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1

Some Module Theoretic Observations

We begin with a chapter consisting of several general facts involving various
closure properties of certain categories of modules. These results are part of
the background necessary for our future chapters, and we believe that they
are of interest in themselves.

Throughout this book R denotes an associative ring with identity 1 ∈ R,

and Mod-R and R-Mod represent the categories of right and left R-modules
and homomorphisms, while mod-R and R-mod denote their subcategories of
finitely generated modules.

1.1. The Kernel of Ext1
R(V, )

For any R-module V we denote the kernel of Ext1R(V, ) by V ⊥. Closure prop-
erties of V ⊥ are related to both homological and module-theoretic properties
of V .

We denote the projective dimension of a module M by proj . dim .M .

Proposition 1.1.1. V ⊥
R is closed under factors if and only if proj . dim .VR

≤ 1.

Proof. If V ⊥
R is closed under factors, M ∈ Mod-R, and E(M) is the injective

envelope of M , then, since E(M)/M ∈ V ⊥, the exactness of the sequence

0 = Ext1R(V, E(M)/M) → Ext2R(V, M) → Ext2R(V, E(M)) = 0

implies proj . dim .VR ≤ 1. Conversely, if proj . dim .VR ≤ 1 and M ∈ V ⊥

with K a submodule of M , we obtain M/K ∈ V ⊥ from the exactness of
the sequence

0 = Ext1R(V, M) → Ext1R(V, M/K ) → Ext2R(V, K ) = 0. �

Proposition 1.1.2. If VR ∈ Mod-R is finitely presented, then Ext1R(V, ) com-
mutes with direct sums, so V ⊥

R is closed under direct sums.

1
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Proof. If {Mα}α∈A is a family of modules in Mod-R, the natural monomor-
phism φV : ⊕A HomR(V, Mα) → HomR(V, ⊕A Mα) is an isomorphism
whenever V is finitely generated by [1, Exercise 16.3]. Moreover, φ in-
duces natural homomorphisms θM : ⊕A Ext1R(M, Mα) → Ext1R(M, ⊕A Mα).
By hypothesis there is an exact sequence 0 → K → P → V → 0 with P, K
finitely generated and P projective. We obtain the commutative diagram with
exact rows

⊕AHomR(P, Mα)→⊕AHomR(K , Mα)→⊕AExt1R(V, Mα)→0
↓ φP ↓ φK ↓ θV

HomR(P, ⊕A Mα)→HomR(K , ⊕A Mα)→Ext1R(V, ⊕A Mα)→0

from which the lemma follows. �

We note that a partial converse of this last result is found in the proof of
Lemma 1.2 of [77].

Proposition 1.1.3. If VR is finitely generated and V ⊥
R is closed under factors

and direct sums, then VR is finitely presented.

Proof. We have proj . dim .VR ≤ 1 by Proposition 1.1.1; thus, since VR is
finitely generated, there is an exact sequence 0 → L → Rn → V → 0,
where L is projective. Hence, there is a split monomorphism j : L → R(X )

for some set X . By hypothesis E(R)(X ) ∈ V ⊥, so the composition of j
with the inclusion i of R(X ) into E(R)(X ) has an extension to an element
f ∈ Hom(Rn, E(R)(X )). Then f (Rn) ⊆ E(R)(F) ⊆ E(R)(X ) for some finite
subset F of X . It follows that j(L) ⊆ R(F) ⊆ R(X ); therefore, since j is split
monic, L is finitely generated. �

1.2. Gen(V) and Finiteness

We recall (see [1]) that for any collection V of R-modules, Gen(V) (gen(V))
denotes the full category of R-modules that are epimorphic images of (finite)
direct sums of modules isomorphic to those in V, and we let TrV (M) denote
the trace of V in M, the unique largest submodule of M that belongs to
Gen(V). If V consists of a single module VR we simply write Gen(VR),
and if S = End(VR), then TrV (M) is the image of the canonical mapping
νM : V ⊗S HomR(V, M) → M.

In order to characterize when Gen(VR) is closed under direct products, we
employ the following notions and lemmas.
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Given that {Mα}α∈A is a family in Mod-R, for each N ∈ R-Mod we let

η�A Mα,N : (�A Mα) ⊗R N −→ �A(Mα ⊗R N )

denote the canonical mapping to obtain a natural transformation

η�A Mα
: ((�A Mα) ⊗R ) −→ �A(Mα ⊗R ).

Lemma 1.2.1. Suppose that {Mα}α∈A is a family in Mod-R. If R N is finitely
generated (finitely presented), then the canonical homomorphism

η�A Mα,N : (�A Mα) ⊗R N −→ �A(Mα ⊗R N )

is an epimorphism (isomorphism).

Proof. If {x1, . . . , xn} generate R N , then any element of Mα ⊗R N can be
written in the form �i mαi ⊗ xi .

Now assume that N is finitely presented and let 0 → K → P → N → 0
be an exact sequence with P finitely generated and projective and K finitely
generated. Then we have a commutative diagram

(�A Mα) ⊗ K → (�A Mα) ⊗ P → (�A Mα) ⊗ N → 0
η�A Mα,K ↓ η�A Mα,P ↓ η�A Mα,N ↓
�A(Mα ⊗ K ) → �A(Mα ⊗ P) → �A(Mα ⊗ N ) → 0

with exact rows, in which η�A Mα,K is epic, and η�A Mα,P is easily seen to be an
isomorphism by naturalness of η�A Mα

. Hence, by the Five Lemma, η�A Mα,N

is an isomorphism. �

Identifying R ⊗R N = N , we have the following result.

Lemma 1.2.2. Let N ∈ R-Mod. Then the canonical homomorphism

ηR A,N : (R A) ⊗R N −→ N A

is an epimorphism (isomorphism) for all sets A if and only if N is finitely
generated (finitely presented).

Proof. The condition is sufficient in either case by Lemma 1.2.1. Conversely,
letting A = N , if the diagonal element (n)n∈N is the image of some element
�m

i=1(ani )n∈N ⊗R xi , then, for all n ∈ N , n = �i ani xi.. Thus, R N is finitely
generated whenever ηRN ,N is epic. Now supposing that ηR A,N is an isomor-
phism for all sets A, there is an exact sequence 0 → K → P → N → 0
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with P finitely generated and projective. Then both ηR A,P and ηR A,N are
isomorphisms in the commutative diagram

R A ⊗ K −→ R A ⊗ P −→ R A ⊗ N → 0
ηR A,K ↓ ηR A,P ↓ ηR A,N ↓

0 → K A −→ P A −→ N A −→ 0

with exact rows. Hence, by the Snake Lemma, ηR A,K is an epimorphism, and
so K is finitely generated. �

Now we are in position to determine just when Gen(VR) is closed under
direct products.

Proposition 1.2.3. The following statements about a module VR with S =
End(VR) are equivalent:

(a) Gen(VR) contains V A for all sets A;
(b) Gen(VR) is closed under direct products;
(c) S V is finitely generated.

Proof. A module MR is in Gen(VR) if and only if the canonical trace mapping
νM : HomR(V, M) ⊗S V → M is epic. For any set A we have the commuta-
tive diagram

HomR(V, V A) ⊗S V
∼=→ HomR(V, V )A ⊗S V

↓ νV A ↓ =
V A

ηS A ,V←− S A ⊗S V,

so (a) ⇔ (c) follows from Lemma 1.2.2.
(b) ⇒ (a) is clear. For (c) ⇒ (b), assume that S V is finitely generated and

{Mα}α∈A belong to Gen(VR). Then the composite of the canonical homomor-
phisms

HomR(V, �A Mα) ⊗S V ∼= (�A HomR(V, Mα)) ⊗S V
η−→ �A(HomR(V, Mα) ⊗S V )

�AνMα−→ �A Mα

is epic by Lemma 1.2.1 and this composite is ν�Mα
. �

Next we obtain a mapping, in addition to the trace map, that determines
whether a module belongs to Gen(V A).
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Lemma 1.2.4. Let i : RR → VR be a homomorphism. If

HomR(i, M) : HomR(V, M) → HomR(R, M)

is an epimorphism, then M ∈ Gen(VR).

Proof. Let ϕ : HomR(R, M) → M be the canonical isomorphism. Then, by
hypothesis, for each m ∈ M there is an fm ∈ HomR(V, M) such that m =
ϕ(HomR(i, M)( fm)) = ϕ( fm ◦ i) = fm(i(1)), so m ∈ TrV (M). �

Let VR be a fixed module with S = End(VR). Let {xα}α∈A be a generating
set for S V and define i : RR → V A

R via i(r ) = (xαr )α∈A. Plainly, Ker(i) =
AnnR(V ). Thus we have the exact sequence

0 → AnnR(V ) → RR
i→ V A

R → (V A/ i(R))R → 0.

For any M ∈ Mod–R, denote by i∗
M the composite of the homomorphisms

HomR(V A, M)
Hom(i,M)→ HomR(R, M)

∼=→ M.

Proposition 1.2.5. M ∈ Gen(V A
R ) if and only if i∗

M is epic. In particular, if VR

is finitely generated over its endomorphism ring (and A is taken to be finite),
then i∗

M is epic if and only if M ∈ Gen(VR).

Proof. Denote the class of M ∈ Mod-R for which i∗
M is epic by E . We first

claim that VR ∈ E and E is closed under epimorphic images. If v ∈ V , let
v = �k

j=1sα j xα j . Define f ∈ HomR(V A, V ) via f ((vα)) = �k
j=1sα j vα j . Then

i∗
V ( f ) = ( f ◦ i)(1) = v. For the second assertion suppose that M

η→ L is epic
in R-Mod where i∗

M is also epic. Then, since η ◦ i∗
M = i∗

L ◦ Hom(V A, η), i∗
L

is also epic and our claim is proved.
Next we note that E is closed under arbitrary direct sums and products.

Plainly,E is closed under arbitrary direct products and hence under finite direct
sums. Let M = ⊕β∈B Mβ , where each Mβ ∈ E , and let m ∈ M . There is a finite
subset B0 of B such that if κ is the canonical inclusion M0 = ⊕β∈B0 Mβ ↪→
M, m = κ(m ′), with m ′ ∈ M0. But then there exists f ∈ HomR(V A, M0)
such that m = κ(m ′) = κ(i∗

M0
( f )) = i∗

M (Hom(V A, κ)( f )).
Now, Gen(V A) ⊆ E follows from what we have proved thus far. The reverse

inclusion follows immediately from Lemma 1.2.4. �

Since the class of modules M for which i∗
M is epic is clearly closed under

direct products, Proposition 1.2.5 implies that Gen(V A) is closed under direct
products; hence, we have the following corollary by Proposition 1.2.3.
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Corollary 1.2.6. For any VR, if V is generated over its endomorphism ring
by |A| elements, then V A is finitely generated over its endomorphism ring.

A module VR is small if, as is the case for a finitely generated module,
HomR(V, ⊕A Mα) ∼= ⊕A HomR(V, Mα), canonically, for all {Mα}A in Mod-
R. A module VR is self-small if HomR(V, V (A)) ∼= HomR(V, V )(A), canoni-
cally, for all sets A. This notion is a key element in the proof of the following
proposition due to J. Trlifaj [78].

Proposition 1.2.7. If HomR(V, ) commutes with direct limits (with directed
index sets) of modules in Gen(VR), then VR is finitely generated.

Proof. First we note that, since V (A) = lim−→V (F) such that F is a finite
subset of A [69, pp. 44–45], we have, by hypothesis, HomR(V, V (A)) =
HomR(V, lim−→V (F)) ∼= lim−→ HomR(V, V (F)) ∼= HomR(V, V )(A); thus, V is self-
small. Let V = ∑

A xα R and let ια : V → V (A) (α ∈ A) be the canonical in-
jections. Then, identifying xα = ιa xα, since V ∼= (⊕Aιαxα R)/K , we have a
monomorphism

ϕ : V → V (A)/K

with K ≤ ⊕Axα R and

ϕ : xα �→ xα + K .

Then, letting {Ki }i∈I denotes the finitely generated submodules of K , with
canonical epimorphisms γi : V (A)/Ki → V (A)/K (i ∈ I ),

(V (A)/K , {γi }I ) = lim−→V (A)/Ki .

Now, by hypothesis,

(HomR(V, V (A)/K ), {HomR(V, γi )}I ) = lim−→ HomR(V, V (A)/Ki )

so that (see [69, Theorem 2.17])

HomR(V, V (A)/K ) = ∪I Im HomR(V, γi ).

Thus there is an i ∈ I and a ϕi ∈ HomR(V, V (A)/Ki ) with

ϕ = γiϕi .

There is a finite set F ⊆ A such that Ki ⊆ V (F), and hence

V (A)/Ki = V (F)/Ki ⊕ V (A\F).
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So since V is self-small

Im ϕi ⊆ V (H )/Ki

for some finite set H with F ⊆ H ⊆ A. Now we have

ϕ(V ) ⊆ γi (V
(H )/Ki ) = (V (H ) + K )/K ,

so, for each α ∈ A, there is a vα ∈ V (H ) such that

vα + K = ϕ(xα) = xα + K .

But then

vα ∈ V (H ) ∩ (⊕Axα R) = ⊕H xα R,

and we have

Im ϕ ⊆ (⊕H xα R + K )/K ⊆ Im ϕ;

thus, V ∼= Im ϕ is finitely generated. �

Another closure property of Gen(VR) forces V to be flat over its endomor-
phism ring.

Proposition 1.2.8. Suppose V ∈ Mod-R and S = End(VR). If Gen(VR) is
closed under submodules, then S V is flat.

Proof. Recall [1, Lemma 19.19] that S V is flat if and only if for every relation

m∑
i=1

si xi = 0 (si ∈ S, xi ∈ V )

there exist y j ∈ V, σi j ∈ S, 1 ≤ i ≤ m, 1 ≤ j ≤ n, such that for all 1 ≤
i ≤ m and 1 ≤ j ≤ n

n∑
j=1

σi j y j = xi and
m∑

i=1

siσi j = 0.

So suppose we do have

m∑
i=1

si xi = 0 (si ∈ S, xi ∈ V );

let π j : V m → V, 1 ≤ j ≤ m, be the canonical projections and let

K = Ker d



CB678-BOOK-DVR CB678-Colby January 23, 2004 19:4 Char Count= 0

8 Some Module Theoretic Observations

where d is the homomorphism d : V (m) → V defined by

d : z �→
m∑

i=1

siπi (z), z ∈ V (m).

Then x = (x1, . . . , xm) ∈ K and so, since V generates K , there exist

f j : V → K , and y j ∈ V, 1 ≤ j ≤ n

such that

x =
n∑

j=1

f j y j .

Now let

σi j = πi f j ∈ S, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

to obtain
n∑

j=1

σi j y j = π j (x) = xi , 1 ≤ i ≤ m,

and for each u ∈ V
m∑

i=1

siσi j u =
m∑

i=1

siπi f j u = d( f j u) = 0, 1 ≤ j ≤ n. �

1.3. Add(VR) and Prod(VR)

We denote the subcategories of Mod-R consisting of all direct summands
of a direct sum, respectively, a direct product, of copies of a module VR by
Add(VR), respectively, by Prod(VR).

According to [1, Theorems 19.20 and 28.4], if S is a left coherent right
perfect ring, then every direct product of projective right S-modules is pro-
jective, that is, belongs to Add(SS). (This result and its converse are due to
S. Chase [12], who also proved that if every direct product of copies of SS is
projective, then S is a left coherent right perfect ring.) On the other hand we
have

Lemma 1.3.1. If S is a left coherent right perfect ring, then every projective
right S-module belongs to Prod(SS).

Proof. Letting J = J (S), suppose that PS is projective and P/P J = ⊕α∈ATα

with each Tα simple. Let Q = S A
S . Then Q J ≤ J A and ⊕α∈ATα is isomorphic
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to a direct summand of (S/J )A ∼= S A/J A, and so there is an epimorphism
Q → P/P J. Thus by [1, Lemma 17.17] P, the projective cover of P/P J ,
is isomorphic to a direct summand of Q. �

This last lemma and the paragraph preceding it tell us that, if S is a left
coherent right perfect ring, then Add(SS) = Prod(SS).

Proposition 1.3.2. Let VR be a self-small module with End(VR) = S. If S is
left coherent and right perfect, and S V is finitely presented, then Prod(VR) =
Add(VR).

Proof. Since V is self-small

HomR(V, ) : Add(VR) � Add(SS) : ( ⊗S V )

is an equivalence of categories. But HomR(V, ) commutes with direct prod-
ucts and, by Lemma 1.2.1, so does ( ⊗S V ). Thus the proposition follows
from the fact that Add(SS) = Prod(SS). �

A ring R is an artin algebra if its center K is an artinian ring and R is
finitely generated as a K -module. Any finitely generated module over an artin
algebra is finitely generated over its endomorphism ring, which is also an artin
algebra. Thus we have

Corollary 1.3.3. If VR is a finitely generated module over an artin algebra
R, then Prod(VR) = Add(VR).

Note that we have only used one implication of Chase’s theorem. Using
his full theorem, H. Krause and M. Saorı́n showed in [53] that a self-small
module VR with S = End(VR) has Add(VR) closed under direct products if
and only if S is a left coherent right perfect ring and S V is finitely presented.
In view of Proposition 1.3.2 this is equivalent to Prod(VR) = Add(VR).

1.4. Torsion Theory

Definition 1.4.1. If C is an abelian category, a torsion theory in C is a pair of
classes of objects (T ,F) of C such that

(1) T = {T ∈ C | HomC(T, F) = 0 for all F ∈ F},
(2) F = {F ∈ C | HomC(T, F) = 0 for all T ∈ T },



CB678-BOOK-DVR CB678-Colby January 23, 2004 19:4 Char Count= 0

10 Some Module Theoretic Observations

(3) for each X ∈ C there is a subobject T of X such that

T ∈ T and X/T ∈ F .

When this is the case, the objects in T are called torsion objects, the elements
of F are called torsion-free objects, and if the object T of (3) is unique, we
denote it by τ (X ) and call it the torsion subobject of X.

Suppose that C is a full subcategory of Mod-R that is closed under sub-
modules, epimorphic images, extensions, direct sums, and direct products. If
(T ,F ) is a torsion theory in C, then it follows that T is closed under epi-
morphic images and direct sums, F is closed under submodules and direct
products, and both are closed under extensions. A class T (F ) of modules
in C with these closure properties is called a torsion (torsion-free) class in C.

Then one easily verifies

Proposition 1.4.2. Let C be a full subcategory of Mod-R that is closed under
submodules, epimorphic images, extensions, direct sums, and direct products.

(1) If T is a torsion class in C, then (T ,F ) is a torsion theory in C, where
F = {F ∈ C | HomC(T, F) = 0 for all T ∈ T }.

(2) If F is a torsion-free class in C, then (T ,F) is a torsion theory in C,

where T = {T ∈ C | HomC(T, F) = 0 for all F ∈ F .

Dual to Gen(V), ifV is a class of R-modules, Cogen (V) (cogen(V)) consists
of the R-modules that embed in (finite) direct products of modules isomorphic
to members of V, and the reject of V in M is RejV (M), the intersection of
the kernels of all maps from M into members of V.

Proposition 1.4.3. Let (T ,F ) be a torsion theory in Mod-R and M a module
in Mod-R. Then

TrT (M) = RejF (M).

Proof. That TrT (M) ⊆ RejF (M) follows from HomR(T, F) = 0 whenever
T ∈ T and F ∈ F . But since TrT (M) ∈ T and T is closed under extensions,
M/ TrT (M) ∈ F and hence RejF (M) ⊆ TrT (M). �

If (T ,F ) is a torsion theory in Mod-R, we let

τT (M) = TrT (M) = RejF (M)
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and call it the torsion submodule of M. Then every module in Mod-R admits
an exact sequence

0 → τT (M) −→ M −→ M/τT (M) → 0

with τT (M) simultaneously the largest submodule of M belonging to T and
the smallest submodule of M such that M/τT (M) belongs to F .

We shall meet torsion theories like those in the following proposition in
later sections.

Proposition 1.4.4. If Gen(VR) ⊆ V ⊥, then (Gen(VR), Ker HomR(V, )) is a
torsion theory in Mod-R.

Proof. If 0 → M1 −→ X −→ M2 → 0 is exact with M1, M2 ∈ Gen(VR) ⊆
V ⊥, letting S = End(VR), we obtain a commutative diagram with exact rows

HomR(V, M1) ⊗S V →HomR(V, X ) ⊗S V →HomR(V, M2) ⊗S V →0
νM1 ↓ νX ↓ νM2 ↓

0 → M1 → X → M2

in which the trace maps νM1 and νM2 are epimorphisms. But then, by the Snake
Lemma, so is νX , and Proposition 1.4.2 applies. �


