdot \ln(x) - x)$
$f(x) = \sin(x)$	$F(x) = -\cos(x)$
$f(x) = \cos(x)$	$F(x) = \sin(x)$
f(x) = tan(x)	$F(x) = -\ln(\cos(x))$
$f(x) = \cot(x)$	$F(x) = \ln(\sin(x))$