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Chapter One

Introduction

Andreas Greven, Gerhard Keller

Universität Erlangen

Gerald Warnecke

Otto-von-Guericke University Magdeburg

The concept of entropy arose in the physical sciences during the 19th century,
in particular in thermodynamics and in the development of statistical physics.
From the very beginning the objective was to describe the equilibria and the
evolution of thermodynamic systems. The development of the theory followed
two conceptually rather different lines of thought. Nevertheless, they are sym-
biotically related, in particular through the work of Boltzmann.

The historically older line adopted a macroscopic point of view on the sys-
tems of interest. They are described in terms of a relatively small number of
real variables, namely, temperature, pressure, specific volume, mass density,
etc., whose values determine the macroscopic properties of a system in thermo-
dynamic equilibrium. Clausius, building on the previous intuition of Carnot,
introduced for the first time in 1867 a mathematical quantity, S, which he called
entropy. It describes the heat exchanges that occur in thermal processes via the
relation

dS = dQ

T
.

Here Q denotes the amount of heat and T is the absolute temperature at which
the exchange takes place. Among the scientists who developed this idea further
are some of the most influential physicists of that time, most notably Gibbs and
Planck, as well as the mathematician Carathéodory.

The other conceptual line started from a microscopic point of view on nature,
where macroscopic phenomena are derived from microscopic dynamics: any
macrostate is represented by many different microstates, i.e. different config-
urations of molecular motion. Also, different macrostates can be realized by
largely differing numbers of corresponding microstates. Equilibria are those
macrostates which are most likely to appear, i.e. they have the largest number of
corresponding microstates (if one talks about the simplest case of unconstrained
equilibria). In particular, two names are associated with this idea: Boltzmann
and Maxwell. Boltzmann argued that the Clausius entropy S associated with
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a system in equilibrium is proportional to the logarithm of the number W of
microstates which form the macrostate of this equilibrium,

S = k lnW.

The formula is engraved on his tombstone in Vienna. Here the idea in the
background, even though not explicitly formulated, is a relation between the
encoded information specifying a microstate and the complexity of the system.

Since then both of these approaches to entropy have led to deep insights
into the nature of thermodynamic and other microscopically unpredictable pro-
cesses. In the 20th century these lines of thought had a considerable impact on
a number of fields of mathematics and this development still continues. Among
the topics where these ideas were most fruitful are stochastic processes and
random fields, information and coding, data analysis and statistical inference,
dynamical systems and ergodic theory, as well as partial differential equations
and rational mechanics. However, the mathematical tools employed were very
diverse. They also developed somewhat independently from their initial physi-
cal background. After decades of specialization and diversification, researchers
involved in one of the areas of research mentioned above are often unprepared
to understand the work of the others. Nowadays, it takes a considerable effort
to learn and appreciate the techniques of a complementary approach, and the
structure of this book reflects this and the state of the whole field. On the other
hand, it was our intention with the symposium and this book to help bridge
the gaps between the various specialized fields of research dealing with the
concept of entropy. It was our goal to identify the unifying threads by inviting
outstanding representatives of these research areas to give surveys for a general
audience. The reader will find examples of most of the topics mentioned above
in this book. To a large extent, the idea of entropy has developed in these areas
in the context of quite different mathematical techniques, as the reader will see,
but on the other hand there are common themes which we hope to exhibit in this
book and which surfaced in the discussions taking place during the meeting.

We found two major methods in which entropy plays a crucial role. These are
variational principles and Lyapunov functionals. They provide common tools
to the different research areas.

Variational principles come in many guises. But they always take the fol-
lowing form, which we discuss for the case of the Gibbs variational principle.
There, the sum of an energy functional and the entropy functional are minimized
or maximized, depending on a choice of sign (see, for example, Section 2.3.1
on p. 29 and Section 3.6 on p. 50). Along the macroscopic line of thought such
a variational problem appears as a first principle. It is clear that such a principle
is crucial in thermodynamics and statistical physics. However, the reader will
learn that it also plays a key role in the description of dynamical systems gen-
erated by differentiable maps, for populations evolving in a random medium,
for the transport of particles and even in data analysis. As we proceed in the
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description of the various contributions we will show in more detail how this
variational principle plays its role as an important tool.

For the microscopic line of thought, take the situation of a system where a
macrostate corresponds to many microstates. In the Gibbs variational principle,
one term reflects the number of possibilities to realize a state or path of a
dynamical system or of a stochastic process under a macroscopic constraint
such as, for example, a fixed energy. Then for a gain, e.g. in energy, one may
have to ‘pay’ by a reduction in the number of ways in which microstates can
achieve this gain. This results in a competition between energy and entropy that
is reflected in the variational principle. Bearing this in mind it is not surprising
that in many contributions to this book, a major role is played by information or
information gain. There are two sides to the coin: one side is the description of
the complexity of the problem to specify a microstate satisfying a macroscopic
constraint; the other is the problem of coding this information. It is therefore
also plausible that there are deeper connections between problems which at the
surface look quite different, e.g. the description of orbits of a map on the one
hand and data analysis on the other. We hope that these seemingly mysterious
relations become clearer by reading through this book.

Another such common theme in many areas touched on in this book is the
close connection of entropy to stability properties of dynamical processes. The
entropy may, for instance, be interpreted as a Lyapunov function. Originally
introduced for systems of ordinary differential equations, Lyapunov functions
are an important tool in proving asymptotic stability and other stability proper-
ties for dynamical systems. These are functions that are increasing or decreasing
with the dynamics of a system, i.e. the trajectories of solutions to the system
cut the level sets of the function. This is exactly the type of behavior that the
entropy exhibits due to the second law of thermodynamics. It is also exhibited
in the axiomatic framework of Lieb–Yngvason when considering sequences
of adiabatically accessible states, especially if the sequence of transitions is
irreversible. For time-dependent partial differential equations in the framework
of evolution equations, i.e. considering them as ordinary differential equations
on infinite-dimensional spaces, such as Sobolev spaces, one has the analogous
tool of Lyapunov functionals. Basically, in all these cases asymptotic stability
tells us in which state (or states), in the long run, a dynamical system ends up.

There are other theoretical implications concerning the stability of a system
as well, which are coming up in the chapters by Dafermos and Young. For
instance, on the one hand, Sections 6.3 and 6.4 on pp. 110 and 113 of the
chapter by Dafermos are devoted to illuminating the implications of entropy
inequalities for stability properties of weak, i.e. discontinuous, solutions to
hyperbolic conservation laws. Similarly, entropy inequalities are also used as
a tool for systems of parabolic differential equations. On the other hand this
might, at first sight, contrast with the role played by entropy in the chapter
by Young, where it is connected to the instability of dynamical systems with
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chaotic behavior. However, instability of individual trajectories is a feature of
the microscopic level which is responsible for the macroscopic stability of the
actually observed invariant measures. Keeping in mind that the ergodic theory of
dynamical systems is an equilibrium theory that cannot describe the dynamics
of transitions between invariant measures, the role of entropy in variational
principles, which single out the actually observed invariant measure among all
other ones, comes as close as possible to the role of a Lyapunov functional.

1.1 Outline of the Book

Now we outline and comment on the contents of this book. In the first part,
basic concepts, terminology and examples from both the macroscopic and the
microscopic line of thought are introduced in a way that should provide just
the right amount of detail to prepare the interested reader for further reading.
The second part comprises five contributions tracing various lines of evolution
that have emerged from the macroscopic point of view. The third part collects
five contributions from the ‘probabilistic branch,’ and in a final part we offer
the reader four contributions that illustrate how entropic ideas have penetrated
coding theory and the theory of dynamical systems.

Due to limited time at the symposium, a number of further important topics
related to entropy could not be dealt with appropriately, and as a consequence
there are a number of deplorable omissions in this book, in particular regarding
the role of entropy in statistics, in information theory, in the ergodic theory of
amenable group actions, and in numerical methods for fluid dynamics.

Part 1 The concept of entropy emerging from the macroscopic point of view is
emphasized by Ingo Müller’s first contribution (p. 19). Starting from Clausius’
point of view, Boltzmann’s statistical ideas are added into the mix and the
role of entropy as a governing quantity behind a number of simple real world
phenomena is discussed: the elastic properties of rubber bands as an illustration
for configurational entropy, the different atmospheres of the planets in our Solar
System as a result of the ‘competition between entropy and energy,’and the role
of entropy in the synthesis of ammonia are just a few examples.

The approach to entropy in statistical physics developed its full strength in
the framework of probability theory. It had a large impact on information theory,
stochastic processes, statistical physics and dynamical systems (both classical
and quantum). Concepts, terminology and fundamental results which are basic
for all these branches are provided by Hans-Otto Georgii (p. 37), the second
introductory chapter of this book.

Part 2 In the second part we have collected expositions on the macroscopic
approach. There are two chapters on thermodynamics in the context of con-
tinuum mechanics. The first one, by Hutter and Wang, reviews alternative
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approaches to nonequilibrium thermodynamics, while in the second Müller
surveys one of these approaches more extensively—the theory of extended
thermodynamics—which he developed with various collaborators. Next, in the
chapter by Dafermos on conservation laws, we pursue the bridge from contin-
uum mechanics to differential equations further. Finally, we have two chapters
that reflect the views of physicists on the fundamental issues concerning the
understanding of entropy and irreversibility. Surprisingly, it turns out that there
has not been until now one unified, universally accepted theory on the thermo-
dynamics of irreversible processes. There are competing theories and concepts
with a certain overlap and some fundamental differences. This diversity is a
bit confusing, but bringing more clarity and unity to this field is also a chal-
lenging research goal. The contributions we have collected here are attempting
to expose this diversity to a certain extent and clearly point out some of the
conceptual differences that need to be resolved.

Interestingly, the uncertainty about some of the basic physical concepts
involved is reflected by the fact that the state of the mathematical theory of
the equations that follow from these theories is also very inadequate. Numer-
ical methods play an increasingly important role in the effort to sort this out.
This is because numerical computations allow us to explore more deeply con-
sequences of mathematically complicated theories, i.e. the large systems of
nonlinear differential equations they lead to. They may allow us to make quan-
titative predictions and comparisons with physical reality. Entropy also plays
a key role in numerical analysis and numerical computations, an important
topic that is missing here. However, the analytical tools are actually discussed
in the chapter by Dafermos. The link between analytical theory and numerical
approximations is particularly close in this field since key existence results were
actually obtained via convergence proofs for numerical schemes. In numerical
computations it is important to have verified that the method being used is con-
sistent with an entropy condition, otherwise unphysical shock discontinuities
may be approximated. Also, it is useful to monitor the entropy production in
computations, because false entropy production is an indicator of some error in
the scheme or the implementation.

Let us now turn to the contributions. The first chapter in this part is a sur-
vey by Kolumban Hutter and Yongqi Wang (p. 57) on some theories of irre-
versible thermodynamics. It highlights two different forms of the second law of
thermodynamics, namely, the Coleman–Noll approach to the Clausius–Duhem
inequality and the Müller–Liu entropy principle in a detailed comparison. The
structure of these descriptions of thermodynamics is exposed in very concise
form. The interesting lesson to the nonexpert is that there are different theories
available that have much common ground but marked differences as well, a
theme we will encounter again in Uffink’s chapter. The second approach that
Hutter and Wang discuss is then exposed much more extensively in the next
chapter, by Ingo Müller (p. 79). The reader is given an introduction to the
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theory of extended thermodynamics, which provides a macroscopic theory for
irreversible thermodynamic processes. It builds a vital link to the microscopic
approach of kinetic gas theory formulated in terms of the Boltzmann equa-
tion and the density function it has as solution. From these one can rigorously
derive an infinite sequence of balance equations involving higher and higher
moments of the density function. In order to have a finite number of equations,
these are truncated and certain closure laws have to be derived. This approach
leads to symmetric hyperbolic systems of partial differential equations that are
automatically endowed with an entropy function. The entropy production plays
an important role in deriving closure laws for these systems. The reader who
wishes to learn more should consult the book on extended thermodynamics that
Müller together with Ruggeri recently published in updated form.

Shock discontinuities, i.e. an instantaneous transition from one physical state
to a quite different state, are a good approximation to physical reality when we
are modelling at the scale of continuum physics. This means that the free mean
path between collisions of neighboring particles in a fluid is orders of magnitude
smaller than the scale in which we are making observations. In a close-up view
of shock waves we see that they do have a finite width. Since at least the work
of Becker in the 1930s, it has been known that this width is only of the order
of a few free mean path lengths, i.e. in the realm of microscopic kinetic gas
theory. It is one of the important achievements of extended thermodynamics
that its moment theories provide a precise description of the transition between
the physical states across these shocks.

The chapter by Constantine Dafermos (p. 107) is intended to be a teaser
to the book he recently wrote, where the ideas and concepts as well as the
methods touched on in the chapter are expanded in much more detail. In the
theory of partial differential equations a very significant open problem is the
lack of an existence and uniqueness theory for nonlinear hyperbolic systems in
more than one space dimension. Though such a theory may not be available in
full generality such a theory should be found at least in the class of symmetric
systems of conservation laws. Such systems appear naturally in various physical
contexts, such as the moment systems derived from kinetic theory and discussed
by Müller in his chapter. Dafermos gives a further example from isothermal
thermoelasticity.

The peculiarity of these nonlinear differential equations is that they gener-
ically tend not to have smooth differentiable solutions. One has to use the
concept of distributions which provides a framework in which functions may
be differentiated in a generalized sense infinitely often. In this context one has
a well-defined concept of solutions to differential equations that have jump
discontinuities. This is not just a mathematical trick, namely, when you are
looking for a solution, just make the solution space in which you are search-
ing bigger and you may find something, possibly useless. However, making
the solution space larger has its price. One tends to obtain too many solutions,
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i.e. one actually does get an abundance of unphysical solutions along with the
reasonable one. If we allow jumps in a solution, then the solution may jump
up and down almost arbitrarily in an oscillatory manner. This behaviour and
certain types of mathematically feasible jump discontinuities are not observed
in nature and must be excluded. Next to providing initial conditions in time and
appropriate boundary conditions in the case of bounded solution domains, an
additional mathematical condition is needed to specify the physically relevant
solutions. Solutions of this nature are a very good description of shock waves
on a macroscopic scale. These waves are well known and audible in connection
with detonations or supersonic flight.

It has become a generally accepted jargon in the field to call such mathemat-
ical selection principles entropy conditions, or E-conditions, as in Chapter 6,
even if they do not involve the concept of entropy explicitly. This is due to
the fact that in all physically relevant hyperbolic systems of differential equa-
tions this selection is due to the second law of thermodynamics in one form or
another. A microscopic approach to this question is presented for a special case
in the contribution by Varadhan (Chapter 9).

The kinetic theory of gases has as its foundation the classical mechanics of
gas molecules. Its mathematical formulation contains no irreversibility of any
kind. The sheer enormity of the number of particles involved makes classi-
cal mechanics useless for quantitative description and prediction. Going to a
macroscopic formulation by averaging procedures, the reversibility of classical
mechanics is to a certain extent lost. This is a quite remarkable fact and the cause
of some uneasiness with the notion of irreversibility, as discussed by Uffink and
by Lieb andYngvason in their respective chapters. Mathematically, irreversibil-
ity clearly shows up in the structure of shock wave solutions of conservation
laws. In one-dimensional systems the characteristic curves of one family merge
in the shock and most of the information they carry is lost. Already, for the
simple Burgers equation, equation (6.9) in the chapter by Dafermos, one can
consider for time t � T > 0 an admissible solution with only one shock. It
may result from infinitely many different monotonely nonincreasing initial data
at time t = 0. They have all merged into the same solution by the time t = T .
This loss of information on the initial data is exactly linked to the property that
the mathematical entropy has a jump discontinuity at the shock. But, as long as
the entropy and other physical states remain smooth we may go back in time
along characteristics to reconstruct the initial data.

A problem of the macroscopic theory of thermodynamics is that there are
two levels of theory involved. One level, closer to continuum mechanics, is
usually formulated in precise mathematical language of differential forms and
differential equations. It involves the energy balance in the first law of thermo-
dynamics, the Gibbs relation stating that the reciprocal of temperature is an
integrating factor for the change in heat allowing the entropy to be defined as
a total differential, and the second law, e.g. in the form of Clausius as a differ-
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ential inequality. Such equations and the differential equations incorporating
irreversible thermodynamics into continuum mechanics are discussed in the
chapters by Müller, Hutter and Wang, and Dafermos.

A second, more fundamental level of macroscopic theory lies at the basis of
these analytic formulations, and this is addressed in the final two chapters of
this part. As pointed out by Hutter and Wang, there is some controversy about
the foundations of irreversible thermodynamics leading to a certain extent to
differing formulations of the second law of thermodynamics. But this is not
surprising since some of the basic concepts, even the definition of fundamental
quantities such as temperature and entropy, have not yet found a universally
accepted form. The chapter by Jos Uffink (p. 121) summarizes a more detailed
paper he recently published on the foundations of thermodynamics. He dis-
cusses historically as well as conceptually the basic notions of time-reversal
invariance, irreversibility, irrecoverability, quasistatic processes, adiabatic pro-
cesses, the perpetuum mobile of the second kind, and entropy. Clearly, there is
much confusion on the precise meaning of some of them. Mathematical for-
malism and physical interpretation are not as clear as in other areas of physics,
making thermodynamics a subject hard to grasp for nonspecialists and, as all
authors of this part seem to agree, for the specialists as well. The distinctions,
comparisons of theories and criticisms pointed out by Uffink are a helpful guide
to understanding the development of the field and discussions of theoretical
implications. He covers some of the same historical ground as Müller’s survey
in Part 1, but with a different emphasis. In passing he sheds a critical light on
the controversial and more philosophical issues of the arrow of time and the
heat death of the Universe, the statements in connection with entropy that have
stirred the most interest among the general public.

The final contribution of Part 2 is a survey by Elliott Lieb and JakobYngvason
(p. 147) of their very recent work attempting to clarify the issues of introducing
entropy, adiabatic accessibility and irreversibility by using an axiomatic frame-
work and a more precise mathematical formulation. This is a clear indication
that the foundations of thermodynamics remain an active area of research. Such
a more rigorous attempt was first made almost a century ago by Carathéodory.
Uffink discusses these two more rigorous approaches of Carathéodory and Lieb
and Yngvason in his chapter. Here we have a more detailed introduction to the
latter approach by its proponents. To a mathematician this is clearly the type of
formalization to be hoped for, because it allows precise formulations and the
proof of theorems. They provide a clear and precise set of axioms. From these
they prove theorems such as the existence and, up to an affine transformation,
uniqueness of the nonincreasing entropy function on states as well as state-
ments on its scaling properties. Another theorem states that temperature is a
function derived from entropy. The fact that energy flows from the system with
higher temperature to the system with lower temperature is a consequence of
the nondecrease of total entropy. An interesting fact, also pointed out by Uffink,
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is that the Lieb–Yngvason theory derives this entropy from axioms that are
time-reversal invariant, another variant of the issue already mentioned above.
The goal of this theory is to have very precise mathematical formulations that
find universal acceptance in the scientific communities involved. As Lieb and
Yngvason point out at the end of Section 8.2, discovering the rules of the game
is still part of the problem. This intellectually challenging field is therefore open
to further exploration.

Part 3 The third part of this book deals with the role of entropy as a concept in
probability theory, namely, in the analysis of the large-time behavior of stochas-
tic processes and in the study of qualitative properties of models of statistical
physics. Naturally, this requires us to think along the lines of the microscopic
approach to entropy. We will see, however, that there are strong connections to
Part 2 via hyperbolic systems and via Lyapunov functions (compare the sections
on the Burgers equation in the contributions of Dafermos and Varadhan), and to
Part 4, in particular to dynamical systems, due to similar phenomena observed
in the large-time behavior of dynamical systems and stochastic systems. The
first two contributions of Part 3 deal with the role of entropy for stochastic pro-
cesses, the last three deal with entropy in models of statistical physics. All these
contributions show that variational principles play a crucial role. They always
contain a term reflecting constraints of some sort imposed on the system and
an entropy term representing the number of possibilities to realize the state of
the system under these constraints.

The fundamental role that entropy plays in the theory of stochastic processes
shows up most clearly in the theory of large deviations, which tries to measure
probabilities of rare (untypical) events on an exponential scale. Historically, this
started by asking the question how the probability that a sum of n independent
random variables exceeds a level a · n, when a is bigger than the mean of
a single variable, decays as n tends to infinity. More precisely, can we find
the exponential rate of decay of this event as n tends to infinity? The role of
entropy in the theory of large deviations is the topic treated in the contribution by
Shrinivasa R. S. Varadhan (p. 199). He starts by explaining how entropy enters
in calculating the probability of seeing untypical frequencies of heads in n-fold
and independent coin tossing. If one observes the whole empirical distribution of
this experiment, one is led to Sanov’s Theorem now involving relative entropies.
Along this line of thought one passes next from independent trials to Markov
chains and spatial random fields with a dependence structure which is given by
Gibbs measures, the key object of statistical physics. In all these situations one is
led to variational problems involving entropy on the one hand, since one has to
count possible realizations, and a term playing the role of an energy arising from
a potential defined as the logarithm of relative probabilities. This competition
between entropy and energy is explained in various contexts ranging from coin
tossing to occupation numbers of Markov chains. At this point it is useful to
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remark that in Part 4 very similar structures play a role in the contribution
by Young. However, these questions cannot only be asked in spatial situations
given, for example, by the realization of a random field at a given time, but
one can take the whole space-time picture of the process into view. This allows
us, for example, to study small random perturbations of dynamical systems
and to determine asymptotically as the perturbation gets small the probabilities
of paths of the stochastic process leaving small tubes around the path of the
dynamical system in an exponential scale. The contribution concludes with a
discussion of the hydrodynamic rescaling of stochastic particle systems and
their relation to Burgers equations. Of particular interest in this model is the
problem of selecting the proper solution in the presence of shocks and here again
entropy is the key. This connects directly with the contribution by Dafermos in
Part 2.

An important application of large-deviation theory is the study of stochastic
processes evolving in a random medium. This means that the parameters of
a stochastic evolution are themselves produced by a random mechanism. The
contribution of Frank den Hollander (p. 215) discusses an interesting and typical
example for this situation in which the relative entropy is the key quantity. It
is an example from the area of spatial population models. Here particles live
on the integer lattice, they migrate to the left and to the right with certain
probabilities and split into several new particles (or become extinct) with a
probability distribution of the offspring size which depends on the location. The
large-time behavior exhibits phase transitions from extinction to explosion of
the population. Here the variational problem energy versus entropy of statistical
physics appears in a different guise. The energy is replaced by the local growth
parameter given by the random medium. The entropy enters since it regulates
asymptotically the numbers of paths which can be used by individuals migrating
from a point A to a point B, when A and B become very distant. However, since
the mathematical structure is exactly the one occurring in statistical physics, the
system exhibits various phase transitions in the parameter regulating the drift
of motion. Depending on that drift we see populations growing or becoming
extinct and here one can distinguish both local and global extinction. Even
though the model is rather special, the phenomena and structures exhibited are
quite representative for systems in random media.

The two contributions by Enzo Olivieri and Christian Maes use stochastic
evolutions to discuss the phenomenon of metastability and entropy production,
two key topics for the broader theme of entropy in statistical physics. Metastable
behavior of a physical system is a phenomenon which should be understood
by means of probabilistic microscopic models of the system. To make a step in
this direction is the goal of the contribution by Olivieri (p. 233). He discusses
two examples of metastable behavior, supersaturated vapor as an example of a
conservative system (the number of particles is conserved), and ferromagnetic
systems below the Curie temperature for a nonconservative context. He dis-
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cusses these two systems in the framework, respectively, of van der Waals and
Curie–Weiss theory in great detail. He continues the discussion with a critical
review of the shortcomings of this approach and passes on to the description of
the ‘restricted ensemble approach’ and the ‘pathwise approach’ to this problem
of describing metastable behavior. This pathwise approach is then formulated
precisely in the context of the stochastic Ising model for ferromagnets and
finally a description of the general probabilistic mechanism behind metastable
behavior via first-exit problems of Markov chains is provided. The concept of
the first descent tube of trajectories is used to relate metastable behavior to
appropriate concepts of time entropy. Again, in deciding which route a system
takes to pass from the metastable to the stable state, a key role is played by
the competition between the number of paths producing particular features of
the route and the probability of such paths. Hence again a variational problem
describing this competition is in the background, and again it has the form of
the sum of an entropy and an energy term.

The concept of entropy in nonequilibrium is treated in the contribution by
Maes (p. 251). The key quantity in this approach is the entropy production
rate. One proves that it is always nonnegative and shows that the system is
time reversible if and only if there is no entropy production. The second point
is to study the local fluctuations of the entropy production rate. Here these
ideas are developed in the framework of spatially extended systems with many
interacting components and a simple stochastic evolution mechanism, the so-
called asymmetric exclusion process. In this system particles move according
to independent random walks with a drift and the additional rule is imposed
that every site can only be occupied by at most one particle. Due to this term
the system exhibits interaction between the components. (Nevertheless, the
equilibria of the system are product measures.) Here the entropy production is
defined by considering the system and the time-reversed system and forming
the logarithmic ratio of the number of those microstates with which the original
macrostate can be realized.

The third part of the book concludes with a contribution by Joel Lebowitz
and Christian Maes (p. 269) of a quite different form, namely, a dialogue on
entropy between a scientist and an angel. Their conversation touches on such
topics as the Boltzmann equation, the second law of thermodynamics and the
von Neumann entropy in quantum systems. The reader will see many of the
topics in this part in a different light and feel stimulated to have another look
at the previous contributions.

Part 4 The final part of this book is devoted to several offspring of the prob-
abilistic concept of entropy discussed already in Part 3, namely, to its use in
information compression and dynamical systems.Although these two directions
deal with nearly complementary aspects of entropy, they both use Shannon’s
concept of entropy as a measure of information (see also Section 3.2 on p. 39).
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For a thorough understanding of why information compression and uncer-
tainty produced by dynamical systems are two sides of the same coin, coding
is the basic ingredient. Information compression is the art of describing data
given as a (long) string of symbols from some alphabet in a ‘more efficient’
way by a (hopefully shorter) string from a possibly different alphabet, here from
the set {0, 1}. The classical result in this situation is Shannon’s source-coding
theorem for memoryless sources saying roughly that for randomly generated
data there exists a simple coding procedure such that the average code length
for data of length n is nearly n times the entropy of the source. In dynamical
systems one wants to measure the ‘diversity’ of the set of all orbits of length
n when such orbits are observed with ‘finite precision,’ i.e. one splits the state
space into a finite number of sets and observes only which sets are visited in
the successive time steps. This led Kolmogorov and Sinai to code individual
orbits by recording the outcomes of such coarse-grained observations at times
1 to n and to apply ideas from information theory to these code words and their
probability distributions.

This circle of ideas is the starting point of Fabio Benatti’s contribution
(p. 279). Beginning with a condensed description of the basic notions and
results leading to the concept of Kolmogorov–Sinai entropy for the dynamics
of a classical measure-theoretic dynamical system, Benatti gradually devel-
ops the appropriate concepts for quantum dynamical systems which generalize
the classical ones. In this way discrete probability distributions are replaced
by density matrices, products of probability distributions by tensor products
of density matrices, the Shannon entropy of a discrete probability distribution
by the von Neumann entropy of a density matrix and the coding theorem for
classical memoryless sources by an analogous result for quantum memoryless
sources. Finally, the generalization from discrete probability distributions to
general probability spaces translates into a passage from density matrices to
positive operators on Hilbert spaces. Whereas these transfers from the classical
to the quantum world are relatively straightforward, the situation changes dras-
tically when one tries to pass from the classical Kolmogorov–Sinai entropy to
a quantum dynamical entropy. The idea to model a coarse-grained observation
device for a classical system as a finite measurable partition of the classical
phase space has no obvious quantum counterpart. Two approaches (which both
coincide with Kolmogorov–Sinai entropy on classical dynamical systems) are
discussed: the Connes–Narnhofer–Thirring entropy, where partitions of the
state are used, and the Alicki–Fannes entropy, which is based on partitions of
unity.

It is worthwhile noting that the above-mentioned problem to find a short-
est description of a given finite string of data is not inherently probabilistic,
but that Kolmogorov and, independently, Chaitin offer a purely deterministic
approach using the concept of complexity of such a string. It is reassuring,
though, that both theories meet—at least in the classical context as pointed out
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in Section 14.3 of Benatti’s contribution. A much more prominent role is played
by complexity in Jorma Rissanen’s contribution (p. 299). Again the coding of
strings of data is the starting point, but now the optimal code word is the shortest
‘program’ for a universal Turing machine from which the machine can repro-
duce the encoded data. Following some unpublished work from Kolmogorov’s
legacy, we look at (essentially) the shortest descriptions which consist of two
parts: one that describes ‘summarizing properties’ of the data and another one
that just specifies the given data string as a more or less random string within the
class of all strings sharing the same summarizing properties. Then the summa-
rizing properties represent only the ‘useful’ information contained in the data.
Unfortunately, it is impossible to implement a data analysis procedure based on
Kolmogorov’s complexity because the complexity of a string is uncomputable.
A more modest goal can be achieved, however. Given a suitably parametrized
class of models for the observed data, one can define the complexity of a string
of data relative to the model class and decompose the shortest description of
the data relative to the model class into some ‘useful’ information and a nonin-
formative part. Now the close relation between effective codes and probability
distributions expressed by Shannon’s source-coding theorem allows us to for-
malize the notion of a ‘parametrized class of models’by a parametrized class of
probability distributions so that it is not too surprising that actual calculations
of complexity and information of data involve not only Shannon entropy but
also classical statistical notions like the Fisher information matrix.

There is one more notion from dynamical systems which Benatti connects to
entropy: chaos in classical and also in quantum systems. The basic idea, briefly
indicated here, is the following. Unpredictability of a deterministic dynami-
cal system, which is caused by an extreme sensitivity to initial conditions, is
noticed by an external observer because typical coded trajectories of the system
are highly complex and resemble those produced by a random source with posi-
tive entropy. This is the theme of Lai-SangYoung’s contribution (p. 313), where
entropy means dynamical entropy, i.e. the logarithmic growth rate of the num-
ber of essentially different orbits as mentioned before. If not really all orbits are
taken into account but only most of them (in the sense of an underlying invari-
ant probability measure), this growth rate coincides with the Kolmogorov–Sinai
entropy introduced above. If all orbits are counted, the corresponding growth
rate is called topological entropy. Both notions are connected through a vari-
ational principle saying that the topological entropy is the supremum of all
Kolmogorov–Sinai entropies with respect to invariant measures. For differen-
tiable dynamical systems with a given invariant measure the Kolmogorov–Sinai
entropy, which is a global dynamical characteristic, can be linked closely to
more geometric local quantities, namely, to the Lyapunov exponents which
describe how strongly the map expands or contracts in the directions of certain
subspaces, and to certain partial dimensions of the invariant measure in these
directions. In the simplest case, when the invariant measure is equivalent to the
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Riemannian volume on the manifold and has at least one positive Lyapunov
exponent, this very general relationship specializes to Pesin’s Formula. In fact,
the validity of Pesin’s Formula characterizes exactly those invariant measures
which are physically observable and known as the Sinai–Ruelle–Bowen mea-
sures. This characterization can be cast in the form of a variational principle
involving the Kolmogorov–Sinai entropy and, as ‘energy’ terms, the average
Lyapunov exponents.

There are more interpretations of entropy in dynamical systems. Young de-
scribes how the counting of periodic orbits and how the volume growth of cells
of various dimension is linked to topological entropy, and how large-deviation
techniques, omnipresent in Part 3 of this book, can be successfully applied to
dynamical systems with positive entropy. Michael Keane (p. 329) describes the
breakthrough that Kolmogorov–Sinai entropy, called mean entropy in this con-
tribution, brought for the classification of measure-theoretic dynamical systems.
It culminated in Ornstein’s proof that two Bernoulli systems are isomorphic if
and only if they have the same Kolmogorov–Sinai entropy. As, in turn, many
systems occurring ‘in nature’ are isomorphic to Bernoulli systems, this result
clarifies the measure-theoretic structure of a great number of dynamical sys-
tems.

All the results above, however, are rather meaningless for systems of zero
entropy. The structure theory of such systems is therefore a challenging field of
research, and Keane presents an example—the so-called binomial transforma-
tion—that conveys the flavour of these kinds of system, which in many respects
are rather different from positive entropy systems.

1.2 Notations

In view of the broad spectrum of contributions from rather different fields—
all with their own history, mathematical techniques and their time-honored
notations—we feel that a few additional remarks might be useful to help readers
to interpret the various notations correctly.

For the benefit of readers not familiar with continuum mechanics we would
like to point out a subtle point concerning time derivatives that may be some-
what confusing at first. The fundamental laws of mechanics, such as conser-
vation of mass, i.e. no mass is created or lost, or Newton’s law, namely, that
the time change in momentum is equal to the acting forces, are most simply
and familiarly formulated in the so-called Lagrangian framework, where one
is following trajectories of massive particles, single-point particles or (in con-
tinuum mechanics) an arbitrary volume of them. The rate of change in time,
i.e. the time derivative, in this framework is written as the total derivative d/dt
or frequently by a dot over the physical state variable that is changing in time,
e.g. mu̇ = f for Newton’s law with mass m, velocity u and force field f . This
derivative is called the material derivative and must be distinguished from the
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partial derivative in time arising in the context of the Eulerian framework. In the
latter all physical state variables are simply described as a field, not in the sense
of algebra, but rather meaning that they are given as functions of time and space,
maybe vector-valued or higher-order tensor-valued. Particle trajectories are not
given explicitly but may be obtained by integrating the velocity field. The rate
of change in time in this framework is given by the partial derivatives ∂/∂t ,
the rate of change in space by the spatial gradient ∇ consisting of the partial
spatial derivatives of the physical variables. The connection between the two
types of time derivatives d/dt and ∂/∂t is given by the chain rule. Following a
particle trajectory of an Eulerian variable such as the mass density ρ gives the
derivatives in the following form

dρ

dt
(t, x(t)) = ∂ρ

∂t
+ ∇ρ · ẋ = ∂ρ

∂t
+ u · ∇ρ,

where u denotes the velocity field in the Eulerian framework. This point is dis-
cussed in more detail in any good introductory textbook on continuum mechan-
ics.

The standard set-up used in probability theory is a basic probability space
(Ω,A, P ) with a set Ω describing possible outcomes of random experiments,
a σ -algebra A describing possible events, and a basic measure P representing
the probabilities of these events. On that space random variables are defined,
often called X, which are maps from Ω into some set E, the possible values
which the random variable can attain. This might be real numbers, vectors,
or even measures. In the latter case such random variables are called random
measures. One very important example is the empirical distribution arising from
repeating a random experiment n times. The law specifying the probability that
this observed distribution is close to a given one is then in fact a probability
law on the set of probability laws. Random variables are in principle maps from
one measure space into another, i.e. X : Ω → E, and one would expect to
write {ω ∈ Ω | X(ω) ∈ A} for the event that X takes values in a set A, but
in fact one typically writes {X ∈ A}. Hence you might encounter symbols like
Ln, Yt , etc., which are random objects but no ω floats around to remind you,
and the state spaces of the random variables might vary from R over spaces of
continuous functions to spaces of measures. Furthermore, for the expectation∫
Ω
X(ω)P (dω) of the random variable X one writes

∫
X dP and even shorter

E[X], and here neither ω nor Ω or P appears explicitly. There is a good reason
for this since the interest is usually not so much in Ω and P but in the values
a certain random variable takes and in its distribution. This distribution is a
probability measure on the space E where the random variable takes its values.
Analysing properties of this random variable the basic space is then very often
of little relevance.

Another point to be careful about is to distinguish in convergence relations
whether random variables, i.e. measurable functions, actually converge in some
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sense (almost surely, in mean or in probability), or whether only their laws con-
verge, that is, expectations of continuous bounded functions of those variables
converge to a limit thus determining a limiting probability distribution.

In ergodic theory and the theory of dynamical systems (with discrete time),
the basic object is a measurable transformation, call it f , acting on a more or
less abstract state space, often called X. Typical examples of state spaces are
manifolds or sequence spaces like AZ, where A is a finite symbol set. Prop-
erties of trajectories x, f (x), f 2(x), . . . obtained from repeated application of
the transformation are studied relative to an invariant measure, say µ, where
invariance means that µ(f−1A) = µ(A) for each measurable subset A of X.
In this book only the most common setting is treated where µ is a probabil-
ity measure. Typically, a given map f has many invariant measures, and one
problem is to single out (often using a variational principle) those which are
dynamically most relevant. In particular, for each such measure (X,µ) is a
probability space and the scene is set for carrying over concepts from the world
of probability to dynamical systems. Note, however, that in contrast to the prob-
abilistic approach, where properties of the underlying probability space play a
minor role, the specific structure of X and µ can be of central interest in the
context of dynamical systems.




