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Preface

Nothing is simpler than a cyclic group. So if we build a group, starting from
the identity, by a finite number of iterated extensions with cyclic groups, we
would expect its structure to be pretty transparent. Such a group is called
polycyclic.

In one sense, of course, polycyclic groups do have a transparent
structure. But in the last few years, some remarkably intricate mathematics
has been brought to bear on the study of these groups. Of course, the
question of whether the end justifies the means is ultimately a matter of
personal taste; to me, the picture which has begun to emerge is an attractive
one. Working in this subject has given me a lot of pleasure, and if a little of
that gets across to the reader of this book then the effort of writing it will
have been well worth while.

This is not an encyclopaedic work on polycyclic groups. A number of
thoroughly deserving topics have been omitted altogether, or merely
touched on in the text (some of these, with references, are mentioned in the
appendix). My guiding aim has simply been to present a connected account
of some interesting mathematics, and throughout I have laid more stress on
the ideas than on the results. In consequence, some of the results are given in
lesser generality than they might be, and some of the proofs are leisurely
where they could have been slick. Having been thus exposed to the basic
techniques, the newcomer to this subject should be in a position to invent
his/her own improvements.

More specifically, the purpose of the book is twofold. The earlier chapters
are intended to provide a convenient and self-contained reference for the
body of ‘classical’ results on polycyclic groups; Chapters -5 form an
introductory course, suitable for the beginning research student (perhaps
leaving out sections D and E of Chapter 4). The second half of the book is
an introduction to more advanced topics, including the ‘isomorphism pro-
blem’ (Chapters 6-8) and the recent finiteness theorem of Grunewald-
Pickel-Segal regarding groups with isomorphic finite quotients (Chapters
9 and 10). The final chapter, by way of light relief, offers various examples of
polycyclic groups to illustrate some of the themes discussed before.

The results of the later chapters depend heavily on the theory of linear

X
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X Preface

groups, on algebraic number theory, and on the theory of algebraic groups.
I have endeavoured to present the necessary material in a reasonably
general form, in order to emphasize that our results are but minor
applications of some powerful and important mathematics. Some algebraic
number theory is also used in Chapters 2 and 4; rather than include proofs
of the relevant elementary results, I refer the reader to standard textbooks
for material which every algebraist should know. However, the important
theorem of Schmidt—Chevalley on the congruence subgroup property of
unit groups in rings of algebraic integers is proved in full, modulo ‘standard’
results, in section E of Chapter 4.

Few of the results in this book are really new; some of the arguments may
be. References to the literature are given in the ‘Notes’ sections at the end of
each chapter; but the absence of a reference for a specific result does not
imply any claim of originality (it is quite likely due to the author’s
ignorance). However, [ believe that most of the theory of Chapter 7 and the
last part of Chapter 8 are fairly original; the argument of Chapter 10 is also
rather an improvement on the published version.

The ‘Notes’ sections also give fairly copious suggestions for further
reading. These are particularly important in the case of Chapter 6, which
deals with certain aspects of torsion-free finitely generated nilpotent groups
(called “T-groups’ throughout the text); there is an extensive and elegant
theory of these groups which needs a book to itself — such books exist, and
should be read as a necessary complement to this one by anyone wishing to
learn about polycyclic groups.

Exercises are scattered liberally throughout the book. These are often an
essential part of the text; with the generous hints they are almost all
supposed to be very easy (the reader who wants to think harder should in
the first instance ignore the hints!)

It may be helpful if T suggest here some ‘subsequences’ of the book which
tell a reasonably connected story.

Core course Chapters 1, 2 and 5
Second course Chapter 3, Chapter 4 (sections A, B and C), Chapter 11.

Advanced course Chapter 4, Chapter 6, Chapter 7 (section A), Chapter 8
(sections A, B and C).

Special topics Chapter 7, Chapter 8 (section D), Chapters 9 and 10.
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Notation
A<B A is a subgroup of B
A<B A is a proper subgroup of B
A<B Aisanormal subgroup of B (groups); 4 is an ideal of B (rings)
A <B(A<;B) A is subgroup (normal subgroup) of finite index in B
(X5 group generated by the set X
G"={g"geG> if G is a group and n is a positive integer
A% B direct product of 4 and B
Der,. restricted direct product of the A4;
114 Cartesian product of the 4,
iel
D1 A; direct sum of the A4;
AlB semi-direct product of (normal subgroup) 4 by B

x*=y !'xy if x and y belong to the same group
[x,y]=x""'x?

[xgsevnxd =005, -1, x,]for n>2

[X, Y]=<[x,yllxeX,yeY)

(X, . X1=[[XX,_ 1, X,]Jforn>2

G’ derived group of G

7:(G) ith term of the lower central series of G

G" nth term of the derived series of G

£(G) ith term of the upper central series of G
Fitt(G) Fitting subgroup of G

Aut G Automorphism group of G

M (R) ring of n x n matrices over ring R

GL,(R) group of invertible matrices in M (R)

D, (R) group of diagonal matrices in GL,(R)

Tr,(R) group of upper-triangular matrices in GL,(R)
Tr,(n,R) group of matrices in Tr,(R) with all diagonal entries 1
R* group of units of ring R

R* additive group of ring R

Endg(E) endomorphism ring of R-module E

Autr(E) automorphism group of R-module E

Co(X)={geG|x? = x VxeX }, the centralizer of X in G

xiii
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Xiv Notation

Ng(X)={geG|X? = X}, the normalizer of X in G

the natural numbers (excluding zero)

the integers

the rational numbers

the real numbers

the complex numbers

the p-adic integers

the p-adic numbers

the infinite cyclic group

the cyclic group of order n

the symmetric group of degree n (sometimes identified with
the group of all » x n permutation matrices in GL(Z))

g w

NP NODTONZ

=
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=
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