

DEVELOPMENTAL AND CELL BIOLOGY SERIES 24 EDITORS P.W. BARLOW D. BRAY P.B. GREEN J.M.W.SLACK

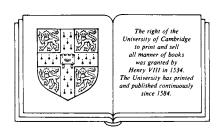
THIS SIDE UP

Developmental and cell biology series

SERIES EDITORS

- Dr P. W. Barlow, Long Ashton Research Station, Bristol
- Dr D. Bray, MRC Cell Biophysics Unit, King's College, London
- Dr P. B. Green, Dept of Biology, Stanford University, USA
- Dr J. M. W. Slack, ICRF Developmental Biology Unit, University of Oxford

The aim of the series is to present relatively short critical accounts of areas of developmental and cell biology where sufficient information has accumulated to allow a considered distillation of the subject. The fine structure of the cells, embryology, morphology, physiology, genetics, biochemistry and biophysics are subjects within the scope of the series. The books are intended to interest and instruct advanced undergraduates and graduate students and to make an important contribution to teaching cell and developmental biology. At the same time, they should be of value to biologists who, while not working directly in the area of a particular volume's subject matter, wish to keep abreast of developments relative to their particular interests.


BOOKS IN THE SERIES

- R. Maksymowych Analysis of leaf development
- L. Roberts Cytodifferentiation in plants: xylogenesis as a model system
- P. Sengel Morphogenesis of skin
- A. McLaren Mammalian chimaeras
- E. Roosen-Runge The process of spermatogenesis in animals
- F. D'Amato Nuclear cytology in relation to development
- P. Nieuwkoop & L. Sutasurya Primordial germ cells in the chordates
- J. Vasiliev & I. Gelfand Neoplastic and normal cells in culture
- R. Chaleff Genetics of higher plants
- P. Nieuwkoop & L. Sutasurya Primordial germ cells in the invertebrates
- K. Sauer The biology of Physarum
- N. Le Douarin The neural crest
- J. M. W. Slack From egg to embryo: determinative events in early development
- M. H. Kaufman Early mammalian development: parthenogenic studies
- V. Y. Brodsky & I. V. Uryvaeva Genome multiplication in growth and development
- P. Nieuwkoop, A. G. Johnen & B. Albers The epigenetic nature of early chordate development
- V. Raghavan Embryogenesis in angiosperms: a developmental and experimental study
- C. J. Epstein The consequences of chromosome imbalance: principles, mechanisms, and models
- L. Saxen Organogenesis of the kidney
- V. Raghavan Developmental biology of fern gametophytes
- R. Maksymowych Analysis of growth and development in Xanthium
- B. John Meiosis
- J. Bard Morphogenesis

THIS SIDE UP SPATIAL DETERMINATION IN THE EARLY DEVELOPMENT OF ANIMALS

ROBERT WALL

CAMBRIDGE UNIVERSITY PRESS

CAMBRIDGE NEW YORK PORT CHESTER MELBOURNE SYDNEY

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521361156

© Cambridge University Press 1990

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1990

This digitally printed first paperback version 2005

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Wall, Robert.

This side up: spatial determination in the early development of animals/Robert Wall

p. cm. - (Development and cell biology series)

Includes bibliographical references.

ISBN 0 521 36115 X

1. Developmental biology. 2. Organizer (Embryology) I. Title.

II. Series.

QL971.W35 1990

591.3'3-dc20

ISBN-13 978-0-521-36115-6 hardback

ISBN-10 0-521-36115-X hardback

ISBN-13 978-0-521-01726-8 paperback

ISBN-10 0-521-01726-2 paperback

Contents

	eface		page ix	
A	cknowie	edgements	Xi	
1	Oogenesis The events of oogenesis Visible organisation and its origins		1	
			1	
			9	
		tent of spatial determination in oocytes	18	
	Conclu	isions	30	
2	From o	pocyte to zygote	31	
	The events Ooplasmic segregation		31	
			32	
	(a)	Bipolar differentiation	32	
	(b)	Lymnaea	38	
	` '	Sea urchins	39	
	` '	Ascidians	41	
	(e)	Amphibians	45	
	The extent of spatial determination		49	
		Work with egg fragments	49	
	(b)	Centrifugation	55	
	(c)	Rotations and other interference with amphibian egg	s 57	
	(d)	Differentiation without cleavage	64	
	Concl	asions	65	
3	Does o	cleavage cut up a preformed spatial pattern?:		
	the case of spiralian embryos			
	Spiral cleavage patterns			
	Lineage plans and fate maps			
	Mosaic development after separation of blastomeres			
	The role of the D quadrant: the first two cleavages			
	(a)		78	
		Unequal first cleavages	83	
	. ,	Equal first cleavages	85	

V

vi Contents

7	Interactions between moving cells: the case of amphibian gastrula Morphogenetic movements	211 211	
	Conclusions	209	
	Mammals	205	
	Hydrozoans	204	
	Spirally cleaving embryos		
	Ascidians and Amphioxus		
	Amphibians		
	Other arthropods and other echinoderms	187	
	Insects	168	
6	Interactions at morula and blastula in other embryos	168	
	Conclusions	167	
	The biochemistry of the morula and blastula	160	
	Approaches to a physiology of determination	158	
	Models of determination	156	
	Chemical animalisation and vegetalisation	154	
	Cell isolations and abnormal combinations	147	
	Normal development and fate maps	144 144	
5	Cellular interactions in the morula and blastula: the case of sea urchin embryos		
		142	
	Mammals Conclusions	138	
	Amphibians Mammala	133	
	Starfish	133	
	Sea urchins	127	
	Insects	119	
	Nematodes	113	
	Hydrozoans	112	
	Ctenophores	109	
	Amphioxus	107	
	Ascidians	96 96	
4	The limits of mosaicism in non-spiralian cleavage		
	The fine-structure and biochemistry of spiralian development Conclusions		
	(c) Species with equal first cleavages	90 93	
	(b) Species with unequal first cleavages	89	
	(a) Lobe-bearing species	86	
	The role of the D quadrant: later stages	85	

		Contents	vii
	Fate maps through gastrulation		214
	Spemann's organiser		215
	The development of explants and implants from the	e early	
	gastrula	•	219
	Changes in spatial properties during gastrulation		221
	Inductive effects of simple culture media		226
	Heterogenous inductors		228
	The competence of the ectoderm		231
	The transmission of inductive stimuli		234
	Attempts to identify inducer molecules		237
	Biochemical events in the gastrula		240
	What is determined at the end of gastrulation?		246
	Conclusions		251
8	Spatial determination in the gastrulae of other groups	s	253
•	Sea urchins		253
	Insects		258
	Spiralian embryos		261
	Ascidians and Amphioxus		262
	Some lower vertebrates		263
	Hydrozoans		265
	A note on the mammals		266
	Conclusions		266
9	Determination in embryos showing partial cleavage		267
	Cephalopods		267
	Teleosts		273
	Reptiles		283
	Birds		285
	(a) Descriptive embryology		285
	(b) Causal analysis		290
	(c) Biochemical aspects		295
	A note on the mammals		299
	Conclusions		301
10	Patterns and mechanisms in early spatial determina	ntion	304
	Patterns		304
	Mechanisms		312
Re	References		
In	Index		423

Preface

My work for this book really began 20 years ago when I worked for the late Professor C.H. Waddington producing summaries of current research on development. I became particularly interested in the origins of spatial patterns, where I felt that I could detect signs of common features in many different developing systems. Since that time I have tried to make notes on all published studies of early development as they appeared, whatever the animal group concerned. I have also gone back in time to look again at many seminal studies published up to 100 years ago.

In selecting from this huge literature, I have been guided mainly by the principle that the work should have a potential relevance for the spatial determination problem. No doubt I have failed to 'pick the winners' in some cases, but the alternative was to risk losing the thread in a book of unwieldy size. My choices will seem to many to be particularly idiosyncratic in the physiological and biochemical sections, where I have presented some classical data (the meaning of which is still unclear) while omitting some modern studies. I justify this on the basis that the former will one day have to be encompassed in theories of spatial determination, while the latter may prove not to be relevant and have in any case been considered in depth in Davidson's *Gene Activity in Early Development*.

At the present time, the data relevant to the spatial determination problem still derive primarily from experimental embryology, and this is reflected in this book. In several cases I have assessed particular approaches to the problem first by considering data exclusively obtained with a particular much-studied group, and then in a comparative survey of other animal groups. For example, concepts of determination based upon intercellular signalling are considered first for sea urchins, and then extended to other embryos including that of *Drosophila* where we seem at last to be uncovering a molecular basis for developmental phenomena. Molecular data are presented quite fully in such cases (although the survey of literature for this book was completed at the end of August 1987), and the final chapter considers the evidence for common mechanisms as well as common patterns in determination.

Acknowledgements

I have worked as a teacher while writing this book and have been grateful for the flexibility of colleagues in London and Bedfordshire which has allowed me to find the time to complete it. Barry Shephard helped to make it possible for me to study in London. I have used a large number of public libraries in researching this book, and would like in particular to acknowledge the help of the libraries at the Open University and University College London as well as branches of the Science Reference and Information Service. Dr Glyn Williams of University College London also helped me to trace Hofmeister's studies of colloids and later developments of the work. My greatest debt is, however, to my good friend Richard Black who, among other things, has given me innumerable lifts to the Open University, typed and retyped the manuscript on a word-processor and helped me to photograph many of the figures. Other photographs were prepared at Cambridge University Library. Dr Jonathan Slack read and made many helpful comments upon two different drafts of the book, but cannot be held responsible for my final decisions on its content. Much advice and encouragement also came from Dr Adam Wilkins at Cambridge University Press. I apologise to my wife and family for the times when the work has made me uncommunicative or miserable, and thank them for their help and forebearance.

Original prints of published figures were sent to me by Drs M.E. Akam, R.C. Angerer, J.M. Arnold, L.W. Coggins, K. Dan, M.R. Dohmen, T. Ducibella, H. Eyal-Giladi, G. Freeman, W.J. Gehring, H. Grunz, B.E. Hagström, W.R. Jeffery, F.C. Kafatos, K. Kalthoff, C.B. Kimmel, E.B. Lewis, M. Lohs-Schardin, D.L. Luchtel, P.M. Macdonald, A.P. Mahowald, N. Satoh, T. Sawada, L. Saxén, T. Shimizu, L.D. Smith, J.A.M. van den Biggelaar, J.R. Whittaker, M. Wilcox, R.I. Woodruff and K. Yamana.