PREFACE

This book is the final report of the ICMI study on the Teaching and Learning of
Mathematics at University Level. As such it is one of a number of such studies that
ICMI has commissioned. The other Study Volumes cover assessment in
mathematics education, gender equity, research in mathematics education, the
teaching of geometry, and history in mathematics education.

All of these Study Volumes represent a statement of the state of the art in their
respective areas. We hope that this is also the case for the current Study Volume.

The current study on university level mathematics was commissioned for
essentially four reasons. First, universities world-wide are accepting a much larger
and more diverse group of students than has been the case. Consequently,
universities have begun to adopt a role more like that of the school system and less
like the elite institutions of the past. As a result the educational and pedagogical
issues facing universities have changed.

Second, although university student numbers have increased significantly, there
has not been a corresponding increase in the number of mathematics majors. Hence
mathematics departments have to be more aware of their students’ needs in order to
retain the students they have and to attract future students. As part of this awareness,
departments of mathematics have to take the teaching and learning of mathematics
more seriously than perhaps they have in the past.

As a consequence, university mathematicians are more likely to take an interest
in mathematics education and what it has to offer. In the past the contact between
mathematics educators and practising university teachers had been poor. Thus there
is a need to bridge the gap that exists in many countries, between mathematics
educators and university mathematicians.

Finally, university mathematicians tend to teach as they were themselves taught.
Unless they have a particular interest in teaching they are unlikely to make changes
in their teaching or to exchange views, experiences or knowledge with their
colleagues at other institutions. Hence this Study was commissioned to provide a
forum for discussing, disseminating and interchanging, educational and pedagogical
ideas between and among, mathematicians and mathematics educators.

As in every study, an International Programme Committee was appointed by the
ICMI Executive Committee to oversee our Study's development. The members of
the IPC were
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Nestor Aguilera, Argentina
Michéle Artigue, France
Frank Barrington, Australia
Mohamed E.A. El Tom, Quatar
Joel Hillel, Canada

Derek Holton, New Zealand
Urs Kirchgraber, Switzerland
Lee Peng Yee, Singapore
Mogens Niss, Denmark

Alan Schoenfeld, USA

Hans Wallin, Sweden

Ye Qi-xiao, PRC.

The progress of ICMI Studies takes the following pattern. Once the IPC is
appointed they produce a Discussion Document that contains a discussion of the key
issues of the Study. This is widely circulated along with a call for reactions by way
of abstracts of papers, proposals, the raising of other issues, etc. The Discussion
Document for this Study appeared in the ICMI Bulletin, No. 43, December 1997.

As a result of the submissions, participants were invited to attend the Study
conference that took place in Singapore in December 1998. This working conference
included plenary sessions, submitted papers, panel discussions and working groups.
The conference and the ideas and material developed at the conference forms the
basis for this Study Volume. Extra material has been assembled since the conference
by a number of authors.

One publication related to this Study, which is not in the general pattern of ICMI
Studies, was the publication in February, 2000, of a special issue of the International
Journal of Mathematics Education in Science and Technology. Papers produced for
this issue were expanded versions of papers given at the Singapore conference.

As I said above, the Study conference was a working conference. It consisted of
Plenary Sessions, Panel Discussions and Working Groups. The Plenary Sessions
were as follows:

Claudi Alsina: Why the Professor should be a stimulating teacher: Towards a
new paradigm of teaching mathematics at university level.

Michéle Artigue: What can we learn from didactic research carried out at
university level?

Hyman Bass: Research on university-level mathematics education: (Some of)
what is needed and why

Bernard Hodgson: Teaching and learning mathematics at the university level: a

personal perspective.
Lynn Arthur Steen: Redefining university mathematics: the stealth campaign.

There were three Panel Discussions. The titles of these and the panel members
are listed below.
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Secondary/Tertiary Transition

Frank Barrington, Myriam Dechamps, Francine Gransard
Mass Education

Garth Gaudry, Gilah Leder
Technology

Ed Dubinsky, Celia Hoyles, Richard Noss

Finally there were eleven working groups. The Titles and Chairs of these
Working Groups are listed below. As the titles alone do not necessarily give a clear
view of the area covered we have added some explanation.

Secondary-Tertiary Interface, Leigh Wood and Sol Garfunkel

the interface between secondary and tertiary mathematics learning and teaching;
interactions between secondary and tertiary teachers.

Mathematics and Other Subjects, Jean-Pierre Bourguigon

what mathematics is needed in other disciplines; which department should
undertake this teaching?

Preparation of University Teachers, Harvey Keynes

what is the role of technology in mathematics education at the tertiary level;
what should that role be; what programmes exist that use technology?

Assessing Undergradute Mathematics Students, Ken Houston

principles and purposes of assessment; methods of assessment; obstacles to
change.

Trends in Curriculum, Joel Hillel

what topics are common to many curricula; what changes have occurred in the
recent past; what changes are anticipated in the future?

Practice of University Teaching, John Mason

some principles of teaching; examples of innovative practice.

Mass Education, Nestor Aguilera and Hans Wallin

mathematics as a service course; what mathematics do students need; what is a
good model for teaching students with a range of abilities and interests?

Preparation of Primary and Secondary Mathematics Teachers, Honor Williams

what is the current state of preparation; how might this change in the future;
what is the role of academic mathematicians in teacher preparations?

Policy Issues, Hyman Bass

what are the different means of policy development? how do these affect
practice? in what ways can policy be effected?

The Future of Research in Tertiary Mathematics Education, Annie Selden and
John Selden.

what research is being and has been undertaken; how can this be translated into
practice; what new directions should be explored?

I would like to thank the participants of the various working groups for their
input to the Study. In particular, I would like to thank those who made contributions
to the working group reports that appear in this volume. Unfortunately there has not
been space in this book to mention them all individually.



viil

As the result of the Study conference and reflecting on the issues raised in the
working groups and in the more formal sessions, the Study seemed to naturally fall
into seven parts, the seven sections of this book. These are an Introduction, Trends
in Curriculum and Teaching Practice, Research, Mathematics and Other Disciplines,
Technology, Assessment in Tertiary Mathematics Education, and Teacher
Education. Each section has been edited by the people named at the start of that
section.

Finally, I should like to thank the following people. First, there are the other
members of the IPC. Without their considerable help the Study would never have
reached the conference stage. They also provided an invaluable initial refereeing of
papers for the special issue of the IIMEST

Second, T would like to thank Lee Peng Yee and his Local Organising
Committee. They worked extremely hard to produce a conference that ran like
clockwork but that still had a friendly personal touch.

Third, I would like to thank the conference participants and contributors to this
Study Volume. It is their expertise that enabled us to produce a book that provides
the latest thinking in a range of aspects of university-level mathematics education.

Then fourthly I am extremely grateful for the contribution of the editors of this
Volume. Their knowledge and ability have carried this volume over a wide range of
areas to present a thorough overview of the topic, and their individual knowledge
and skills have enabled the volume to extend to great depths in all areas of the
Study.

Next I would like to thank Leanne Kirk, Lenette Grant and Irene Goodwin for
their considerable secretarial help throughout my period of engagement with this
Study.

Sixth, I would like to thank the two people who were Executive Secretaries of
ICMI during the period of the Study, Bernard Hodgson and Mogens Niss. Bernard
shepherded through the Study to its final published form; Mogens was indispensable
to me throughout and was always available with wise counsel from the beginning to
the end of the project. So much that happened could not have happened without his
support and guidance.

Finally I want to thank my wife Marilyn for supporting me through this and
many other endeavours.

Derek Holton
University of Otago, Dunedin, New Zealand

dholton@maths.otago.ac.nz
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WHY THE PROFESSOR MUST BE A STIMULATING
TEACHER

Towards a new paradigm of teaching mathematics at University level

1. INTRODUCTION

Mathematics at the University level is a complex field to explore. The diversity
of institutions and social and cultural contexts, the variety of curricula and courses,
the reforms taking place at present, etc., may induce us to believe that perhaps it
makes no sense to talk about general or common aspects of our academic activities.
But after many years of observing our own profession, of visiting so many places
around the world and interacting with so many colleagues I have identified some
problems and some challenges that may be of interest for mathematicians who love
mathematics and love teaching. The aim of this presentation is to share some critical
thoughts and to point out some constructive ideas on the educational goals of
teaching mathematics at the university level.

2. SOME CRITICAL VIEWS ON EXISTING MYTHS AND PRACTICES IN
UNIVERSITY TEACHING OF MATHEMATICS

In this section I would like to unmask some very general existing ‘myths’
(Kirwan, 1991) and practices in the teaching of mathematics at the undergraduate
level that have a negative influence (Lewis, 1975) on the quality of mathematics
teaching.

The researchers-always-make-good-teachers myth. This university myth says that
‘researchers are ipso facto good teachers ... therefore the key criteria for selection
and promotion must be high quality research’. Following Kline (1977) we quote the
statement that:

Hence appointment, promotion, tenure and salary are based entirely on status in

research... but for most of the teaching that the universities are, or should be, offering,
the research professor is useless.
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This myth calls for a number of observations.

Sound knowledge does not necessarily mean active research;

The majority of mathematics courses do not include advanced results reached in

recent decades;

3. Research takes place in thousands of different specialities, most of it in very
narrow fields, and lines of research are often a matter of free choice and quite
unrelated to teaching;

4. Unfortunately, research criteria are closely related to the Department’s interests
and rarely include research into mathematics education.

Let us remember here the critical words expressed in Kline (1977):

N =

The mania for research has produced an invidious system of academic promotion,
perversion of undergraduate education, and contempt for and flight from teaching.

While for graduate, doctoral and post-doctoral teaching activities there is no
doubt that only the most up-to-date and active researchers can introduce students to
the latest results, techniques and trends, this does not hold true for most
undergraduate programmes (see Carrier et al, 1962).

The self-made-teacher tradition. This is another standard mathematical myth and is
based upon the claim that excellence in university teaching does not require any
specific training - it is just a matter of accumulated experience, clear presentation
skills and a sound knowledge of the subject. This approach leaves room for a lot of
creative freedom but at the same time it can lead to quite a lot of anxiety, especially
for inexperienced young teachers, who will in general try to reproduce the models
that they have been exposed to during their own education. This myth does not make
provision for students who are exposed to various styles of teaching simultaneously
and it also avoids the issue of critical input from colleagues as well as the positive
training that one would expect from the institutions involved.

Some classical references on this topic come from the 70s (e.g. CTUM, 1979,
EBLE, 1974, Rogers, 1975, Rosenberg, 1972, Wilson, 1974).

Clearly, teaching may benefit from training and this must be a compulsory
activity for those who want to teach.

Context-free universal content. This idea justifies the content of many courses as
‘basic skills and results which must be learned by everyone taking the course’. This
myth generated classic courses that were given to almost everyone entering science
or technological university studies. It is taken for granted that some elements of
linear algebra, calculus, differential equations, discrete mathematics, probability,
statistics, etc., constitute the ‘core’ curriculum of university mathematics. In
particular this myth justifies the concept that teaching is context-free, i.e.,
independent of personal interests, of specific professional training, of cultural
environment, of social circumstances, and so on. While this situation makes for a
more flexible teaching organization (anyone can teach anything), it sacrifices
students’ interest and Kills interdisciplinary approaches. This led to wide and even
universal sales for some textbooks. We, however, believe that contents must be
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related to interest, special needs, context, and the like (see COMAP, 1997, Howson,
1988, Pollack, 1988, Steen, 1989).

Deductive organization. In this case, ‘teaching’ is thought to be assimilated thanks to
representations of deductive thinking. Topics are presented linearly, definitions-
theorems-proofs are sequentially stated in their most general form. In particular this
presentation leads to the need for constant proofs (the more formal the better) and
leaves little room for discussion or historical remarks ... “How?” becomes more
important than “Why?”. (Freudenthal, 1991). Is deduction more important than
induction? Is formal reasoning more important than plausible thinking? Clearly,
deduction is only one component of mathematical thinking.

The top-down approach. This approach holds that by teaching mathematical topics
in their most general form, students will be able to deal with any particular case, any
example, any application. This gets rid of the problem of real data and the main
elements of mathematics modelling. Learning is a bottom-up process, so teaching
top-down is not an effective way of helping leamers (see e.g. Begle, 1979).

The perfect-theory presentation. Mathematics courses present positive results,
solved problems, bona fide models. Students become convinced that mathematics is
almost complete, that theorem proving is just a deductive game, that errors, false
trials, and zig-zag arguments, which play such a crucial role in human life, have no
place in the mathematical world. Unfortunately, in some ways many textbooks have
inherited the cold research-journal style. This style of presentation kidnaps the
‘human nature’ of mathematical discoveries, the mistakes that were made, the
difficulties and the need for simplifications. In some cases (e.g. statistics) this gives
the false idea that the ‘real subject’ is ‘the mathematical model’, when we know that
mathematics may be a powerful tool but it needs to be used in combination with
other disciplines or techniques. In addition, we are presented with the paradox that
very often this perfect presentation implies only an instrumental understanding
instead of a relational understanding. This perfect-theory presentation turns a living
discipline into a dead garden.

The ‘master class’/formal lecture paradigm. Teaching has frequently been oriented
towards ‘communicating’ mathematical knowledge. Typically, a class for
undergraduates would consist of a large group of students sitting, listening and
writing in a classroom where a professor delivers several hours per week of spoken-
written presentation before a blackboard, see Bligh (1972). After the lectures,
students are supposed to study the delivered content by reading notes, the textbook
and by solving ad hoc exercises proposed for each chapter-talk. This reduces
‘teaching’ to lecturing, and ‘learning’ to an individual after-class activity of
assimilating results and practising techniques. In particular, as noted by Clements
(1998), students spend a lot of time inefficiently or unproductively:
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... a considerable part of the time is devoted to the transference from the notes of the
lecturer to the notepads of the students of relatively straightforward factual material.

While ‘master classes’/formal lectures are fine when truly ‘masterly’, they could
nevertheless be combined with other techniques of communicating and working.

The mature students myth. At the freshman level, this myth assumes that during the
few weeks between high school and university registration, students have grown in
such a way that their integration into the new university atmosphere does not require
any special attention. In particular, students going into scientific or technical courses
are assumed to be already motivated and aware of the relevance of mathematics to
their training, and students going into other studies are assumed to constitute a low-
interest class. The diversity of backgrounds is often ignored. The high school
curriculum may often be unknown. Clearly, the transition from secondary schools to
universities needs special attention.

The routine individual-written assessment. This presents the final test, or a written
examination mixing questions and exercises, as an ideal method of marking, i.e., of
gauging how well students master the content delivered in lectures. The method
focuses on individual preparation and rarely opens doors to project work, group
activities, open questions, etc. In its most rigorous form, this assessment is reduced
to a final exam to be marked and rarely integrates other activities or information
attained during the course into the student’s progress. More flexible assessment
resources should be considered (see e.g. Dossey, 1998).

The non-emotional audience. This tries to present students enrolled in a course as an
audience at a movie show or a theatre. The main goal ‘for all’ is simply
mathematics. Individual problems, emotional difficulties, personality features do not
belong to the teaching and learning of mathematics. Tuition is for solving technical
doubts or clarifying previous lectures. Outside the classroom or the scheduled office
hours there is no place for further human interaction. The university walls keep
human nature out. To sum up, let me quote Krantz (1993):

I don’t think that it is healthy for a mathematics teacher to worry about math anxiety.
Your job is to teach mathematics. Go do it.

That’s a terrible mistake. The ‘audience’ is a group of people in which each
individual needs attention.

We, as mathematics educators working at university level, need to destroy the
above myths, practices and considerations by taking some positive steps towards
another way of teaching (see Howson, 1994).
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3. TOWARDS A NEW PARADIGM OF TEACHING MATHEMATICS AT
UNIVERSITY LEVEL

In this section we will identify some changes to be considered, some questions
which need to be faced urgently and some goals for our future as mathematicians
and mathematics educators.

There is a need to redefine mathematical research as a university activity,
combining it with a soundly based teaching excellence. The critical pressure of
research has evolved into a crazy rolling snowball: publishing as many papers as
possible, going into citation and impact indices, attending an increasing number of
congresses. It is time to sit down and think about what the main goals of universities
today are. It is just possible that good teaching, fine multimedia and educational
materials, virtual projects, community work, etc. are becoming more relevant to
administrators and society than subscriptions to journals, abstract announcements
and department reports. This does not mean a change from the research-realm to the
teaching-paradigm. The ‘either-research-or-teaching’ polarity is false. With a little
wisdom both activities can be (and should be) combined. Research also means
writing expository papers, critiques of trends, historical perspectives, good texts,
analyses of pedagogical materials, improvement of proofs, suggestions as to new
approaches or interdisciplinary applications. Institutions and authorities should
recognise and stimulate scholarship and research. And there is no need to say that
the creation of exclusive research institutions is to be welcomed. But universities
cannot close their eyes to their teaching ends. It is not just a question of achieving
one annual award or medal for academic distinction but rather it is a matter of
continuously controlling and stimulating the quality of education. Good teaching is
according to a classic definition: “building understanding, communicating,
engaging, problem solving, nurturing and organizing for learning”, a complete task
that merits special attention and preparation (see Krantz, 1993).

Research into mathematics education at tertiary level may be itself an interesting
field of research and may give rise to useful results for all teachers for application
to their teaching. Research into mathematics education is a growing scientific
discipline (see Niss, 1998, Thurston, 1990). Nowadays it involves many researchers
focusing on a wide range of topics and levels. However, there is clearly still a rich
agenda for research on teaching and learning problems at university level. It would
be marvellous if in the years to come this university research attracted well qualified
mathematics specialists. If institutions wish or need to pay more attention to their
educational goals, then mathematics education may - or indeed is certain to ~ play
an increasingly important role in people’s vitae. Though non-educational research
has been a priority in people’s careers until now, it could well be healthier if future
mathematics specialists combined research with more educational aims. Moreover,
research into mathematics education gives rise to useful results which should be
disseminated and used, so that all mathematics teaching staff may benefit from an
up-to-date knowledge of this field (see Niss, 1998).
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TRENDS IN CURRICULUM

A Working Group Report

1. INTRODUCTION

The Working Group: Trends in Curriculum, examined the various forces which
act on a mathematics curriculum, and on curriculum trends, both at local and
national levels. ‘Curriculum’ was considered in its widest sense to mean “matters
pertaining to the purposes, goals and content of mathematics education” (Discussion
Document for this ICMI Study, 1997), as well as the means for achieving curricular
goals. Hence, the discussions in the Working Group touched on undergraduate
programmes', specific courses, mathematical content, degree of rigour, modes of
delivery and interaction, and assessment schemes. Inevitably, the issues discussed in
this Working Group overlapped substantially with the other Working Groups of the
conference.

2. BACKGROUND

2.1 Who are mathematics students?

Curricular issues are inextricably tied to the question: a mathematics curriculum
for whom? The teaching of mathematics at universities and colleges is quite diverse
in its organization hence there is a wide range of students populating mathematics
Courses.

Among those enrolling in mathematics courses, there are students for whom
mathematics is the primary subject of their undergraduate studies, possibly coupled
with another discipline such as statistics, physics, computer science, or eCOnomics.
We will refer to this group as ‘(maths) programme students’ so as to distinguish
them from ‘client students’. The latter come from client departments, traditionally
the physical sciences and engineering departments, though nowadays, computer
science has become a prominent client, replacing physics in many countries. Other
client students come from departments such as social sciences, commerce and

! Any international gathering immediately points to the different senses attributed to words such as
‘programme’, ‘course’, ‘module’, or ‘paper’. In this document we have adhered to the North American
usage of ‘programme’ and ‘course’ whereby a programme is made up of a collection of compulsory and
optional courses, and a (one semester) course constitutes about 40 hours of instruction.
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economics, and psychology, who are increasingly requiring their students to take
some mathematics. Thus, a somewhat facile distinction between the two groups is
that programme students want to study mathematics while client students have to. In
any case, it is usually expected that client students terminate their mathematics
studies after a year or two of their undergraduate studies.

Future school mathematics teachers, particularly at the secondary level can be
considered as either programme or client students depending on national criteria for
the training of teachers. For example, in certain European countries, prospective
secondary teachers have to complete a full 5-year undergraduate mathematics
curriculum and hence are, in our terms, programme students. On the other hand,
future teachers in North America generally take only a certain number of
mathematics courses rather than a full mathematics programme.

2.2 OQOrganization of undergraduate teaching

Many departments of Mathematics are responsible for teaching all programme
and client students. In fact, the teaching of client students (the ‘service role’) is often
the bread-and-butter component of departments’ teaching and it justifies having a
large department of mathematics. Other institutions have ‘mini-departments’ of
mathematics housed in engineering (Polytechniques), finance, economics, or
education and teach exclusively the students of their discipline.

Mathematics departments who teach both programme and client students do so
in different ways. Some require all their students to take the same courses, say,
calculus, differential equations, or linear algebra, resulting in classes with a
heterogeneous group of students whose background preparation, career ambitions,
and interest in mathematics are quite varied. This ‘one-curriculum-for-all’ approach
inevitably raises a range of issues as to the appropriate level and emphasis, and as to
the type and depth of applications. Other departments offer a variety of courses that
are specifically geared for one client group or another, viz. ‘calculus for engineers’,
‘calculus for chemists’, or ‘algebra for teachers’.

Focusing on the mathematics curriculum specifically targeted for programme
students, there are also wide variations depending on the traditions of the
universities involved. These traditions have to do with: admission standards, the
juncture at which a student can choose a mathematics option, the length of study, the
number of courses required, course choices (both in mathematics and outside the
discipline), and whether or not there is a requirement for studying mathematics
together with a cognate discipline. The intended goal(s) of a mathematics
programme (even if not explicitly articulated) are also dissimilar. To take but one
example, in most Canadian universities, programme students complete either a
major or honours in some field of mathematics (e.g. pure, applied, statistics). A
major programme is comprised of a certain concentration of core and elective
mathematics courses (which can amount to as little as a third of the total number of
courses necessary to obtain a bachelor’s degree). Except for the first year of the
major (in a 4-year programme) where there are several compulsory courses in the
other sciences and computer science, students have nearly complete freedom to
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choose courses complementary to the major. The honours programme, on the other
hand, tends to be a more selective programme with a substantially greater number of
advanced courses, and may take possibly an extra year to complete. The goal of the
honours programme is to train highly qualified persons who can continue doing
graduate studies and research or be employed in demanding mathematical fields. On
the other hand, the goals for the major programme are more modest, namely to
graduate students who are mathematically literate, and who can function
comfortably in work situations requiring quantitative, analytic, and mathematical
problem solving skills. (For more details on a major and honours programme, see
Hillel, this volume, pp. 179-184.)

3. FACTORS INFLUENCING CURRICULUM

3.1 Changes within mathematics

The undergraduate mathematical landscape is always in some state of flux
mirroring the organic nature of mathematics. New theories and mathematical tools,
sometimes supported by powerful computers, are being developed within
mathematics or as applications in cognate disciplines such as physics, computer
science, and engineering. Certain new subjects become highly visible (e.g.,
dynamical systems, computer algebra), others experience a renaissance (e.g.,
geometry, number theory, numerical analysis), and yet others become more
marginalized (e.g., category theory). In fact, Steen has written that “strong
departments find that they replace or change significantly half of their courses
approximately once a decade” and “as new mathematics is continually created, so
mathematics courses must be continually renewed” (Steen, 1992). These on-going
updates to the curriculum can be regarded, in a sense, as ‘deterministic’ aspects of
curriculum change, ones that do not put into question the purpose, goals, and means
of undergraduate education.

3.2 Changes in the pre-university math curriculum

Secondary school’ mathematics curricula have undergone tremendous changes in
the past 20 years. One most visible change in many countries is the reduction in the
number of hours devoted to mathematics and science. For example, in France, up to
1994, secondary school (lycée) students had 15 hours of science teaching per week,
of which 9 were in mathematics and physics. By 1999, there are only 8 hours a week
in which to teach mathematics, physical sciences, biology and technology. Also in
France, traditionally taught subjects like set theory and algebraic structures have
been dropped, as well as the emphasis on definitions and proofs. Reports from other
countries also allude to a de-emphasis on formal mathematics and on complicated

2 Secondary school terminates after 11 years of schooling in some countries but lasts for up to 13 in
others.
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manipulations, the increased use of calculators with computer algebra systems
capabilities, and the teaching of synthetic geometry, as well as a teaching approach
which relies more on investigative project-oriented work. There are also increasing
attempts to introduce quantitative, statistical and probabilistic reasoning in the
secondary curriculum,

One should mention here that, quite often, changes in the secondary curriculum
are brought about without coordination with the very universities and colleges that
the students subsequently attend. Consequently, many university mathematicians are
not always aware of the nature and extent of these changes nor of the pressures and
constraints on the pre-university system that could explain, for example, why the
number of hours devoted to mathematics is being reduced.

3.3 Changing clientele

Most countries have wisely abandoned the elitist view of university education
in favour of a more open policy that makes university education accessible to a
larger segment of the population. This policy has resulted in a great influx of
students to universities (estimated to have increased 6-fold in the past 30 years,
Steen, this volume, pp. 303-312), including a massive increase in the number of
client students who are enrolled in agriculture, commerce, finance, social sciences,
etc. These students tend to be heterogeneous in terms of their mathematical
preparation, probably would rather not take mathematics at all if given the choice,
and are not very interested in mathematical rigour and abstraction (nor even always
convinced about the relevance of mathematics to their careers). At the same time,
they constitute, in some universities, the main clientele of a mathematics
department. Also, open immigration policies in some countries has resulted in an
influx of students whose first language is not the language of instruction.

One general feature of incoming students is that they enter university having
logged less hours of mathematics lessons because of the reduction of the number of
hours devoted to mathematics at the secondary level. But even when a choice exists
for taking more mathematics at the pre-university level, the trend is for students to
forego this choice. For example, in England, there has been a significant drop in the
number of students completing A-level mathematics. And, among those who do
complete their A-level, the number of university mathematics candidates who have
completed two A-levels in mathematics has dropped to about 1 in 10 in the 1990s
whereas it was 1 in 3 in the 1960s (Simpson, 1998). A recent article indicates a drop
of over 30% in students entering mathematics programmes in Germany (Jackson,
2000). Thus, the overall effect is that students’ background preparation is not
sufficient for meeting the rigours of traditional entry-level university courses in
linear algebra and calculus, even for students who are relatively successful in their
pre-university courses. (This point was also made by participants from Australia,
Brazil, Canada, England, Japan, Malaysia, and the USA.)

Students’ attitudes towards education, their study habits, and their expectations,
are influenced by the traditions and values of the prevailing culture in which they
live. There is also a sense that students nowadays are more career-oriented and thus
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interested in getting skills that lead directly to jobs. This explains why in some
countries, the number of mathematics programme students has been dwindling
dramatically and the ablest students are drawn to such fields as computer science,
engineering, and finance, where career opportunities are more evident. Within
mathematics, there is sharp increase in enrolment in actuarial mathematics, when
this option is available (for example, in Australia, Canada - see Hillel, this volume,
pp. 179-184, - and Switzerland - see Kirchgraber, this volume, pp. 185-190). There
is also an increasing tendency for students to combine study and work, thus taking
on part-time jobs to supplement their income.

Departments of mathematics are thus faced with the challenge of having to teach
students whose background preparation, learning styles, study habits, and career
ambitions are more and more at odds with the traditional lecture-style mathematical
training with its Bourbaki-like curriculum, particularly, in pure mathematics.
Furthermore, many departments are facing an increase in the number of client
students and a decline in the number of programme students.

3.4 Resources

Certain countries have never had adequate resources for higher education; others
are experiencing political and economic upheavals which greatly affect education, as
well as all other aspects of life. Even more affluent and politically stable countries,
are witnessing a continual erosion of the levels of government support for
universities. Diminishing resources usually translate into less staff, larger classes,
and pressures to be more efficient and financially accountable. In such instances,
mathematics departments are finding themselves less able to offer specialized
courses to a small number of students and so have redefined an appropriate core of
an undergraduate mathematics programme.

3.5 Technology

Computers have impacted on the methods and results of several mathematical
domains. Coupled with graphing software, computer algebra systems, dynamic
geometry, or differential equations packages, computers and calculators pose
interesting challenges to mathematics departments. They have led to questioning
what mathematics content is central and what is redundant, as well as, how present-
day learning, teaching and assessment practices, can be and ought to be changed.

3.6 External influences: Governments, Research Agencies and Business

There is a prevalent sentiment among mathematicians that they, as the
professionals, are in the best position to define the undergraduate curriculum for
their students. They view attempts to influence curricular choices by bodies external
to the department as an unwarranted intrusion. However, governments who, in most
cases, foot the universities’ bills, have, in recent years, been much more vocal and



MICHELE ARTIGUE

WHAT CAN WE LEARN FROM EDUCATIONAL
RESEARCH AT THE UNIVERSITY LEVEL?

1. INTRODUCTION

For more than 20 years, educational research has dealt with mathematics
learning and teaching processes at the university level. It has tried to improve our
understanding of the difficulties encountered by students and the dysfunction of the
educational system; it has also tried to find ways to overcome these problems. What
can such research offer to an international study? This is the issue I will address in
this article, but first I would like to stress that it is not an easy question to answer,
for several reasons including at least the following:

1. Educational research is far from being a unified field. This characteristic
was clearly shown in the recent ICMI study entitled “What is research in
mathematics education and what are its results?” (See Sierpinska and
Kilpatrick, 1996.) The diversity of existing paradigms certainly
contributes to the richness of the field but, at the same time, it makes the
use and synthesis of research findings more difficult.

2. Learning and teaching processes depend partly on the cultural and social
environments in which they develop. Up to a certain point, results
obtained are thus time- and space- dependent, their field of validity is
necessarily limited. However, these limits are not generally easy to
identify.

3. Finally, research-based knowledge is not easily transformed into
effective educational policies.

I will come back to this last point later on. Nevertheless, I am convinced that
existing research can greatly help us today, if we make its results accessible to a
large audience and make the necessary efforts to better link research and practice. 1
hope that this article will contribute to making this conviction not just a personal
one. Before continuing, I would like to point out that the diversity mentioned above
does not mean that general tendencies cannot be observed. At the theoretical level,
these are indicated, for instance, by the dominating influence of constructivist
approaches inspired by Piaget’s genetic epistemology, or by the recent move

' A shorter version of this paper, Artigue (1999), was published in the Notices of the American
Mathematical Society.
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attempt to take more account of the social and cultural dimensions of learning and
teaching processes (see Sierpinska and Lerman, 1996). But within these general
perspectives, researchers have developed a multiplicity of local theoretical frames
and methodologies, which differently shape the way research questions are selected
and expressed, and the ways they are worked on — thus affecting the kind of results
which can be obtained, and the ways they are described. At the cultural level, such
general tendencies are also observed. Strong regularities in students’ behaviour and
difficulties as well as in the teaching problems met by educational institutions, have
been observed. These, up to a point, apparently transcend the diversity of cultural
environments.

In the following, after characterizing the beginnings of the research enterprise, 1
will try to overcome some of the above-mentioned difficulties presenting research
findings along two main dimensions of learning processes: qualitative changes,
reconstructions and breaches on the one hand, cognitive flexibility on the other
hand. These dimensions can to some degree, be considered ‘transversal’ with respect
to theoretical and cultural diversities as well as to mathematical domains. No doubt
this is a personal choice, induced by my own experience as a university teacher, as a
mathematician, and as a education researcher; it shapes the vision I give of research
findings, a vision which does not pretend to be objective or exhaustive.

2. FIRST RESEARCH RESULTS: SOME NEGATIVE REPORTS

The first research results obtained at university level can be considered negative
ones. Research began by investigating students’ knowledge in specific mathematical
areas, with particular emphasis on elementary analysis (or calculus in the Anglo-
Saxon culture), an area perceived as the main source of failure at the undergraduate
level. The results obtained gave statistical evidence of the limitations both of
traditional teaching practices and of teaching practices which, reflecting the
Bourbaki style, favoured formal and theoretical approaches. The structure and
content of the book, Advanced Mathematical Thinking (Tall, 1991), gives clear
evidence of these facts, noting that:

e by the early eighties, Orton (1980), in his doctoral thesis, showed the
reasonable mastery English students had of what can be labelled as
‘mere algebraic calculus’: calculation of derivatives and primitives
(anti-derivatives), but the significant difficulty they had in
conceptualizing the limit processes underlying the notions of
derivative and integral;

e at about the same time, Tall and Vinner (1981), highlighted the
discrepancy between the formal definitions students were able to
quote and the criteria they used in order to check properties such as
functionality, continuity, derivability. This discrepancy led to the
introduction of the notions of concept definition and concept image
in order to analyze students’ conceptions;
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e very early, different authors documented students’ difficulties with
logical reasoning and proofs, with graphical representations, and
especially with connecting analytic and graphical work in flexible
ways.

Schoenfeld (1985), also documented the fact that, faced with non-routine tasks,
students — even apparently bright students — were unable to efficiently use their
mathematical resources.

Research also showed, quite early, that the spontaneous reactions of educational
systems to the above-mentioned difficulties were likely to induce vicious circles
such as the following. In order to guarantee an acceptable rate of success, an
increasingly important issue for political reasons, teachers tended to increase the gap
between what was taught and what was assessed. As the content of assessments is
considered by students to be what should be learnt, this situation had dramatic
effects on their beliefs about mathematics and mathematical activity. This, in turn,
did not help them to cope with the complexity of advanced mathematical thinking.

Fortunately, research results are far from being limited to such negative reports.
Thanks to an increasing use of qualitative methodologies allowing better
explorations of students’ thinking and the functioning of didactic institutions
(Schoenfeld, 1994), research developed and tested global and local cognitive
models. It also organized in coherent structures the many difficulties students
encounter with specific mathematical areas, or in the secondary/tertiary transition. It
led to research-based teaching designs (or engineering products) which,
implemented in experimental environments and progressively refined, were proved
to be effective. Without pretending to be exhaustive, let us give some examples,
classified according to the two main dimensions given above. (For more details, the
reader can refer to the different syntheses in Artigue, 1996, Dorier, 2000,
Schoenfeld, 1994, Tall, 1991 and 1996; to the special issues dedicated to advanced
mathematical thinking by the journal Educational Studies in Mathematics in 1995
edited by Dreyfus; by the journal Recherches en Didactique des Mathématiques in
1998 edited by Rogalski; to some of the diverse monographs published by the
Mathematical Association of America about calculus reform, innovative teaching
practices; and to research about specific undergraduate topics to be found in the
MAA Notes on Collegiate Mathematics Education.)

3. QUALITATIVE CHANGES, RECONSTRUCTIONS AND BREACHES IN
THE MATHEMATICAL DEVELOPMENT OF KNOWLEDGE AT UNIVERSITY
LEVEL

One general and crosscutting finding in mathematics education research is the
fact that mathematical learning is a cognitive process that necessarily includes
‘discontinuities.” But, depending on the researcher this attention to discontinuities is
expressed in different ways. In order to reflect this diversity and the different
insights it allows, I will describe three different approaches: the first one, in terms of
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process/object duality, the second one in terms of epistemological obstacles, the
third one in terms of reconstructions of relationships to objects of knowledge.

3.1 Qualitative changes in the transition from processes to objects: APOS theory

As mentioned above, research at the university level is the source of theoretical
models. The case of APOS theory, initiated by Dubinsky (see Tall 1991) and
progressively refined (see Dubinsky and McDonald, this volume, pp. 275-282), is
typical. This theory, which is an adaptation of the Piagetian theory of reflective
abstraction, aims at modelling the mental constructions used in advanced
mathematical learning. It considers that “understanding a mathematical concept
begins with manipulating previously constructed mental or physical objects to form
actions; actions are then interiorized to form processes which are then encapsulated
to form objects. Objects can be de-encapsulated back to the processes from which
they were formed. Finally, actions, processes and objects can be organized in
schemas” Asiala et al, 1996. Of course, this does not occur all at once and objects,
once constructed, can be engaged in new processes and so on. Researchers following
this theory use it in order to construct genetic decomposition of concepts taught at
university level (in calculus, abstract algebra, etc.) and design teaching processes
reflecting the genetic structures they have constructed and tested.

As with any model, the APOS model only gives a partial vision of cognitive
development in mathematics, but one cannot deny today that it put to the fore a
crucial qualitative discontinuity in the relationships students develop with respect to
mathematical concepts. This discontinuity is the fransition from a process
conception to an object one, the complexity of its acquisition and the dramatic
effects of its underestimation by standard teaching practices.” Research related to
APOS theory also gives experimental evidence of the positive role which can be
played by programming activities in adequate languages (such as the language
ISETL, cf. Tall, 1991) in order to help students encapsulate processes as objects.

Breaches in the development of mathematical knowledge: Epistemological
obstacles. The theory of epistemological obstacles, firstly introduced by Bachelard
(1938) and imported into educational research by Brousseau (1997), proposes an
approach complementary to cognitive evolution, focussing on its necessary
breaches. The fundamental principle of this theory is that scientific knowledge is not
built in a continuous process but results from the rejection of previous forms of
knowledge: the so-called epistemological obstacles. Researchers following this
theory hypothesize that some learning difficulties, often the more resistant ones,
result from forms of knowledge which are coherent and have been for a time
effective in social and/or educational contexts. They also hypothesize that
epistemological obstacles have some kind of universality and thus can be traced in
the historical development of the corresponding concepts. At the university level,

2 Note that a very similar approach was developed independently by Sfard, with more emphasis on the
dialectic between the operational and structural dimensions of mathematical concepts in mathematical
activity (Sfard, 1991).
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such an approach has been fruitfully used in research concerning the concept of limit
(cf. Artigue 1998 and Tall 1991 for synthetic views). Researchers such as
Sierpinska, (1985), Comu, (1991) and Schneider, (1991) provide us with historical
and experimental evidence of the existence of epistemological obstacles, mainly the
following:

o the everyday meaning of the word ‘limit’, which induces resistant
conceptions of the limit as a barrier or as the last term of a process, or
tends to restrict convergence to monotonic convergence;

o the overgeneralization of properties of finite processes to infinite
processes, following the continuity principle stated by Leibniz;

o the strength of a geometry of forms which prevents students from
clearly identifying the objects involved in the limit process and their
underlying topology. This makes it difficult for students to appreciate
the subtle interaction between the numerical and geometrical settings
in the limit process.

Let us give one example (taken from Artigue, 1998) of this last resistance, which
occurs even in advanced and bright students. In a research project about differential
and integral processes, advanced students were asked the following non-standard
question: “How can you explain the following: using the classical decomposition of
a sphere into small cylinders in order to find its volume and area, one obtains the

4
expected answer for the volume 3 7R ,but #° R for the area instead 47ZR" 7 It was

observed that, faced with this question, the great majority of advanced students
tested got stuck. And, even if they were able to make a correct calculation for the
area (which they were not always able to do) they remained unable to resolve the
conflict.

As the students eventually said, because the pile of cylinders, geometrically,
tends towards the sphere, the magnitudes associated with the cylinders behave in the
same way and thus have as a limit the corresponding magnitude for the sphere. Such
a resistance may look strange but it appears more normal if we consider the effect
produced on mathematicians by the famous Schwarz counterexample showing that,
for a surface as simple as a cylinder, limits of areas of triangulations when the size
of the triangles tends towards 0, can take any value greater than or equal to the area
up to infinity, depending on the choices made in the triangulation process, an effect
nicely described by in Lebesgue, (1956). The historical and universal commitments
of the theory which leads to such results can be discussed and are presently
discussed (see, for instance, Radford, 1997). However, what cannot be negated is the
fact that the above-mentioned forms of knowledge constitute resistant difficulties for
today’s students; moreover, that mathematical learning necessarily implies partial
rejection of previous forms of knowledge, which is not easy for students.
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REVOLUTION BY STEALTH: REDEFINING
UNIVERSITY MATHEMATICS

1. INTRODUCTION

Change, growth, and accountability dominate higher education at the dawn of the
twenty-first century. According to delegates at UNESCO’s recent World Conference
on Higher Education, change is unrelenting, ‘civilizational in scope,’ affecting
everything from the nature of work to the customs of society, from the role of
government to the functioning of the economy. Growth in higher education has been
equally dramatic, with worldwide enrolment rising from 13 million in 1960 to near
90 million today (World Conference on Higher Education, 1998).

Concomitant with change and growth is pressure from governments everywhere
for greater accountability from professors and leaders of higher education, for
evidence that, in a world of rapid change, universities are working effectively to
address pressing needs of society. Autonomy, the prized possession of universities,
presupposes accountability. The escalating pressures of global change, growth, and
accountability will create, according to UNESCO Director Federico Mayor, “a
radical transformation of the higher education landscape not only more but different
learning opportunities” (Mayor, 1998).

Much of the upheaval in society and employment is a consequence of the truly
revolutionary expansion of worldwide telecommunication, as is the stunning
increase in demand for higher education. But this demand is predicated on the belief
that universities properly anticipate signals from the changing world of work and
create optimal linkages between students’ studies and expectations of employers.
Unfortunately, few universities have taken up this challenge, at least not unless
pushed by external forces.

As the world changes rapidly and higher education grows explosively,
universities evolve leisurely. Courses, curricula, and examinations remain steeped in
tradition, some centuries old, while autonomy and academic freedom rule in the
classroom. Few institutions of higher education readily embrace the culture of
assessment that is required to ensure relevance and effectiveness of their curriculum.
Under these circumstances it is only natural for political leaders to demand stronger
connections between the classroom and the community, between the ivory tower and
the industrial park.
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2. UNDERGRADUATE MATHEMATICS

Demands for relevance and accountability are no strangers to undergraduate
mathematics. Indeed, post-secondary mathematics can be viewed as higher
education in microcosm. Growth in course enrolments has been enormous,
paralleling the unprecedented penetration of mathematical methods into new areas
of application. These new areas—ranging from biology to finance, from agriculture
to neuroscience—have changed profoundly the profile of mathematical practice (see
Odom, 1998). Yet for the most part these changes are invisible in the undergraduate
mathematics curriculum, which still marches to the drumbeat of topics first
developed in the eighteenth and nineteenth centuries.

It is, therefore, not at all surprising that the three themes identified at the
UNESCO conference are presaged in the Discussion Document for this ICMI Study:
the rapid growth in the number of students at the tertiary level; unprecedented
changes in secondary school curricula, in teaching methods, and in technology; and
increasing demand for public accountability (see Discussion Document, 1997).
Worldwide demands for radical transformation of higher education bear on
mathematics as much as on any other discipline.

Post-secondary students study mathematics for many different reasons. Some
pursue clear professional goals in careers such as engineering or business where
advanced mathematical thinking is directly useful. Some enrol in specialized
mathematics courses that are required in programmes that prepare skilled workers
such as nurses, automobile mechanics, or electronics technicians. Some study
mathematics in order to teach mathematics to children, while others, far more
numerous, study mathematics for much the same reason that students study literature
or history: for critical thinking, for culture, and for intellectual breadth. Still others
enrol in post-secondary courses designed to help older students master parts of
secondary mathematics (especially algebra) that they never studied, never learned,
or just forgot. (This latter group is especially numerous in countries such as the
United States that provide relatively open access to tertiary education, see Phipps,
1998.)

In today’s world, the majority of students who enrol in post-secondary education
study some type of mathematics. Tomorrow, virtually all will. In the information
age, mathematical competence is as essential for self-fulfilment as literacy has been
in earlier eras. Both employment and citizenship now require that adults be
comfortable with central mathematical notions such as numbers and symbols, graphs
and geometry, formulas and equations, measurement and estimation, risks and data.
More important, literate adults must be prepared to recognize and interpret
mathematics embedded in different contexts, to think mathematically as naturally as
they think in their native language (see Steen, 1997).

Since not all of this learning can possibly be accomplished in secondary
education, much of it will take place in post-secondary contexts, either in traditional
institutions of higher education (such as universities, four- and two-year colleges,
polytechnics, or technical institutes) or, increasingly, in non-traditional settings such
as the internet, corporate training centres, weekend short-courses, and for-profit
universities. This profusion of post-secondary mathematics programmes at the end
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of the twentieth century contrasts sharply with the very limited forms of university
mathematics education at the beginning of this century. The variety of forms,
purposes, durations, degrees, and delivery systems of post-secondary mathematics
reflects the changing character of society, of careers, and of student needs.
Proliferation of choices is without doubt the most significant change that has taken
place in tertiary mathematics education in the last one hundred years.

3. MATHEMATICAL PRACTICE

The primary purpose of mathematics programmes in higher education is to help
students learn whatever mathematics they need, both for their immediate career
goals and as preparation for life-long learning. Today’s students expect institutions
of higher education to offer mathematics courses that support a full range of
educational and career goals, including:

. Agriculture e Law

. Biological Sciences *  Mathematical Research
. Business *  Management

. Computing *  Medical Technology

. Elementary Education e Physical Science

. Electronics *  Quantitative Literacy

. Economics +  Remedial Mathematics
. Engineering e Secondary Education

. Finance *  Social Sciences

. Geography e Statistics

. General Education ¢ Technical Mathematics
. Health Sciences *  Telecommunications

Even without exploring details of specific curricula or programmes, it should be
obvious that the multiplicity of student career interests requires, if you will, multiple
mathematics. Consider a few examples of how relatively simple mathematics is used
in today’s world of high performance work:

o  Precision farming relies on satellite imaging data supplemented by soil samples
to create terrain maps that reflect soil chemistry and moisture evels. These
methods depend on geographic information systems that blend spreadsheet
organization with a variety of algorithms for geometric projections (e.g., for
rendering onto flat maps oblique satellite images of earth’s curved surface).

e Technicians in semiconductor manufacturing plants, analyze real-time data
from production processes in order to detect patterns of change that might signal
an impending reduction in quality before it actually happens. These methods
involve measurement strategies, graphical analyses, and tools of statistical
quality control.

e  Teams that design new commercial airplanes now engage designers,
manufacturing personnel, maintenance workers, and operation managers in joint
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planning with the goal of minimizing total costs of construction, maintenance,
and operation over the life of the plane. This enterprise involves teamwork
among individuals of quite different mathematical training as well as innovative
methods of optimization.

¢ Emergency medical personnel need to interpret quickly and accurately dynamic
graphs of heart action that record electrical potential, blood pressure, and other
data. With experience, they learn to recognize both regular patterns and
common pathologies. With understanding, they can also interpret uncommon
signals,

These examples are not primarily about the relation of mathematical theory to
applications—the traditional poles of curricular debate—but about something quite
different: mathematical practice (see Denning, 1997). Behind each of these
situations lurks much good mathematics (e.g., projection operators, optimization
algorithms, fluid dynamics, statistical inference) that can be applied in these and
many other circumstances. However, most students are not primarily motivated to
learn this mathematics, but rather to increase crop yield, minimize manufacturing
defects, reduce airplane costs, or stabilize heart patients. Although a mathematician
will recognize these as mathematical goals—to increase, minimize, reduce,
stabilize—neither students nor their teachers in agriculture, manufacturing,
engineering, or medicine would recognize or describe their work in this way. To
these individuals, the overwhelming majority of clients of post-secondary
mathematics, mathematical methods are merely part of the routine practice of their
profession.

Indeed, mathematics in the workplace is often so well hidden as to be invisible to
everyone except a discerning observer. In the United States different industries have
created skill standards for entry-level employees (e.g., electronics (American
Electronics Association, 1994), photonics (Center for Occupational Research and
Development, 1995), health care (FarWest Laboratory, 1995), and National Skills
Standards Board, 1998). Virtually all of these standards include substantial uses of
mathematics, but most such applications are embedded in routine job requirements
without any visible hint of the underlying mathematics. Although mathematics is
now ubiquitous in business and industry, the mathematics found there is often
somewhat different from what students learn in school or college (see Davis, 1996
and Packer, 1997). Similarly, in the wider world of public policy, the gradual
incursion of statistics and probability in measuring (and sometimes controlling)
personal health, societal habits, and national economies has created whole new
territories for students and professors to explore (see Bernstein, 1996, Porter, 1995
and Wise, 1995).

In sharp contrast to this profligate flowering of practical mathematics in diverse
post-secondary settings, university mathematics—what mathematicians tend to think
of as ‘real mathematics’—matured in the last century as a tightly disciplined
discipline led by professors of world-wide renown who held major chairs in leading
universities and research institutes. However, this university mathematics, ‘real
mathematics’ as practiced in real universities, now constitutes only a tiny fraction of
post-secondary mathematics. One data point: in the United States, fewer than 15%
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of traditional undergraduate mathematics enrolments are in courses above the level
of calculus (Loftsgaarden, Rung, and Watkins, 1997). And this does not count non-
traditional enrolments, where the variety of offerings is even greater. A realist might
well argue that ‘real mathematics’ is found not in the traditional curriculum inherited
from the past but in today’s widely dispersed courses, where a multitude of students
learn a cornucopia of mathematics in diverse situations for a plethora of purposes.

4. LEARNING MATHEMATICS

Where do students learn mathematics? Some take traditional mathematics
courses such as calculus, geometry, and statistics. Some take courses specifically
designed for certain professions—mathematics for nurses, statistics for lawyers,
calculus for engineers—that are offered either by mathematics departments or by the
professional programmes themselves. But many, perhaps even most, pick up
mathematics invisibly and indirectly as they take regular courses and internships in
their professional fields (e.g., in physiology, geographic information systems, or
aircraft design).

Any university dean knows that statistics is more often taught outside of
statistics programmes than inside them. The same is true of mathematics, but is not
as widely recognized. Every professional programme, from one- and two-year
certificates to four- and five-year engineering degrees, offers courses that provide
students with mathematics (or statistics) in the context of specific professional
practice. This is entirely natural, since most students find that they learn
mathematics more readily, and are more likely to be able to use it when needed, if it
is taught in a context that fits their career goals and in which the examples resonate
with those that appear in their other professional courses.

The appeal of context-based mathematics is no surprise, nor is its widespread
presence in university curricula. But what is somewhat new—and growing rapidly—
is the extent to which good mathematics is unobtrusively embedded in routine
courses in other subjects. Anywhere spreadsheets are used (which is almost
everywhere) mathematics is learned. It is also learned in courses that deal with such
diverse topics as image processing, environmental policy, and computer-aided
manufacturing. From technicians to doctors, from managers to investors, most of the
mathematics people use is learned not in a course called mathematics but in the
actual practice of their craft. And in today’s competitive world, where quantitative
skills really count, embedded mathematical tools are often as sophisticated as the
techniques of more traditional mathematics.

So tertiary mathematics now appears in three forms: as traditional mathematics
courses (both pure and applied) taught primarily in departments of mathematics; as
context-based mathematics courses taught in other departments; and as courses in
other disciplines that employ significant (albeit often hidden) mathematical methods.
I have no data to quantify the ‘biomass’ of mathematics taught through these three
means, but to a first approximation I would conjecture that they are approximately
equal.
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TECHNOLOGY

A working group report

1. INTRODUCTION

The technology working group focused on the various ways in which
technology can impact upon the teaching and learning of mathematics. As was
already underlined in the Discussion Document for this ICMI Study, “Worldwide,
increasing use is being made of computers and calculators in mathematics
instruction. Much mathematical software and many teaching packages are available
for a range of curriculum topics. This, of course, raises such issues as what such
software and packages offer to the teaching and learning of the subject, and what
potential problems for understanding and reasoning they might generate.” The
Discussion Document proposed to identify and analyze innovative projects and
research that are particularly fruitful for advancing our thinking in this domain.

Reflecting on the impact of information technologies on the teaching of
mathematics is not new for an ICMI Study — ICMI had already launched a study in
1985 entitled “The influence of Computers and Informatics on Mathematics and its
Teaching”. That ICMI Study touched all levels of instruction and underlined
primarily the impact of computers on several areas, including:

e on mathematics itself; computers have prompted the revisiting of familiar
notions such as number and elementary functions, the revitalizing of old
problems, and the emergence of new domains. They have extended the range of
applications of mathematics, and have blurred the boundaries between pure and
applied mathematics;

on the notion of proof in view of computer-assisted proofs;

e on the practice of mathematicians; computers have led to an increase in
experimentation and the use of simulations. They afford new means of
communication and accessing information that affect the way mathematicians
carry on their professional lives.

This previous ICMI Study also recognized that despite an abundance of
interesting experiences, the impact of technology on teaching was still globally
weak, and that the introduction of computers in the classroom had not necessarily
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led to any discernible improvements. The working group discussion focused on the
present-day role of technology in teaching at the post-secondary level, on the
perspectives envisaged for the future and on broader research questions that are
affected by the use of technology. It centred mostly on the use of technological tools
for supporting students’ learning, particularly via visualization; computation, and
programming. But, it also recognized the role of such tools for: demonstration by the
teacher; presentation of lessons via distance learning; student assessment; and
student drill.

2. TECHNOLOGY AS A MEANS FOR SUPPORTING STUDENTS’
LEARNING

At the university level in general, and at the collegial level in particular, the
introduction of technologies was seen as a means to renew pedagogical practices and
to circumvent a style of teaching that was too formal or too algorithmic. It was
intended to create better coherence between teaching practice and the constructivist
approach to learning. Celia Hoyles, in her description of the potential contribution to
post-secondary education of researches carried in the secondary level, has
emphasized that:

“There is considerable evidence of the computer’s potential to:

o foster more active learning using experimental approaches along with the
possibility of helping students to forge connections between different
forms of expression, e.g. visual, symbolic ;

e provoke constructionist approaches to learning mathematics where students
learn by building, debugging and reflection, with the result that the
structure of mathematics and the ways the pieces fit together are open to
inspection ;

e motivate explanations in the face of “surprising” feedback : that is, start a
process of argumentation which can (with due attention) be connected to
formal proof ;

o foster cooperative work, encouraging discussion of different solutions and
strategies ; computer work is more visible and more easily “conveyed”
between lecturer and students ;

e open a window on to student thought processes : students hold different
conceptions of mathematical ideas which are hard to access, even in the
case of articulate adults. How students interact with the computer and
respond to feedback can give insight into their conceptions and their
beliefs about mathematics and the role of computers.”

Hoyles hastened to add that a successful integration of computers necessitates
the rethinking of “the content and sequence of the mathematics courses given that
students and mathematics have (or should have) changed in the light of the new
technology [...] teaching approaches to take into account the broad range of
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response inevitable in interacting with computers [...} and the relationship of
‘computer maths’ to paper and pencil maths” (Hoyles, 1999).

The question of what constitutes ‘successful integration’ of technology to the
teaching and learning process was central to the working group discussion. Several
presentations by participants on the way in which they have used technology to
teach mathematics at the undergraduate level, helped to focus the discussion. These
included presentations by: Karen King, on teaching differential equations; Ed
Dubinsky, on programming using ISETL; Joel Hillel, on using Maple in teaching
linear algebra; and, Rosalind Phang, on using statistical software.

2.1 Changes in the Nature of the Mathematics Taught

King’s example illustrated the nature of the changes in teaching differential
equations made possible by using a technology that graphs slope fields and direction
fields. These enable students to engage in qualitative analyses of previously
inaccessible differential equations rather than use traditional analytic techniques.
Thus, the focus of a differential equations’ course could shift from just finding the
solution functions, to graphically organizing the space of solution functions using
slope fields and bifurcation diagrams, and to examining the nature of the solution
functions (see Rasmussen, 1999).

If one considers, for example, the differential equation

dy/dt = 0.3y(1-y/8)(y/3-1),
one could attempt to solve this using separation of variables but would not deduce a
closed-form general solution. However, with a slope field as shown in Figure 1
derived from a TI-92 program written by King, a student can examine the types of
solution functions and their general behaviours, given different initial conditions.
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Figure 1 slope field program with slopes and several approximations
dy/dt=0.3y(1-y/8)(y/3-1), y(0)=1, 2, 3,4, 5,6,8 9,11, 12
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This example provides an instance where changes to an entire course can be
made, including the order in which topics are taught and the mathematics with
which the students engage (see Artigue, 1992, and Rasmussen and King, 1999).
Such changes, in turn, lead to other changes in the curriculum. For example, the
study of dynamical systems has been greatly impacted by the availability of
computing technology and has resulted in an early focus on systems of differential
equations in many courses. This is but one example where a particular mathematical
discipline is changed by technology which, in turns, affects changes in the nature of
how it is taught.

2.2 The role of professional tools

Secondary schools tend, by and large, to use software products and calculators
that have been specifically conceived for teaching. In contrast, universities mostly
tend to use professional tools be they general symbolic manipulators (e.g. Maple,
Mathematica, MuPad, Matlab, SciLab) or tools for specific domains such as
Statistics (APSS, SASS), though some specific educational software such as
Geometer’s Sketchpad and Cabri are also relevant for instruction at the tertiary level.
Faculty members are familiar with these professional tools since they use them in
their own mathematical work and, consequently, they tend to be widely available on
campus. There is an ever increasing number of texts that integrate the use of a
software package, for example, “Calculus and Mathematica” (Uhl, 1999) or
“Ordinary Differential Equations using MATLAB” (Polking, 1995). Individual
universities have also written primers that bridge between the particular program or
technology that they use and the mathematics texts in use in the department (see
Colgan, 1999 for a discussion of such a primer from Australia).

Professional software tools are particularly powerful and, at first sight, seem to
take full charge of what traditionally has been the mathematics work expected of
students. They embody a tremendous amount of mathematical knowledge that,
nevertheless, remains invisible and inaccessible to the users. The availability of
these powerful tools raised the inevitable question in the working group regarding
the necessary mathematical knowledge of users if they are to become efficient and in
reasonable control of such tools. These tools also force us to both question and
redefine the content of mathematical training, notably in sectors where mathematics
is a service course. It prompts us to ask under what conditions can they become
means for students to construct mathematical knowledge, over and above their role
as powerful computational tools.

In response to the question regarding the necessary skills/concepts that students
must possess before they can use a powerful CAS tool, Hillel suggested seizing the
‘black box’ feature as a learning opportunity. He presented an example on teaching
the Cayley-Hamilton Theorem in linear algebra, where students are first asked to use
Maple to build inductive evidence for that theorem. By using the software, students
can compute the characteristic polynomial f{(x) of a given matrix A and then compute
SfTA). Among other things, it becomes apparent that the result of the computation is a
square matrix, not a number, to which students must therefore attend and about
which they must be explicit. Students also can explore these computations for
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several matrices, focusing the process of computing fix) rather than on the actual
computations. Such activities can take place prior to introducing the theorem and its
proof in class. This is a pedagogical choice, a kind of ‘didactical inversion’ which is
made within the larger context of the instructor’s course design (see Kent and Noss,
1999, and Noss, 1999).

In a slightly different vein, participants also recognized that there are computer
applications designed for other purposes that could be mathematically exploited
(e.g., Excel). This raised the questions of how one would characterize the difference
(for instructors, for users, and for the types of tasks and interactions) in using
educational mathematical tools, professional mathematical tools, and the
mathematical usage of tools designed for other purposes.

2.3 The role of programming

In the analysis of the potential of computers for mathematics learning,
programming has always played an important role. In the early days of computers
when tools for scientific calculations were very different from those of today,
programming was essential. But even if software packages have evolved,
programming can be seen as a means to change students’ relation to algorithmic
work, so important in mathematics, by putting the accent on the construction of
algorithms rather than on their execution. This shift is seen as a way to give sense to
both the algorithms and to the underlying concepts.

Dubinsky presented to the working group the use of programming in a
function-based program language (ISETL) to facilitate students’ learning about
functions (see Dubinsky, 1999). Instead of having students use conventional
programs, the students write their own. His work illustrates particularly well the
conceptual gains that students make when they have to write mathematical
constructions as programs. His approach is built on a theoretical model that looks at
learning in terms of actions, processes, and objects. ISETL is particularly well
adapted for mathematics, since it favours transforming actions into processes and
encapsulation of processes as mathematical objects (see Dubinsky and MacDonald,
this volume. pp. 275-282).

Programming activities could also be implemented via scripting which is an
automatic execution of an often used sequence of commands. Scripting capabilities
are now built into many applications, such as Excel. Whether one uses a
programming or scripting language, it is important to pay attention to the kinds of
instructional tasks that fit well with the language. Tasks that are appropriate to a
function-based language such as ISETL, would not be so in other languages that do
not operate the same way.

Finally, it was noted that programming can also play a large role in
introducing students to the world of algorithms and the concomitant notions of
complexity, validity, and efficiency.



KEN HOUSTON

ASSESSING UNDERGRADUATE MATHEMATICS
STUDENTS

1. INTRODUCTION

Any discussion of assessment must necessarily include a discussion of the
curriculum, how it is designed and organised, and what it contains. It must examine
the aims of the course that students are taking, and the objectives set for that course
and the individual modules that comprise the course. (Here I am using terminology
common in the UK. The ‘course’ students take is ‘the whole thing’, the
‘programme’. A course in this sense consists of ‘modules’ or ‘units’, commonly
called ‘courses’ in the USA, so beware of confusion!) The discussion must consider
who is doing the assessing, why they are doing it, what they are doing and how it is
being done. It must consider how assessors become assessors and how those
assessed are prepared for assessment. And it must consider if the assessment is valid
and consistent, and if it is seen to be so.

It might also be useful at this stage to define what we mean by a
‘mathematician’. There is a real sense in which almost everyone could be described
as a mathematician in that they make use of some aspect of mathematics — be it only
arithmetic or other things learnt at primary/elementary school. The term could be
used of those who have taken a first degree in mathematics and who use it in their
employment. Or it could be reserved only for those who have a PhD and who are
doing research in pure mathematics or an application of mathematics. We will use
the middle of the road term. In other words, a mathematician will be one who has
studied the subject at least to bachelors degree standard (and of course that varies
across the world!), and who is using some aspect of advanced mathematics in their
work. Such people could join a professional or learned society such as the UK based
Institute of Mathematics and its Applications. So we are primarily concerned with
the higher education of these people who can rightly be considered to be
professional mathematicians. But also there are many disciplines wherein
mathematics is an extensive and substantial component of study. Examples are
physics or electronic engineering. The mathematical education of professionals in
such fields as these could also come under the remit of this article in that many of
the suggestions made could enhance the teaching, learning and assessment of
students in these fields.

Traditionally assessment in higher education was solely summative and
consisted of one or more time-constrained, unseen, written examination papers per
module. A typical, and in some places predominant, purpose of assessment was to
put students in what was believed to be rank order of ability. Students were, perhaps,
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asked to prove a theorem or to apply a result, or to see if they could solve some
previously unseen problem. Generally this method succeeded in putting students in a
rank order and in labelling them excellent, above average, below average or fail. But
was it rank order of ability in mathematics or rank order of ability to perform well in
time-constrained, unseen, written examination papers? Sadly it was the latter, and
while the two may coincide, this is not guaranteed. Taking time-constrained, unseen,
written examination papers is a rite of passage, which students will never have to do
again after graduation and which bears little relationship to the ways in which
mathematicians work. While it is true that working mathematicians are sometimes
under pressure to produce results to a deadline, the whole concept of time-
constrained, unseen, written examinations is somewhat artificial and unrelated to
working life.

It is in this context that people started to think about change, change in the way
courses are designed and organised, change in the way course and module objectives
are specified and change in the way students are assessed and in the way the
outcomes of assessment are reported. It is usually the case that ‘what you assess is
what you get’, that is, the assessment instruments used determine the nature of the
teaching and the nature of the leamning. Learning mathematics for the principal
purpose of passing examinations often leads to surface learning, to memory learning
alone, to learning that can only see small parts and not the whole of a subject, to
learning wherein many of the skills and much of the knowledge required to be a
working mathematician are overlooked. In time-constrained, unseen, written
examinations no problem can be set that takes longer to solve than the time available
for the examination. There are no opportunities for discussion, for research, for
reflection or for using computer technology. Since these are important aspects of the
working mathematician’s life, it seems a pity to ignore them. And it seems a pity to
leave out the possibilities for deep learning of the subject, that is, learning which is
consolidated, learning which will be retained because it connects with previous
learning, learning which develops curiosity and a thirst for more, learning which is
demonstrably useful in working life.

This is, of course, a caricature of ‘traditional’ assessment, but it is not too far
from the truth, and it brings out the reasons why some people in some societies
became unhappy with university and college education. Consequently those who
educate students now pay attention to stating aims and objectives, to redesigning
curricula and structures and to devising assessment methods which promote the
learning we want to happen and which measure the extent to which it has happened.
And they pay attention to the need to convince students and funding bodies that they
are getting good value for their investment of time and money.

The discussion on course design and assessment is also tied up with the
discussion on ‘graduateness’. What is it that characterises college or university
graduates and distinguishes them from those who are not? Is it just superior
knowledge of a particular topic, or is it more than that? It is, of course, more than
that. It is not easy to define or even to describe, but it has to do with an outlook on
life, a way of dealing with problems and situations, and a way of interacting with
other people. (This is not to denigrate the learning that non-college graduates get
from ‘the university of life’, nor to suggest that they are inferior as people. It is to do
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with considering the ‘added value’ of college or university education.) Traditionally
graduateness was absorbed, simply through the university experience, but now that
we have systems of mass education in many countries of the world, we need to pay
attention to the development of graduate attributes in students so that they do,
indeed, get value for money. In many instances, and mathematics is no exception, it
is the ‘more than’ that is important when it comes to finding and keeping
employment. Subject knowledge is important but so also are personal attributes. It is
highly desirable that students develop what have come to be known as ‘key skills’
while they are undergraduates, and not just because employers are saying that the
graduates they employ are weak in this area. Innovative mathematics curricula seek
to do this by embedding the development of key skills in their teaching and learning
structures. (Key skills are often described as employability skills or transferable
skills. They include such skills as written, oral and visual communication, time
management, group-work and team-work, critical reflection and self assessment, and
computer and IT, and aural skills.)

Who are the stakeholders in an undergraduate’s education? First and foremost
are the students themselves. They are investing time and effort and they want to
know that they are getting a return on this investment. Most of them realise that it is
not enough for them to be given a grade; they know that they have to earn it. So they
need to know what performance standards are required and they need to be able to
recognise within themselves whether they have achieved these standards or not. This
raises the question of self-assessment and ways of promoting self-assessment.
Giving ‘grades that count’ is one way of encouraging students to carry out tasks.

The next stakeholder to consider are the teachers. It is their job to enable learning
and so they need to know what learning has taken place. Financial sponsors of
students are also stakeholders. They, too, want to know if they are getting a good
return on their investment. Finally, in the stakeholder debate, there is a demand from
society, students themselves, universities, prospective employers, that students be
summatively assessed, ranked and labelled in such a way that they may be
measured, not just against what they are supposed to have learned, but also against
their peers across the world.

This chapter will consider all of these features, but will focus on assessment, as
that is its theme. It will look at the purposes and principles of assessment and then it
will move on to consider the aims and objectives of courses and modules. Innovative
methods of assessment will be reviewed and discussed, and this will be the biggest
part of the chapter. Ways of disseminating information about new assessment
practices will be discussed, as will obstacles to change. Finally pertinent research
issues will be mentioned. The chapter will close with an annotated bibliography of
pertinent books and papers dealing with these issues.

2. PRINCIPLES AND PURPOSES OF ASSESSMENT

Perhaps the only principle that should be applied is ‘fitness for purpose’. To
achieve this, assessment methods should be intimately related to the Aims and
Objectives of the Module under consideration. And it should be born in mind that
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the assessment methods used will influence the learning behaviour of students to a
considerable extent.
There are a number of purposes of assessment that should be considered:

[um—

to inform learners about their own learning.

2. to inform teachers of the strengths and weaknesses of the learners and of
themselves so that appropriate teaching strategies can be adopted.

3. to inform other stakeholders — society, funders, employers including the next
educational stage.

4. to encourage learners to take a critical-reflective approach to everything that they
do, that is, to self assess before submitting,

5. to provide a summative evaluation of achievement.

3. AIMS AND OBJECTIVES

Aims and objectives should be established both for a course and for each of the
modules that comprise the course. The aims of a course are statements that identify
the broad educational purposes of the course and may refer to the ways in which it
addresses the needs of the stakeholders. Here are some examples; there are, of
course, many more and each provider must write their own:

1. To provide a broad education in mathematics, statistics and computing for
students who have demonstrated that they have the ability or who are considered
to have the potential to benefit from the course.

2. To develop knowledge, understanding and experience of the theory, practice and
application of selected areas of mathematics, statistics, operations research and
computing so that graduates are able to use the skills and techniques of these
areas to solve problems arising in industry, commerce and the public sector.

3. To develop key skills.

4. To provide students with an intellectual challenge and the practical skills to
respond appropriately to further developments and situations in their careers.

5. To prepare students for the possibility of further study at post graduate level,
including a PhD programme or a teacher training programme.

It would be necessary to indicate how each of the modules selected for a course
helps to achieve the aims of the course. The aims of the individual modules should
‘map’ to the overall aims of the course. Objectives are statements of the intended
learning outcomes that would demonstrate successful completion of the course or
module, and that would warrant progression through the course and the eventual
award of a degree. Module objectives should identify the knowledge, skills and
attributes developed by a module, and course objectives should identify the
knowledge, skills and attributes developed by the totality of modules selected for the
course. Objectives may include reference to subject knowledge and understanding,
cognitive skills, practical skills and key skills. They should be clearly relevant to
fulfilling the aims and, above all, they should be assessable, that is, we should be
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able to devise assessment instruments that allow students to demonstrate that they
have achieved the learning intended, and, if appropriate, to what extent. Here are
some examples of course objectives: -

On completion of their studies graduates will have:

1. an understanding of the principles, techniques and applications of selected areas
of mathematics, statistics, operations research and computing.

2. the ability and confidence to analyse and solve problems both of a routine and of
a less obvious nature.

3. the ability and confidence to construct and use mathematical models of systems

or situations, employing a creative and critical approach.

effective communication skills using a variety of media.

effective teamwork skills.

i

A course document should demonstrate how the aims and objectives of the
constituent modules contribute to the overall course aims and objectives. Here is an
example of the aims and objectives of a module, taken from an introductory module
on mathematical modelling, (These aims and objectives are those of module
MAT112J2, University of Ulster. Full details may be read under ‘Syllabus Outline’
at http://www.infj.ulst.ac.uk/cdmx23/mat112j2.html.) Note that an indication of the
method of assessment of each objective is given.

Aims: The aims of this module are to:

1. enable students to understand the modelling process, to formulate appropriate
mathematical models and to appreciate their limitations.

2. develop an understanding of mathematical methods and their role in modelling.

study a number of mathematical models.

4. develop in students a range of key skills.

W

It can be seen how these module aims help to meet the aims of the course listed
above. Thus this module contributes to developing mathematical understanding,
problem solving, and key skills.

Objectives: On completion of this module, students should be able to:

1. Formulate mathematical models and use them to solve problems of an
appropriate level. (Assessed by coursework and written examination.)

2. Solve simple differential equations using calculus and computer algebra systems.
(Assessed by written examination.)

3. Describe and criticise some mathematical models. (Assessed by coursework.)

4. Work in groups and report their work in a variety of media. (Assessed by
coursework.)

5. Work both independently and in support of one another. (Assessed by
coursework.)

6. Demonstrate other key skills. (Assessed by coursework.)



