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1

Some Module Theoretic Observations

We begin with a chapter consisting of several general facts involving various
closure properties of certain categories of modules. These results are part of
the background necessary for our future chapters, and we believe that they
are of interest in themselves.

Throughout this book R denotes an associative ring with identity 1 € R,
and Mod-R and R-Mod represent the categories of right and left R-modules
and homomorphisms, while mod-R and R-mod denote their subcategories of
finitely generated modules.

1.1. The Kernel of Extk(V, )

For any R-module V we denote the kernel of Ext}e(V, _) by V+. Closure prop-
erties of V* are related to both homological and module-theoretic properties
of V.

We denote the projective dimension of a module M by proj.dim.M.

Proposition 1.1.1. Vi is closed under factors if and only if proj . dim .V
<1

Proof. If VRL is closed under factors, M € Mod-R, and E(M) is the injective
envelope of M, then, since E(M)/M € V=, the exactness of the sequence

0 = ExtL(V, E(M)/M) — Ext;4(V, M) — Ext;(V, E(M)) = 0

implies proj.dim .V < 1. Conversely, if proj.dim.Vzx <1 and M € V+
with K a submodule of M, we obtain M/K € V<L from the exactness of
the sequence

0 = Exth(V, M) — Exth(V, M/K) — Ext3(V,K) =0. B

Proposition 1.1.2. If Vi € Mod-R is finitely presented, then EXt}e(V, _) com-
mutes with direct sums, so Vi is closed under direct sums.
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Proof. If {My}yeca is a family of modules in Mod-R, the natural monomor-
phism ¢y : @4 Homg(V, M,) - Homg(V, s M,) is an isomorphism
whenever V is finitely generated by [1, Exercise 16.3]. Moreover, ¢ in-
duces natural homomorphisms 6y, : @4 Ext}e(M, M,) — Ext}e(M, DaM,).
By hypothesis there is an exact sequence0 - K - P — V — Owith P, K
finitely generated and P projective. We obtain the commutative diagram with
exact rows

@ sHomg(P, My)— @ Homg(K, My)— D sExth(V, My)—0

| dp I Pk {0y
Homg(P, ®aM,)—Homg(K, ®aM,)—Exth(V, ®4My)—0

from which the lemma follows. W

We note that a partial converse of this last result is found in the proof of
Lemma 1.2 of [77].

Proposition 1.1.3. If V is finitely generated and Vi is closed under factors
and direct sums, then Vy is finitely presented.

Proof. We have proj.dim.Vg < 1 by Proposition 1.1.1; thus, since Vy is
finitely generated, there is an exact sequence 0 - L — R" — V — 0,
where L is projective. Hence, there is a split monomorphism j : L — R
for some set X. By hypothesis E(R)X € V1, so the composition of j
with the inclusion i of R into E(R)® has an extension to an element
f € Hom(R", E(R)X)). Then f(R") € E(R)Y) € E(R)® for some finite
subset F of X. It follows that j(L) € R € R™); therefore, since j is split
monic, L is finitely generated. W

1.2. Gen(V) and Finiteness

We recall (see [1]) that for any collection V of R-modules, Gen(V) (gen()))
denotes the full category of R-modules that are epimorphic images of (finite)
direct sums of modules isomorphic to those in V, and we let Try,(M) denote
the trace of V in M, the unique largest submodule of M that belongs to
Gen(V). If V consists of a single module Vg we simply write Gen(Vg),
and if S = End(Vg), then Try (M) is the image of the canonical mapping
vy 1V ®s Homg(V, M) —> M.

In order to characterize when Gen(Vy) is closed under direct products, we
employ the following notions and lemmas.
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Given that {M,},c4 is a family in Mod-R, for each N € R-Mod we let
NMaMy.N : (aMy) Qg N —> TT4(My ®r N)
denote the canonical mapping to obtain a natural transformation

nam, - (MaMy) @p ) —> TTa(My Qg ).

Lemma 1.2.1. Suppose that {My}yc4 is a family in Mod-R. If g N is finitely
generated (finitely presented), then the canonical homomorphism

MmN - TTaMy) Qg N —> T4 (M, ®r N)

is an epimorphism (isomorphism).

Proof. If {x1, ..., x,} generate x N, then any element of M, @ N can be
written in the form X; my; ® x;.

Now assume that N is finitely presented and let0 - K — P - N — 0
be an exact sequence with P finitely generated and projective and K finitely
generated. Then we have a commutative diagram

(MIaM)H)QK — (MIuM)QP — (TIuM,)QN — 0

NMAMo, K ¥ MMM, P 4 N4 Mo, N

OyM, ®K) > TIy(M,  P) — TI4(M,®N) - 0
with exact rows, in which nm, m,, x 1s epic, and np, i, p 1S easily seen to be an
isomorphism by naturalness of 5, u,. Hence, by the Five Lemma, 1, pr, v
is an isomorphism. W

Identifying R ® N = N, we have the following result.

Lemma 1.2.2. Let N € R-Mod. Then the canonical homomorphism
nran (R ®r N — N4

is an epimorphism (isomorphism) for all sets A if and only if N is finitely
generated (finitely presented).

Proof. The condition is sufficient in either case by Lemma 1.2.1. Conversely,
letting A = N, if the diagonal element (n),cy is the image of some element
2" (@nidnen ®r X;, then, for all n € N, n = X;ay;x;. Thus, g N is finitely
generated whenever ng~_y is epic. Now supposing that nga y is an isomor-
phism for all sets A, there is an exact sequence 0 > K - P - N — 0
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with P finitely generated and projective. Then both nga p and nga y are
isomorphisms in the commutative diagram

RAQK — RAQP — RAQN —> 0

NrRAK nrap 4 NRaN 4
0 K& — P4 — NAY —0

with exact rows. Hence, by the Snake Lemma, ng4 g is an epimorphism, and
so K is finitely generated. W

Now we are in position to determine just when Gen(Vy) is closed under
direct products.

Proposition 1.2.3. The following statements about a module Vg with S =
End(Vy) are equivalent:

(a) Gen(Vy) contains V4 for all sets A;
(b) Gen(Vy) is closed under direct products;
(c) sV is finitely generated.

Proof. A module My, is in Gen( V) if and only if the canonical trace mapping
vy - Homg(V, M) ®g V — M is epic. For any set A we have the commuta-
tive diagram

Homg(V, VA @5 V = Homg(V, V)A @5 V
1 vya =
VA S sAggv,
so (a) < (c) follows from Lemma 1.2.2.
(b) = (a) is clear. For (c) = (b), assume that sV is finitely generated and
{M}oca belong to Gen(Vg). Then the composite of the canonical homomor-
phisms

Homg(V, T4 M,) ®s V = (I1, Homg(V, M,)) ®s V
s M4(Homg(V, My) ®s V)

Mavm,

—> HAMa

is epic by Lemma 1.2.1 and this composite is vryy,. B

Next we obtain a mapping, in addition to the trace map, that determines
whether a module belongs to Gen(V4).
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Lemma 1.24. Leti : Rg — Vg be a homomorphism. If
Homg (i, M) : Homz(V, M) — Homg(R, M)

is an epimorphism, then M € Gen(Vg).

Proof. Let ¢ : Homg(R, M) — M be the canonical isomorphism. Then, by
hypothesis, for each m € M there is an f,, € Homg(V, M) such that m =
eHomg (i, M)(fin)) = ¢(fm 0 i) = fn(i(1)), som € Try(M). B

Let Vg be a fixed module with § = End(Vy). Let {x,}4ca be a generating
set for ¢V and define i : R — V;g‘ via i(r) = (x4 )gea- Plainly, Ker(i) =
Anng(V). Thus we have the exact sequence

0 — Anng(V) — Rg > VA > (VA/i(R))z — 0.
For any M € Mod—R, denote by i}, the composite of the homomorphisms

Homg(VA, M) "™ Homg(R, M) S M.

Proposition 1.2.5. M € Gen(V}) ifand only if i’ is epic. In particular; if Vg
is finitely generated over its endomorphism ring (and A is taken to be finite),
then iy, is epic if and only if M € Gen(Vg).

Proof. Denote the class of M € Mod-R for which i}, is epic by £. We first
claim that Vg € £ and £ is closed under epimorphic images. If v € V, let
v = B4_,54,%a,. Define f € Homg(VA, V) via f((vs)) = Z}_;54,vs,. Then
iy (f) = (f oi)(1) = v. For the second assertion suppose that M L Lis epic
in R-Mod where i}, is also epic. Then, since n o i}, = ij o Hom(V4, ), i}
is also epic and our claim is proved.

Next we note that £ is closed under arbitrary direct sums and products.
Plainly, £ is closed under arbitrary direct products and hence under finite direct
sums.Let M = @gep Mg, whereeach Mg € £, andletm € M. Thereisafinite
subset By of B such that if « is the canonical inclusion My = ®gep,Mp —
M, m = k(m'), with m’ € My. But then there exists f € Homg(V4, My)
such that m = «k(m’) = k(i3 (f)) = i, (Hom(V4, k)(f)).

Now, Gen(V*4) C & follows from what we have proved thus far. The reverse
inclusion follows immediately from Lemma 1.2.4. W

Since the class of modules M for which i}, is epic is clearly closed under
direct products, Proposition 1.2.5 implies that Gen(V#) is closed under direct
products; hence, we have the following corollary by Proposition 1.2.3.
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Corollary 1.2.6. For any Vg, if V is generated over its endomorphism ring
by |A| elements, then V4 is finitely generated over its endomorphism ring.

A module Vy is small if, as is the case for a finitely generated module,
Hompg(V, ®4M,) = &4 Homg(V, M,,), canonically, for all {M,}, in Mod-
R. A module Vy is self-small if Homg(V, V®) = Homg(V, V)™, canoni-
cally, for all sets A. This notion is a key element in the proof of the following
proposition due to J. Trlifaj [78].

Proposition 1.2.7. If Homg(V, _) commutes with direct limits (with directed
index sets) of modules in Gen(Vy), then Vy is finitely generated.

Proof. First we note that, since V) =1limV) such that F is a finite
subset of A [69, pp. 44-45], we have, by hypothesis, Homg(V, V4) =
Homg(V, limV') = lim Homg(V, V) = Homg(V, V)@; thus, V is self-
small. Let V. =", x,R and lett, : V — V@ (a € A) be the canonical in-
jections. Then, identifying x, = t,x4, since V = (D 4texq R)/ K, we have a
monomorphism

p:V—> VAWK
with K < x4, R and
Qi Xy > X + K.

Then, letting {K;};c; denotes the finitely generated submodules of K, with
canonical epimorphisms y; : VW /K; — VWK (i € I),

(VYK Ay} = limVA/K;.
Now, by hypothesis,
(Homg(V, VW /K), {(Homg(V, ,)};) = lim Homg(V, VW /K;)

so that (see [69, Theorem 2.17])

Homg(V, VA /K) = U; ImHomg(V, y;).
Thus there is an i € I and a ¢; € Homg(V, V4 /K;) with

Y =Yi¢i.

There is a finite set F < A such that K; € V), and hence

VWK = VP K @ VD,
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So since V is self-small
Img; € VH/K;
for some finite set H with F € H C A. Now we have
o(V) S (VI /K) = (VI + K)/K,
so, for each « € A, there is a v, € V@) such that
Ve + K = 9(xe) = %o + K.

But then

va € VI N (@axaR) = ®pxoR,
and we have

Img C (®uxeR + K)/K S Ime;

thus, V = Im ¢ is finitely generated. W

Another closure property of Gen(Vz) forces V to be flat over its endomor-
phism ring.

Proposition 1.2.8. Suppose V € Mod-R and S = End(Vg). If Gen(Vy) is
closed under submodules, then sV is flat.

Proof. Recall [1, Lemma 19.19] that gV is flat if and only if for every relation
ZSiXiZO (S,'ES, x,-eV)
i=1

there exist y; € V,0;;, € §, 1=<i<m,1 < j <n, such that for all 1 <
i<mandl <j<n

Zoijyj = X; and ZS,’O’Z‘J' =0.
j=1 i=1

So suppose we do have
Zs,-x,- =0 (s; €8, x; €V
i=1

letmw;: V" — V, 1< j < m,be the canonical projections and let

K = Kerd
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where d is the homomorphism d : V™ — V defined by

d:z+— Zsini(z), zeVm,

i=1
Then x = (xy, ..., x,) € K and so, since V generates K, there exist

fi:V—>K, and y; eV, 1<j<n

such that
n
x=>_fiv
j=1
Now let
oij=mfj €S, 1<i<m, 1<j<n,
to obtain

and foreachu € V

m m
D sioju=> simifiu=d(fjuy=0, 1<j<n ®

i=1 i=1

1.3. Add(Vg) and Prod(Vy)

We denote the subcategories of Mod-R consisting of all direct summands
of a direct sum, respectively, a direct product, of copies of a module Vi by
Add(Vg), respectively, by Prod(Vy).

According to [1, Theorems 19.20 and 28.4], if S is a left coherent right
perfect ring, then every direct product of projective right S-modules is pro-
jective, that is, belongs to Add(Sy). (This result and its converse are due to
S. Chase [12], who also proved that if every direct product of copies of Ss is
projective, then S is a left coherent right perfect ring.) On the other hand we
have

Lemma 1.3.1. If S is a left coherent right perfect ring, then every projective
right S-module belongs to Prod(Ss).

Proof. Letting J = J(S), suppose that Ps is projectiveand P/ PJ = Gyca Ty
with each T, simple. Let Q = S4.Then QJ < J# and @4ca T, is isomorphic
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to a direct summand of (S/J)* = §4/J4, and so there is an epimorphism
Q — P/PJ. Thus by [1, Lemma 17.17] P, the projective cover of P/PJ,
is isomorphic to a direct summand of Q0. W

This last lemma and the paragraph preceding it tell us that, if S is a left
coherent right perfect ring, then Add(Ss) = Prod(Sy).

Proposition 1.3.2. Let Vg be a self-small module with End(Vg) = S. If S is
left coherent and right perfect, and sV is finitely presented, then Prod(Vg) =
Add(Vg).

Proof. Since V is self-small
Homg(V, ) : Add(Vg) = Add(Ss) : (-®s V)

is an equivalence of categories. But Homg(V, ) commutes with direct prod-
ucts and, by Lemma 1.2.1, so does (_ ®s V). Thus the proposition follows
from the fact that Add(Ss) = Prod(Ss). W

A ring R is an artin algebra if its center K is an artinian ring and R is
finitely generated as a K-module. Any finitely generated module over an artin
algebra is finitely generated over its endomorphism ring, which is also an artin
algebra. Thus we have

Corollary 1.3.3. If V is a finitely generated module over an artin algebra
R, then Prod(Vg) = Add(Vg).

Note that we have only used one implication of Chase’s theorem. Using
his full theorem, H. Krause and M. Saorin showed in [53] that a self-small
module Vi with § = End(Vg) has Add(Vg) closed under direct products if
and only if § is a left coherent right perfect ring and sV is finitely presented.
In view of Proposition 1.3.2 this is equivalent to Prod(Vg) = Add(Vy).

1.4. Torsion Theory
Definition 1.4.1. If C is an abelian category, a forsion theory in C is a pair of
classes of objects (7', F) of C such that

(1) 7T ={T € C| Home(T, F) =0 forall F € F},
2) F={F €C| Homg(T,F)=0forall T € T},
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(3) foreach X € C there is a subobject T of X such that

TeT and X/T € F.

When this is the case, the objects in 7 are called forsion objects, the elements
of F are called torsion-free objects, and if the object T of (3) is unique, we
denote it by 7(X) and call it the torsion subobject of X.

Suppose that C is a full subcategory of Mod-R that is closed under sub-
modules, epimorphic images, extensions, direct sums, and direct products. If
(7T, F) is a torsion theory in C, then it follows that 7 is closed under epi-
morphic images and direct sums, F is closed under submodules and direct
products, and both are closed under extensions. A class 7 (F) of modules
in C with these closure properties is called a torsion (torsion-free) class in C.
Then one easily verifies

Proposition 1.4.2. Let C be a full subcategory of Mod-R that is closed under
submodules, epimorphic images, extensions, direct sums, and direct products.

(1) If T is a torsion class in C, then (T, F) is a torsion theory in C, where
F={F eC|Home(T, F)=0forall T € T}.

(2) If F is a torsion-free class in C, then (T, F) is a torsion theory in C,
where T = {T € C| Hom¢(T, F) =0 forall F € F.

Dual to Gen(V), if Vis a class of R-modules, Cogen (V) (cogen())) consists
of the R-modules that embed in (finite) direct products of modules isomorphic
to members of V, and the reject of V in M is Rejy,(M), the intersection of
the kernels of all maps from M into members of V.

Proposition 1.4.3. Let (7, F) be a torsion theory in Mod-R and M a module
in Mod-R. Then

Trr (M) = Rej(M).
Proof. That Tr7(M) C Rej (M) follows from Homg(T, F') = 0 whenever

T € T and F € F.Butsince Tr7(M) € 7 and 7 is closed under extensions,
M/ Trr(M) € F and hence Rej (M) C Trr(M). R

If (7, F) is a torsion theory in Mod-R, we let

t7(M) = Trr (M) = Rej (M)
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and call it the torsion submodule of M. Then every module in Mod-R admits
an exact sequence

00— 17(M) — M — M/t7(M) — 0

with t7(M) simultaneously the largest submodule of M belonging to 7 and
the smallest submodule of M such that M /t7(M) belongs to F.

We shall meet torsion theories like those in the following proposition in
later sections.

Proposition 1.4.4. If Gen(Vg) C V*, then (Gen(Vy), Ker Homg(V, ) is a
torsion theory in Mod-R.

Proof. If0 - My — X — M, — Oisexactwith M|, M, € Gen(Vy) C
Vi, letting S = End(Vy), we obtain a commutative diagram with exact rows

Homgz(V, M) ®s V—Homg(V, X) ®s V—>Homg(V, M,) ®s V—0
vM] \L Vx ‘L UMZ ‘L
0— M, — X — M,

in which the trace maps vy, and vy, are epimorphisms. But then, by the Snake
Lemma, so is vy, and Proposition 1.4.2 applies. W



