
Preface

The art of war teaches us to rely not on the likelihood of the enemy’s
not coming, but on our own readiness to receive him; not on the
chance of his not attacking, but rather on the fact that we have made
our position unassailable.

Sun Tzu
The Art of War (500 BC)

The book is about the cryptanalytic attacks on RSA. RSA is the first work-
able and practical public-key cryptographic system, invented in 1977 and
published in 1978, by Rivest, Shamir and Adleman, then all at the Mas-
sachusetts Institute of Technology (MIT), and is still the most widely used
cryptographic systems in e.g., online transactions, emails, smartcards, and
more generally electronic and mobile commerce over the Internet, for which
its three inventors received the year 2002 Turing Award, a prize considered
to be the equivalent Nobel Prize for Computer Science. The security of RSA
relies on the computational intractability of the Integer Factorization Prob-
lem (IFP), for which, no efficient (i.e., polynomial-time) algorithm is known.
To get an idea how difficult the integer factorization is, let us consider the
following 2048 bits (617 digits) composite number, known as RSA-2048:

251959084756578934940271832400483985714292821262040320277771378360
436620207075955562640185258807844069182906412495150821892985591491
761845028084891200728449926873928072877767359714183472702618963750
149718246911650776133798590957000973304597488084284017974291006424
586918171951187461215151726546322822168699875491824224336372590851
418654620435767984233871847744479207399342365848238242811981638150
106748104516603773060562016196762561338441436038339044149526344321
901146575444541784240209246165157233507787077498171257724679629263
863563732899121548314381678998850404453640235273819513786365643912
12010397122822120720357.

It is a product of two prime numbers. The RSA Data Security Incorpora-
tion currently offers a $200,000 prize for the first person or group finding
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its two prime factors. The basic idea of RSA encryption and decryption is,
surprisingly, rather simple:

C ≡ Me (mod N), M ≡ Cd (mod N),

where N = pq with p and q prime, M , C, e and d are the plaintext, ciphertext,
encryption exponent and decryption exponent, respectively. Note that e and d
must be satisfied with the condition that ed ≡ 1 (mod φ(N)), where φ(N) =
(p − 1)(q − 1) is Euler’s φ-function. Let, for example, e = 65537, N be the
above mentioned number RSA-2048, and C the following number:

218598056144555493024019389629177159753811144728543422921500499254
181211032562087679022259831067991286101190897695119357754765408522
697956638242922870637083231694404873947694078432775781998614979942
064361669462614088852741600217233052059574880668463536030287944235
822627708134997061064700771693064600712629809165416998449992925313
374281387325903328781863209595468701560742767599157207314869432305
892651836189508103764678721683360183118994273706398707795480800698
501878875875150532123738006235671958527639461339868604410378449818
383913059864587128396200112815989134558427750667427151537609736712
04647757116059031684587.

To recover M from C one requires to find d; to find d one needs to calculate
φ(N); to calculate φ(N) one needs to factor N . But unfortunately, factorizing
N is intractable when N is large (in the present case, N is a 2048-bit number,
which is far beyond the computing power of any factoring algorithm on any
computer at present); no polynomial-time factoring algorithm is known so
far. Thus, RSA is secure and C is safe since it is difficult to recover M from
C without factoring N . This is essentially the whole idea of RSA! One can
try to decrypt the above given RSA ciphertext C or try to factor the number
RSA-2048 in order to get an idea how difficult it is to break RSA or to factor
a large number.

The book consists of ten chapters. Chapter 1 presents some computational
and mathematical preliminaries, particularly the theory and practice of
tractable and intractable computations in number theory. Chapter 2 intro-
duces the basic concepts and theory of the RSA cryptographic system and its
variants in a broad sense. As the security of RSA is based on the intractabil-
ity of the Integer Factorization Problem (IFP), which is also closely related
to the Discrete Logarithm Problem (DLP), the attacks based on solutions
to IFP problem are discussed in Chapter 3, whereas the attacks based on
solutions to DLP problem are discussed in Chapter 4. As quantum algorithm
is applicable to both the IFP problem and the DLP problem, Chapter 5 will
discuss some quantum attacks on RSA via quantum order finding, quantum
factoring and quantum discrete logarithm solving. Chapter 6 concentrates on
some simple elementary number-theoretic attacks on RSA, including e.g., for-
ward attack, short plaintext attack, common modulus attack and fixed-point
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attack. It is common that to speed-up the computation of RSA encryption, a
short public exponent e is often used. It is also true for the RSA decryption
if a short private exponent d is used. However, the use of short exponent e
or d can be dangerous. So, in Chapter 7 we shall discuss some cryptanalytic
attacks on the short RSA public exponent e, whereas in Chapter 8 we shall
discuss some attacks on the short RSA private exponent d. In Chapter 9, a
completely different type of attacks, namely, the side-channel attacks on RSA,
are discussed. Unlike the mathematical/algorithmic attacks in the previous
chapters, side-channel attacks do not exploit the mathematical properties or
weakness of the RSA algorithm/system itself, but exploit the hardware im-
plementation issues of the system. In other words, these attacks are nothing
to do with the RSA algorithm/system itself but have something to do with
the hardware implementation of the RSA algorithm/system. Chapter 10, the
final chapter, presents some quantum resistant, non-factoring based crypto-
graphic systems as an alternative/replacement to RSA, such as lattice based
and code-based cryptosystems, so that once RSA is proved to be insecure,
there is an immediate replacement to the insecure RSA.

The book is self-contained and the materials presented in the book have
been extensively classroom tested for various courses in Cryptography and
Cryptanalysis at Aston and Coventry Universities in England, and the South
China University of Technology and Nankai University in China. Many parts
of the materials in the book have also been presented in seminars in various
universities around the world. Hence, the book is suitable either as a research
reference for public-key cryptology in general and for RSA cryptology in
particular, or as a graduate text in the field.
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The struggle between code-makers and code-breakers is endless. The
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2. RSA Public-Key Cryptography

The increased use of shared communications channels, particularly
wireless and local area networks (LAN’s), leads to greater connec-
tivity, but also to a much greater opportunity to intercept data and
forge messages, · · · The only practical way to maintain privacy and
integrity of information is by using public-key cryptography.

Peter Wegner
Professor of Computer Science, Brown University

2.1 Introduction

Cryptography (from the Greek Kryptós, “hidden” or “secret”, and gráphein,
“writing”) is the study of the processes of encryption (mapping the original
message, called the plaintext, into a secret form, called the the ciphertext,
using the encryption key), and decryption (inverting the ciphertext back to
the plaintext, using the corresponding decryption key), in such a way that
only the intended recipients can decrypt and read the original messages.

Cryptograpgy def= Encryption ⊕ Decryption

The methods of encryption are often also called ciphers. Cryptanalysis (from
the Greek Kryptós and analýein, “loosing”), on the other hand, is the study
of breaking the encryptions without the knowledge of the key:

Cryptanalysis def= Cryptanalytic Attacks on Encryptions

Cryptology (from the Greek Kryptós and lógos, “word”) consists of both
cryptography and cryptanalysis:

Cryptology def= Cryptography ⊕ Cryptanalysis
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Figure 2.1. Cryptography and Cryptanalysis

The idea of encryption, decryption, cryptanalysis and secure communica-
tions over an insecure channel, usually a computer network particularly the
Internet, can be depicted as in Figure 2.1. Throughout the book, we shall
assume that Bob sends a message to Alice, but Eve wants to cryptanalyze
the message:

Bob
Message−−−−−−−→
↓

Eve

Bob. (2.1)

Modern cryptography, however, is the study of the mathematical systems
of encryption and decryption, to solve the security, particularly the network
security problems as follows:

(1) Confidentiality or privacy: To stop Eve to understand Bob’s message to
Alice even if she can intercept and get the message.

(2) Integrity: To make sure that Bob’s message has not been modified by
Eve.

(3) Authentication or authorization: To make sure the message received by
Alice is indeed from Bob, not from Eve.

(4) Non-repudiation: To stop Bob later to deny the sending of his message.
Non-repudiation is particularly important in electronic commerce since
we need to make sure that a consumer cannot deny the authorization
of a purchase. It must be noted that however, in some applications such
as in electronic voting, the non-repudiation feature should, in fact, be
avoided, since the voter does not want to disclose the authorization of a
vote regardless whether of not he actually did the vote.

Such a mathematical system is called the cryptographic system, or cryptosys-
tems for short.
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Definition 2.1.1. A conventional secret-key cryptosystem (or secret-key en-
cryption, or secret-key cipher) S may be formally defined as follows (depicted
in Figure 2.2):

S = (M, C,K,M,C, k, E,D) (2.2)

where

(1) M is the set of plaintexts, called the plaintext space.
(2) C is the set of cipherexts, called the ciphertext space.
(3) K is the set of keys, called the key space.
(4) M ∈M is a piece of plaintext.
(5) C ∈ C is a piece of ciphertext.
(6) k ∈ K is the key for both encryption and decryption.
(7) E is the encryption function

Ek : M 7→ C

where M ∈M maps to C ∈ C, using the key k, such that

C = Ek(M) (2.3)

(8) D is the decryption function

Dk : C 7→ M

where C ∈ C maps to M ∈M, using the same key k again such that

M = Dk(C) (2.4)

satisfying

EkDk = 1 and Dk(C) = Dk(Ek(M)) = M. (2.5)

Cryptanalysis, on the other hand, is the study of the cryptanalytic at-
tacks on cryptosystems, aiming at breaking the cryptosystems without us-
ing/knowing the keys, but according to the Kerckhoff principle, the crypt-
analyst who wants to break the cryptosystem knows the cryptosystem. For
example, the following is a ciphertext presented by Édouard Lucas at the 1891
meeting of the French Association for Advancement of Science (see page 388
of Williams [332]), based on Étienne Bazeries’ cylindrical cryptography (see
pages 244–250 of Kahn [161]); it has never been decrypted, and hence is
suitable as a good challenge to the interested reader:
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Figure 2.2. Secret-Key Cryptography
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The security or the unbreakability of any cryptographic system is of paramount
importance. There are several different types of security measures for a cryp-
tographic system:

(1) Unconditionally secure: A cryptosystem is unconditionally secure if a
cryptanalyst cannot determine how to find the plaintext M regardless
of how much ciphertext C and computer time/resources he has available
to him. A one-time pad (OTP) can be shown to be unconditionally se-
cure, as the key is used only for one time (i.e., there are at least as many
keys as the plaintexts), the key string is a random string, and the key
size is at least as long as the plaintext string. Unconditional security for
cryptosystems is called perfect secrecy, or information-theoretic security.
A cryptosystem S is unconditionally unbreakable if S is unconditionally
secure. In general, cryptosystems do not offer perfect secrecy, in particu-
lar, public-key cryptosystems, such as the RSA cryptosystem described
in next sections, cannot be unconditionally secure/breakable since once
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a ciphertext C is given, its corresponding plaintext M can in principle
be recovered by computing all possible plaintexts until C is obtained, an
attack called forward search, which will be discussed later. Nevertheless,
unconditionally unbreakable cryptosystem exists; it was first proved by
Shannon in his 1949 seminar paper in modern cryptography “Commu-
nication Theory of Secrecy Systems” [285]. Thus the prominent English
mathematician J. E. Littlewood (1885–1977) commented:

The legend that every cipher is breakable is of course absurd,
though still widespread among people who should know better.

(2) Computationally secure: A cryptosystem S is computationally secure
or polynomially secure if a cryptanalyst cannot decrypt C to get M in
polynomial-time (or space). A cryptosystem S is computationally un-
breakable, if it is unbreakable in polynomial-time, that is, it is compu-
tationally secure. According to the Cook-Karp thesis, any problem that
can not be solved in polynomial-time is computationally infeasible, thus,
if the cryptanalytic attack on a cryptosystem is computationally infeasi-
ble, then the cryptosystem is computationally secure and computation-
ally unbreakable. There are several types of computationally security:

(2-1) Provably secure: A cryptosystem S is provably secure if the dif-
ficulty of breaking it can be shown to be essentially as difficult as
solving a well-known and supposedly difficult mathematical problems
such as the integer factorization problem IFP or the discrete loga-
rithm problem DLP. For example, the Rabin cryptosystem described
later is provably secure, as the security of the Rabin cryptosystem is
equivalent to the IFP problem.

(2-2) Practical/conjectured secure: A cryptosystem S is practical secure
if the breaking of the system S is conjectured as difficult as solving
a well-known and supposedly difficult mathematical problems such
as the integer factorization problem IFP or the discrete logarithm
problem DLP. For example, breaking the most popular public-key
cryptosystem RSA is conjectured as hard as solving the IFP problem,
but so far this has never been proved or disproved. Most of the public-
key and secret-key cryptosystems in current use are in this type.

There are several types of possible cryptanalytic attacks on a cryptosys-
tem S, depending on what information the cryptanalyst might already have
regarding S:

(1) Ciphertext-only attack: Only a piece of ciphertext C is known to the
cryptanalyst whose goal is to find the corresponding plaintext M and/or
the key k. This is the most difficult type of attack; any cryptosystem
vulnerable to this type of attack is considered to be completely insecure.

(2) Known-plaintext attack: The cryptanalyst has a piece of plaintext M
and the corresponding ciphertext C. The goal is the find the key k so
that other ciphertexts using the same encryption/key may be decrypted.
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(3) Chosen-plaintext attack: The cryptanalyst has gained temporary access
to the encryption machinery, so he can choose a piece of plaintext M and
construct the corresponding ciphertext C. The goal here is to find the
key k.

(4) Chosen-ciphertext attack: The cryptanalyst has gained temporary access
to the decryption machinery, so can choose a piece of ciphertext C and
construct the corresponding plaintext M . The goal here is also to find
the key k.

A good cryptosystem should resist all of these types of attacks, so that it is
impossible for a cryptanalysis to get the key k or to find the plaintext M in
polynomial-time.

Remark 2.1.1. Public-key cryptosystems, such as the RSA cryptosystem
described in the next sections, give rise to the chosen-ciphertext attack, since
the cryptanalyst may specify/obtain some ciphertext using the public-key
and learn the corresponding plaintext. In fact, all public-key cryptographic
systems are vulnerable to a chosen-ciphertext attack, which, however, can
be avoided by adding appropriate redundancy or randomness (padding or
salting) prior to encryption.

2.2 Public-Key Cryptography

Surprisingly, public-key cryptography, or asymmetric key cryptography (see
Figure 2.3), is almost the same (although the idea is different) as the secret-
key cryptography, or symmetric key cryptography, except that the keys k for
encryption and decryption are different. That is, we need two keys, ek and
dk, such that ek is used for encryption and dk for decryption, respectively. As
ek is only used for encryption, it can be made public; only dk must be kept a
secret for decryption. To distinguish public-key cryptosystems from secret-key
cryptosystems, ek is called the public key, and dk the private key; only the key
used in secret-key cryptosystems is called the secret key. Remarkably enough,
secret-key cryptography has a very long history, almost as long as our human
civilization; whereas public-key cryptography has a rather short history. In
fact the official date of birth of public-key cryptography is 1976, when Diffie
and Hellman, then both at Stanford University, published their seminal paper
New Directions in Cryptography [101] (see the first page of the paper in
Figure 2.4). It is in this seminal paper that they first publicly proposed the
completely new idea of public-key cryptography as well as digital signatures.
Although Diffie and Hellman did not have a practical implementation of their
idea, they did propose [101] an alternative key-exchange scheme over the
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Figure 2.3. Public-Key Cryptography

insecure channel, based on the intractability of the DLP problem and using
some of the ideas proposed earlier (although published later) by Merkle [208]
(published in 1978, but submitted in 1975; see the first page of this paper in
Figure 2.5).

Shortly after the publication of Diffie and Hellman’s paper, Rivest, Shamir
and Adleman, then all at Massachusetts Institute of Technology (MIT), pro-
posed a first workable and practical public-key cryptosystem in in 1977 [262]
(see the first page of the paper in Figure 2.6). The system is now known
as RSA; it was first made public to the world and became famous probably
because Gardner’s 1978 paper in Scientific American [115].

It is interesting to note that the British cryptographers Ellis, Cocks
and Williamson at the UK Government’s Communications-Electronics Se-
curity Group/Government Communications Headquarters (CESG/GCHQ)
also claimed that they secretly discovered the public-key encryption years
before the US scientists. There are of course two different universes of cryp-
tography: public (particularly for people working in academic institutions)
and secret (particularly for people working for militaries and governments).
Ellis-Cocks-Williamson certainly deserved some credit for their contribution
to the development of public-key cryptography. It should be noted that Hell-
man and his colleagues not only invented the public-key encryption, but also
the digital signatures which had not been mentioned in any of Ellis-Cocks-
Williamson’s documents/papers.
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Figure 2.4. The First Page of Diffie and Hellman’s Paper

The implementation of public-key cryptosystems is based on trapdoor one-
way functions.

Definition 2.2.1. Let S and T be finite sets. A one-way function

f : S → T (2.6)

is an invertible function satisfying

(1) f is easy to compute, that is, given x ∈ S, y = f(x) is easy to compute.
(2) f−1, the inverse function of f , is difficult to compute, that is, given

y ∈ T , x = f−1(y) is difficult to compute.
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Figure 2.5. The First Page of Merkle’s Paper

(3) f−1 is easy to compute when a trapdoor (i.e., a secret string of infor-
mation associated with the function) becomes available.

A function f satisfying only the first two conditions is also called a one-to-
one one-way function. If f satisfies further the third condition, it is called a
trapdoor one-way function.
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Figure 2.6. The First Page of RSA’s Paper

Example 2.2.1. The following functions are one-way functions:

(1) f : pq 7→ n is a one-way function, where p and q are prime numbers.
The function f is easy to compute since the multiplication of p and q
can be done in polynomial time. However, the computation of f−1, the
inverse of f is hard (this is the IFP problem).

(2) f : x 7→ gx mod N is a one-way function. The function f is easy to
compute since the modular exponentiation gx mod N can be performed
in polynomial time. But the computation of f−1, the inverse of f is hard
(this is the DLP problem).

(3) f : x 7→ xk mod N is a trapdoor one-way function, where N = pq with
p and q primes, and kk′ ≡ 1 (mod φ(N)). It is obvious that f is easy
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to compute since the modular exponentiation xk mod N can be done in
polynomial time, but f−1, the inverse of f (i.e., the kth root of x modulo
N) is difficult to compute. However, if k′, the trapdoor is given, f can
be easily inverted, since (xk)k′ = x.

Now we are in a position to introduce the formal definition of public-key
cryptography.

Definition 2.2.2. A public-key cryptosystem CS may be formally defined
as follows:

S = (M, C,K,M,C, e, d, E, D) (2.7)

where

(1) M is the set of plaintexts, called the plaintext space.
(2) C is the set of cipherexts, called the ciphertext space.
(3) K is the set of keys, called the key space.
(4) M ∈M is a piece of particular plaintext.
(5) C ∈ C is a piece of particular ciphertext.
(6) e 6= d and (e, d) ∈ K is the key.
(7) E is the encryption function

Eek
: M 7→ C

where M ∈M maps to C ∈ C, using the public-key ek, such that

C = Eek
(M) (2.8)

(8) D is the decryption function

Ddk
: C 7→ M

where C ∈ C maps to M ∈M, using the private-key dk such that

M = Ddk
(C) (2.9)

satisfying

Eek
Ddk

= 1 and Ddk
(C) = Ddk

(Eek
(M)) = M. (2.10)

The main task in public-key cryptography is to find a suitable trap-door
one-way function, so that both encryption and decryption are easy to perform
for authorized users, whereas decryption, the inverse of the encryption, should
be computationally infeasible for an unauthorized user.
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2.3 RSA Public-Key Cryptography

This section introduces the basic idea and theory of the most popular and
widely-used public-key cryptosystem RSA.

Definition 2.3.1. The RSA public-key cryptosystem may be formally de-
fined as follows (Depicted in Figure 2.7):

MM

Alice
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Public/Insecure Channel Eve (Cryptanalyst)

Ciphertext

Plaintext

Bob

(Sender)

Plaintext Encryption Decryption

C → M ′ ?
= M

C

Key Source Key Source

M ≡ Cd (mod N)C ≡ Me (mod N)

(e, N) (d, N)

(e, d, N) ∈ k

Figure 2.7. RSA Public-Key Cryptography

RSA = (M, C,K,M,C, e, d,N,E, D) (2.11)

where

(1) M is the set of plaintexts, called the plaintext space.
(2) C is the set of cipherexts, called the ciphertext space.
(3) K is the set of keys, called the key space.
(4) M ∈M is a piece of particular plaintext.
(5) C ∈ C is a piece of particular ciphertext.
(6) N = pq is the modulus with p, q prime numbers, usually each with at

least 100 digits.
(7) {(e,N), (d,N)} ∈ K with e 6= d are the encryption and encryption keys,

respectively, satisfying

ed ≡ 1 (mod φ(N)) (2.12)

where φ(N) = (p − 1)(q − 1) is the Euler φ-function and defined by
φ(N) = #(Z∗N ), the number of elements in the multiplicative group Z∗N .
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(8) E is the encryption function

Ee,N : M 7→ C

That is, M ∈M maps to C ∈ C, using the public-key (e,N), such that

C ≡ Me (mod N). (2.13)

(9) D is the decryption function

Dd,N : C 7→ M

That is, C ∈ C maps to M ∈M, using the private-key (d,N), such that

M ≡ Cd ≡ (Me)d (mod N). (2.14)

The idea of RSA can be best depicted in Figure 2.8.

C ≡ Me (mod N)

(e,N) public

Alice Bob

and ed ≡ 1 (mod φ(N))
such that N = pq

Alice chooses primes p, q

M ≡ Cd (mod N)

Figure 2.8. RSA Encryption and Decryption

Theorem 2.3.1 (The Correctness of RSA). Let M, C,N, e, d be plain-
text, ciphertext, encryption exponent, decryption exponent, and modulus,
respectively. Then

(Me)d ≡ M (mod N).
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Proof. Notice first that

Cd ≡ (Me)d (mod N) (since C ≡ Me (mod N))
≡ M1+kφ(N) (mod N) (since ed ≡ 1 (mod φ(N)))
≡ M ·Mkφ(N) (mod N)
≡ M · (Mφ(N))k (mod N)
≡ M · (1)k (mod N) (by Euler′s Theorem aφ(n) ≡ 1 (mod N))
≡ M

The result thus follows. 2

Both encryption C ≡ Me ( mod N) and decryption M ≡ Cd ( mod N) of
RSA can be implemented in polynomial-time by Algorithm 1.3.5. For example
the RSA encryption can be implemented as follows:

Algorithm 2.3.1. Given (e,M,N), this algorithm finds C ≡ Me (mod N),
or given (d,C, N), finds M ≡ Cd (mod N) in time polynomial in log e or log d,
respectively.

Given (e,M,N) to find C Given (d,C, N) to find M
Set C ← 1 Set M ← 1
While e ≥ 1 do While d ≥ 1 do

if e mod 2 = 1 if d mod 2 = 1
then C ← C ·M mod N then M ← M · C mod N

M ← M2 mod N C ← C2 mod N
e ← be/2c d ← bd/2c

Print C Print M

Remark 2.3.1. For the decryption process in RSA, as the authorized user
knows d and hence knows p and q, thus instead of directly working on M ≡
Cd (mod N), he can speed-up the computation by working on the following
two congruences:

Mp ≡ Cd ≡ Cd mod p−1 (mod p)

Mq ≡ Cd ≡ Cd mod q−1 (mod q)

and then use the Chinese Remainder Theorem to get

M ≡ Mp · q · q−1 mod p + Mq · p · p−1 mod q (mod N). (2.15)

The Chinese Remainder Theorem is a two-edged sword. On the one hand, it
provides a good way to speed-up the computation/performance of the RSA
decryption, which can even be easily implemented by a low-cost crypto-chip
[129]. On the other hand, it may introduce some serious security problems
vulnerable to some side-channel attacks, particularly the random fault at-
tacks; we shall discuss this in Section 8.4.
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Example 2.3.1. Let the letter-digit encoding be as follows:

space = 00, A = 01, B = 02, · · · , Z = 26.

(We will use this digital representation of letters throughout the book.) Let
also

e = 9007,

M = 200805001301070903002315180419000118050019172105011309
190800151919090618010705,

N = 114381625757888867669235779976146612010218296721242362
562561842935706935245733897830597123563958705058989075
147599290026879543541.

Then the encryption can be done by using Algorithm 2.3.1:

C ≡ Me

≡ 968696137546220614771409222543558829057599911245743198
746951209308162982251457083569314766228839896280133919
90551829945157815154 (mod N).

For the decryption, since the two prime factors p and q of N are known to
the authorized person who does the decryption:

p = 34905295108476509491478496199038981334177646384933878
43990820577,

q = 32769132993266709549961988190834461413177642967992942
539798288533,

then

d ≡ 1/e

≡ 106698614368578024442868771328920154780709906633937862
≡ 801226224496631063125911774470873340168597462306553968
≡ 544513277109053606095 (mod (p− 1)(q − 1)).

Thus, the original plaintext M can be recovered either directly by using
Algorithm 2.3.1, or indirectly by a combined use of Algorithm 2.3.1 and the
Chinese Remainder Theorem (2.15):

M ≡ Cd

= 200805001301070903002315180419000118050019172105011309
190800151919090618010705 (mod N)

which is “THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE”.
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Remark 2.3.2. Prior to RSA, Pohlig and Hellman in 1978 [241] proposed a
secret-key cryptography based on arithmetic modulo p, rather than N = pq.
The Pohlig-Hellman system works as follows: Let M and C be the plain
and cipher texts, respectively. Choose a prime p, usually with more than 200
digits, and a secret encryption key e such that e ∈ Z+ and e ≤ p−2. Compute
d ≡ 1/e (mod (p− 1)). (e, p) and of course d must be kept as a secret.

[1] Encryption:

C ≡ Me (mod p). (2.16)

This process is easy for the authorized user:

{M, e, p} find−−−−−→
easy

{C ≡ Me (mod p)}. (2.17)

[2] Decryption:

M ≡ Cd (mod p). (2.18)

For the authorized user who knows (e, p), this process is easy, since d can
be easily computed from e.

[3] Cryptanalysis: The security of this system is based on the infeasibility
of the Discrete Logarithm Problem. For example, for a cryptanalyst who
does not know e or d would have to compute:

e ≡ logM C (mod p).

Remark 2.3.3. One of the most important features of RSA encryption is
that it can also be used for digital signatures. Let M be a document to be
signed, and N = pq with p, q primes, (e, d) the public and private exponents
as in RSA encryption scheme. Then the processes of RSA signature signing
and signature verification are just the same as that of the decryption and
encryption; that is use d for signature signing and e signature verification as
follows (see also Figure 2.9):

[1] Signature signing:

S ≡ Md (mod N) (2.19)

The signing process can only be done by the authorized person who has
the private exponent d.

[2] Signature verification:

M ≡ Se (mod N) (2.20)

This verification process can be done by anyone since (e,N) is public.

Of course, RSA encryption and RSA signature can be used together to obtain
a signed encrypted document to be sent over an insecure network.
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M ≡ Se (mod N)

S ≡ Md (mod N)
Alice Bob

and ed ≡ 1 (mod φ(N)
such that N = pq

Alice chooses primes p, q

(e,N) public

Figure 2.9. RSA Digital Signature

2.4 RSA Problem and RSA Assumption

As can be seen from the previous section, the whole idea of the RSA encryp-
tion and decryption is as follows:

C ≡ Me (mod N),
M ≡ Cd (mod N)

}
(2.21)

where

ed ≡ 1 (mod φ(N))
N = pq with p, q ∈ Primes.

}
(2.22)

Thus, the RSA function can be defined by

fRSA : M 7→ Me mod N. (2.23)

The inverse of the RSA function is then defined by

f−1
RSA : Me 7→ M mod N. (2.24)

Clearly, the RSA function is a one-way trap-door function, with

{d, p, q, φ(N)} (2.25)
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the RSA trap-door informationmitrap-door information. For security pur-
poses, this set of information must be kept as a secret and should never be
disclosed in anyway even in part. Now suppose that Bob sends C to Alive,
but Eve intercepts it and wants to understand it. Since Eve only has (e,N,C)
and does not have any piece of the trap-door information in (2.25), then it
should be infeasible/intractable for her to recover M from C:

{e,N,C ≡ Me (mod N)} hard−−−−−→ {M ≡ Cd (mod N)}. (2.26)

On the other hand, for Alice, since she knows d, which implies that she knows
all the pieces of trap-door information in (2.25), since

{d} P⇐⇒ {p} P⇐⇒ {q} P⇐⇒ {φ(N)} (2.27)

We shall explain the relations in (2.27) in Chapter 6). Thus, it is easy for
Alice to recover M from C:

{N, C ≡ Me (mod N)} {d,p,q,φ(N)}−−−−−−−−−−−→
easy

{M ≡ Cd (mod N)}. (2.28)

Why is it hard for Eve to recover M from C? This is because Eve is facing
a hard computational problem, namely, the RSA problem [264]:

The RSA problem: Given the RSA public-key (e,N) and the RSA
ciphertext C, find the corresponding RSA plaintext M . That is,

{e,N,C} −−−−→ {M}.
It is conjectured although it has never been proved or disproved that:

The RSA conjecture: Given the RSA public-key (e,N) and the
RSA ciphertext C, it is hard to find the corresponding RSA plaintext
M . That is,

{e,N,C} hard−−−−−→ {M}.
But how hard is it for Alice to recover M from C? This is another version of
the RSA conjecture, often called the RSA assumption, which again has never
been proved or disproved:

The RSA assumption: Given the RSA public-key (e,N) and the
RSA ciphertext C, then finding M is as hard as factoring the RSA
modulus N . That is,

IFP(N) ⇐⇒ RSA(M)

provided that N is sufficiently large and randomly generated, and M
and C are random integers between 0 and N − 1. More precisely, it
is conjectured (or assumed) that

IFP(N) P⇐⇒ RSA(M).
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That is, if N can be factorized in polynomial-time, then M can be recov-
ered from C in polynomial-time. In other words, cryptoanalyzing RSA must
be as difficult as solving the IFP problem. But the problem is, as we dis-
cussed previously, that no one knows whether or not IFP can be solved in
polynomial-time, so RSA is only assumed to be secure, not proved to be
secure:

IFP(N) is hard −→ RSA(M) is secure.

The real situtaion is that

IFP(N)
√

=⇒ RSA(M),

IFP(N) ?⇐= RSA(M).

Now we can return to answer the question that how hard is it for Alice to
recover M from C? By the RSA assumpition, cryptanalyzing C is as hard as
factoring N . The fastest known integer factorization algorithm, the Number
Field Sieve (NFS), runs in time

O(exp(c(log N)1/3(log log N)2/3))

where c = (64/9)1/3 if a general version of NFS, GNFS, is used for factoring
an arbitrary integer N whereas c = (32/9)1/3 if a special version of NFS,
SNFS, is used for factoring a special form of integer N . As in RSA, the
modululs N = pq is often chosen be a large general composite integer N = pq
with p and q the same bit size, which makes SNFS is not useful. This means
that RSA cannot be broken in polynomial-time, but in subexponential-time,
which makes RSA secure, again, by assumption. Thus, readers should note
that the RSA problem is assumed to be hard, and the RSA cryptosystem is
conjectured to be secure .

2.5 RSA-Type Crytposystems

RSA is a cryptographic system based on factoring as its security relies on
the intractability of the Integer Factorization Problem (IFP). However, RSA
is not the only cryptographic system based on factoring. There are in fact
many cryptographic systems whose security depends on the intractability of
the IFP problem. In this section, we study some of these systems. If the RSA
problem can be solved in polynomial-time, all the factoring based crypto-
graphic systems can be broken in polynomial-time. Thus, we could regard
all the factoring based cryptographic systems as various variants of the RSA
cryptographic systems, or RSA-type cryptosystems. In a more broad sense, as
IFP is related to DLP/ECDLP, all DLP/ECDLP-based cryptosystems may
also be regarded as RSA-type cryptosystems.



74 2. RSA Public-Key Cryptography

Rabin’s M2 Cryptoystem

As can be seen from the previous sections, RSA uses Me for encryption,
with e ≥ 3 (3 is the smallest possible public exponent), we might call RSA
encryption Me encryption. In 1979, Michael Rabin proposed a scheme based
on M2 encryption. rather than the Me for e ≥ 3 encryption used in RSA. A
brief description of the Rabin system is as follows (see also Figure 2.10).

[1] Key generation: Let N = pq with p, q odd primes satisfying

p ≡ q ≡ 3 (mod 4). (2.29)

[2] Encryption:

C ≡ M2 (mod N). (2.30)

[3] Decryption: Use the Chinese Remainder Theorem to solve the system
of congruences:

{
Mp ≡

√
C (mod p)

Mq ≡
√

C (mod q)
(2.31)

to get the four solutions: {±Mp,±Mq}. The true plaintext M will be one
of these four values.

[4] Cryptanalysis: A cryptanalyst who can factor N can compute the four
square roots of C modulo N , and hence can recover M from C. Thus,
breaking the Rabin system is equivalent to factoring N .

Unlike the RSA cryptosystem whose security was only conjectured to
be equivalent to the intractability of IFP, the security of Rabin-Williams is
proved to be equivalent to the intractability of IFP. First notice that there is
a fast algorithm to compute the square roots modulo N if N = pq is known.

Consider the following quadratic congruence

x2 ≡ y (mod p) (2.32)

there are essentially three cases for the prime p:

(1) p ≡ 3 (mod 4),
(2) p ≡ 5 (mod 8),
(3) p ≡ 1 (mod 8).

All three cases may be solved by the following process:




if p ≡ 3 (mod 4), x ≡ ±y
p+1
4 (mod p),

if p ≡ 5 (mod 8),





if y
p+1
4 = 1, x ≡ ±y

p+3
8 (mod p)

if y
p+1
4 6= 1, x ≡ ±2y(4y)

p−5
8 (mod p).

(2.33)
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M = {±Mp,±Mq}

p ≡ q ≡ 3 (mod 4)
(p, q) secret

Mp ≡ C2 (mod p)
Mq ≡ C2 (mod q)

Alice chooses primes p, q such that

C ≡ M2 (mod N)

N public

BobAlice

Figure 2.10. Rabin System

Algorithm 2.5.1 (Computing Square Roots Modulo pq). Let N = pq
with p and q odd prime and y ∈ QRN . This algorithm will find all the four
solutions in x to congruence x2 ≡ y (mod pq) in time O((log p)4).

[1] Use (2.33) to find a solution r to x2 ≡ y (mod p).
[2] Use (2.33) to find a solution s to x2 ≡ y (mod q).
[3] Use the Extended Euclid’s algorithm to find integers c and d such that

cp + dq = 1.

[4] Compute x ≡ ±(rdq ± scp) (mod pq).

On the other hand, if there exists an algorithm to find the four solutions
in x to x2 ≡ y (mod N), then there exists an algorithm to find the prime
factorization of N . The following is the algorithm.

Algorithm 2.5.2 (Factoring via Square Roots). This algorithm seeks to
find a factor of N by using an existing square root finding algorithm (namely,
Algorithm 2.5.1).

[1] Choose at random an integer x such that gcd(x,N) = 1, and compute
x2 ≡ a (mod N).

[2] Use Algorithm 2.5.1 to find four solutions in x to x2 ≡ a (mod N).
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[3] Choose one of the four solutions, say y such that y 6≡ ±x (mod N), then
compute gcd(x± y, N).

[4] If gcd(x± y, N) reveals p or q, then go to step [5], or otherwise, go to step
[1].

[5] Exit.

Theorem 2.5.1. Let N = pq with p, q odd prime. If there exists a polynomial-
time algorithm A to factor N = pq, then there exists an algorithm B to find
a solution to x2 ≡ y (mod N), for any y ∈ QRN .

Proof. If there exists an algorithm A to factor N = pq, then there ex-
ists an algorithm (in fact, Algorithm 2.5.1), which determines x = ±(rdq ±
scp) (mod pq), as defined in Algorithm 2.5.1, for x2 ≡ y (mod N). Clearly,
Algorithm 2.5.1 runs in polynomial-time. 2

Theorem 2.5.2. Let N = pq with p, q odd prime. If there exists a polynomial-
time algorithm A to find a solution to x2 ≡ a (mod N), for any a ∈ QRN ,
then there exists a probabilistic polynomial time algorithm B to find a factor
of N .

Proof. First note that for N composite, x and y integer, if x2 ≡ y2 ( mod N)
but x 6≡ ±y (mod N), then gcd(x + y, N) are proper factors of n. If there
exists an algorithm A to find a solution to x2 ≡ a (mod N) for any a ∈
QRN , then there exists an algorithm (in fact, Algorithm 2.5.2), which uses
algorithm A to find four solutions in x to x2 ≡ a (mod N) for a random x
with gcd(x,N) = 1. Select one of the solutions, say, y 6≡ ±x (mod N), then
by computing gcd(x± y, N), the probability of finding a factor of N will be
≥ 1/2. If Algorithm 2.5.2 runs for k times and each time randomly chooses
a different x, then the probability of not factoring N is ≤ 1/2k. 2

So, finally, we have

Theorem 2.5.3. Factoring integers, computing the modular square roots,
and breaking the Rabin cryptosystem are computationally (deterministic
polynomial-time) equivalent. That is,

IFP(N) P⇐⇒ Rabin(M). (2.34)

Williams’ Improved M2 Cryptoystem

Williams [327] proposed a modified version of the RSA cryptographic system,
particularly the Rabin’s M2 system in order to make it suitable as a public-
key encryption scheme (Rabin’s original system was intended to be used as
a digital signature scheme). A description of Williams’ M2 encryption is as
follows (suppose Bob wishes to send Alice a ciphertext C ≡ M2 (mod N)):
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[1] Key generation: Let N = pq with q and q primes such that

p ≡ 3 (mod 8)
q ≡ 7 (mod 8)

}

So, N ≡ 5 (mod 8) and (N, 2) is used public-key. The private-key d is
defined by

d =
(p− 1)(q − 1)

4
+ 1

[2] Encryption: Let M be plaintext space containing all possible plaintexts
M such that

2(2M + 1) < N if the Jacobi symbol
(

2M + 1
N

)
= −1

4(2M + 1) < N if the Jacobi symbol
(

2M + 1
N

)
= 1

The first step in encryption is for all M ∈M, put

M ′ = E1(M) =

{
2(2M + 1) if the Jacobi symbol

(
2M+1

N

)
= −1

4(2M + 1) if the Jacobi symbol
(

2M+1
N

)
= 1.

The last step in encryption is just the same as Rabin’s encryption:

C ≡ (M ′)2 (mod N)

[3] Decryption: On the reverse order of the encryption, the first step in
decryption is as follows:

C ′ = D2(C) ≡ Cd (mod N)

and the last step in decryption is defined by:

M = D1(C ′) =





M′
4 −1

2 if M ′ ≡ 0 (mod 4)

N−M′
4 −1

2 if M ′ ≡ 1 (mod 4)

M′
2 −1

2 if M ′ ≡ 2 (mod 4)

N−M′
2 −1

2 if M ′ ≡ 3 (mod 4).

The whole process of encryption and decryption is as follows:

M
E1−→ M ′ E2−→ C

D2−→ M ′ D1−→ M.
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[4] Cryptanalysis: A cryptanalyst who can factor N can find d, and hence
can recover M from C. Thus, breaking the Williams’ system is equivalent
to factoring N .

Theorem 2.5.4 (Correctness of Williams’ M2 encryption). Let M ∈
M. Then

M = D1(D2(E2(E1(M)))).

Theorem 2.5.5 (Equivalence of Williams(M) and IFP(N)). Breaking
Williams’ M2 encryption (i.e., finding M from C) is equivalent to factoring
the modulus N . That is,

IFP(N) P⇐⇒ Williams(M). (2.35)

For the justification od the above two theorem, see Williams [327].
Just the same as Rabin’s system, Williams’ M2 encryption is also prov-

ably secure, as breaking the Williams’ M2 mod N encryption is equivalent
to factoring N , where the N is a special form of N = pq, with p, q primes
and p ≡ 3 (mod 8) and q ≡ 7 (mod 8). Note that this special integer factor-
ization problem is not the same as the general IFP problem, although there
is no any known reason to believe this special factoring problem is any eas-
ier than the general factoring problem. But unlike Rabin’s system, Williams’
M2 encryption can be easily generalized to the general Me encryption with
e > 2, as in RSA. Thus, Williams’ M2 encryption is not just a variant of Ra-
bin system, but also a variant of the general RSA system. In fact, Williams’
original paper [327] discussed the general case that

ed ≡
(p−1)(q−1)

4 + 1
2

(modλ(N)).

Williams’ M2 encryption improved Rabin’s M2 encryption by eliminating
the 4 : 1 ciphertext ambiguity problem in decryption without adding extra
information for removing the ambiguity. Williams in [331] also proposed a
M3 encryption variant to Rabin but eliminated the 9 : 1 ciphertext ambiguity
problem. The encryption is also proved to be as hard as factoring, although
is is again still not the general IFP problem, since N = pq was chosen to be

p ≡ q ≡ 1 (mod 3)

and
(p− 1)(q − 1)

9
≡ −1 (mod 3).
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LUC Cryptoystem

In 1993, Smith and Lennon proposed an RSA analog, called LUC [305], based
on Lucas sequences. Let a, b be non-zero integers and D = a2 − 4b. Consider
the equation x2 − ax + b = 0; its discriminant is D = a2 − 4b, and α and β
are the two roots:

α =
a +

√
D

2

β =
a−√D

2
.

So

α + β = a

α− β =
√

D

αβ = b.

We define the sequences (Uk) and (Vk) by

Uk(a, b) =
αk − βk

α− β

Vk(a, b) = αk + βk.

In particular, U0(a, b) = 0, U1(a, b) = 1, while V0(a, b) = 2, V1(a, b) = a. For
k ≥ 2, we also have

Uk(a, b) = aUk−1 − bUk−2

Vk(a, b) = aVk−1 − bVk−2.

The sequences

U(a, b) = (Uk(a, b))k≥0

V (a, b) = (Vk(a, b))k≥0

are called the Lucas sequences associated with the pair (a, b), in honour of
the French mathematician François Edouard Lucas (1842–1891); more infor-
mation about Lucas and Lucas sequences can be found e.g., in Yan [335].
The LUC cryptosystem works as follows (suppose Bob sends a ciphertext to
Alice):

[1] Key generation: Alice publishes her public-key (e,N), satisfying

N = pq, with p, q ∈ Primes,

ed ≡ 1 (mod (p2 − 1)(q2 − 1)), with gcd(e, (p2 − 1)(q2 − 1)) = 1.
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[2] Encryption: Bob encrypts his message 1 < M < N−1 with gcd(M, N) =
1 as follows:

C ≡ Ve(M, 1) (mod N)

based on the Lucas sequences, and sends it to Alice.
[3] Decryption: Alice performs the decryption as follows:

M ≡ vd(C, 1) (mod N).

[4] Cryptoanalysis: Anyone who can factor N can decrypt the message.

Theorem 2.5.6 (Correctness of LUC).

vd(C, 1) ≡ M (mod N).

Proof.

vd(C, 1) ≡ vd(Ve(M, 1), 1)
≡ ved(M, 1)
≡ M (mod N).

2

Readers are suggested to consult [33], [205], [237] and [305] for more in-
formation about the LUC system, [33] also had a good discussion on both
the LUC and the Dickson cryptosystems, as Dickson polynomials and the
Lucas sequences are related to each other, and both can be used to construct
RSA-type cryptosystems.

Elliptic Curve RSA

RSA has several noted elliptic curve analogues. Before introducing ing the
EC analogue of RSA, we need two more results related the number of points
on elliptic curves over the finite field Fp.

Theorem 2.5.7 (Hasse). Let E be an elliptic curve over Fp:

Ep(a, b) : y2 = x3 + ax + b. (2.36)

Then the number of points on Ep(a, b), denoted by #(Ep(a, b)), is as follows:

#((Ep(a, b)) = 1 + p− ε

where |ε| ≤ 2
√

p.

Definition 2.5.1. Let Ep(a, b) be an elliptic curve over the finite field Fp.
The complementary group of Ep(a, b), denoted by Eq(a, b)), is the set of
points satisfying (2.36) together with a point at infinity O, where y is of the
form u

√
v, and v is a fixed non-quadratic residue modulo p and v ∈ Fp.
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Corollary 2.5.1. If
#((Ep(a, b)) = 1 + p− ε,

then
#(Eq(a, b))) = 1 + p + ε.

The simplest EC analogue of RSA may be described as follows [335]:

[1] Key generation: N = pq is the product of two large secret primes p
and q. Choose two random integers a and b such that EN (a, b) : y2 =
x3 + ax + b defines an elliptic curve modulo both p and q. Let

Nn = lcm(#(Ep(a, b)),#(Eq(a, b))).

Choose a value for e such that

gcd(e,Nn) = 1,

ed ≡ 1 (mod Nn).

Publish (e,N) as public-key, but keep (d, p, q,Nn) as a secret.
[2] Encryption: To encrypt a message-point M , which is a point on

EN (a, b), perform C ≡ eM (mod N).
[3] Decryption: To encrypt a ciphertext C, just perform M ≡ dC (mod

N).
[4] Cryptanalysis: Anyone who can factor N , can of course decode the

ciphertext.

In what follows, we introduce two relatively popular elliptic curve ana-
logues of RSA. The first is the KMOV cryptosystem [180], which uses a family
of supersingular elliptic curve EN (0, b) : y2 = x3 + b. An important property
of this system is that if

p, q ≡ 2 (mod 3),

then
Nn = lcm(p + 1, q + 1)

regardless of the value of b. The KMOV systems works as follows:

[1] Key generation: Let N = pq be the product of two large secret primes
p and q. Choose a supersingular elliptic curve

EN (0, b) : y2 = x3 + b

such that
Nn = lcm(p + 1, q + 1).

Choose a value for e such that

gcd(e,Nn) = 1,

ed ≡ 1 (mod Nn).

Publish (e,N) as public-key, but keep (d, p, q,Nn) as a secret.
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[2] Encryption: To encrypt a message, e.g., M = (m1,m2), Choose a suit-
able bsuch that

b ≡ m3
2 −m3

1 (mod N)

and C is computed by

C ≡ eM (mod N)

over EN (0, b).
[3] Decryption: To encrypt a ciphertext C, perform

M ≡ dC (mod N)

over EN (0, b).
[4] Cryptanalysis: Anyone who can factor N , can find the trap-door in-

formation (d, p, q,Nn), and hence can decode the message.

The second is the Demytko cryptosystem [98], which uses fixed (a, b) for
elliptic curve

EN (a, b) : y2 = x3 + ax + b,

In particular, it uses only the x-coordinate of the points of Ep(a, b), The
system relies on the fact if x is not the x-coordinate of a point on the elliptic
curve EN (a, b), then it will be the x-coordinate of a point on of the twisted
curve Ep(a, b). Thus,

Nn = lcm(#(Ep(a, b)),#(Ep(a, b)),#(Eq(a, b)),#(Eq(a, b))).

The Demytko system works as follows:

[1] Key generation: Choose N = pq with p and q primes. Choose an
elliptic curve

EN (0, b) : y2 = x3 + b

with fixed parameters p and q. Let

Nn = lcm(#(Ep(a, b)),#(Ep(a, b)),#(Eq(a, b)),#(Eq(a, b))).

Choose a value for e such that

gcd(e,Nn) = 1,

ed ≡ 1 (mod Nn).

Publish (e,N) as public-key, but keep (d, p, q,Nn) as a secret.
[2] Encryption: To encrypt a message M , compute

C ≡ eM (mod N)

over EN (a, b).
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[3] Decryption: To encrypt a ciphertext C, perform

M ≡ dC (mod N)

over EN (a, b).
[4] Cryptanalysis: Anyone who can factor N , can recover M from C.

The cryptanalyst who knows the prime factorization of N , can decrypt
the message easily. Readers are advised to consult [158] and [159] for some
more recent developments in elliptic curve analogues of RSA.

ElGamal System

RSA is not only connected to the integer factorization problem, but also
connected to the discrete logarithm problem, since, e.g., M can be found by
taking the following discrete logarithm:

M ≡ logMe M (mod N)

The first public-key cryptosystem based on discrete logarithms is the El-
Gamal cryptosystem (see Figure 2.11), proposed in 1985:

[1] A prime q and a generator g ∈ F∗q are made public.
[2] Alice chooses a private integer a = aA ∈ {1, 2, · · · , q − 1}. This a is the

private decryption key. The public encryption key is ga ∈ Fq.
[3] Suppose now Bob wishes to send a message to Alice. He chooses a random

number b ∈ {1, 2, · · · , q−1} and sends Alice the following pair of elements
of Fq:

(gb, Mgab)

where M is the message.
[4] Since Alice knows the private decryption key a, she can recover M from

this pair by computing gab (mod q) and dividing this result into the
second element, i.e., Mgab.

[5] Someone who can solve the discrete logarithm problem in Fq breaks
the cryptosystem by finding the secret decryption key a from the public
encryption key ga. In theory, there could be a way to use knowledge of ga

and gb to find gab and hence break the cipher without solving the discrete
logarithm problem. However, there is no known way to go from ga and gb

to gab without essentially solving the discrete logarithm problem. So the
security of the ElGamal cryptosystem is the same as the intractability of
the discrete logarithm problem.

Surprisingly, the ElGamal cryptosystem (and in fact, almost all the ex-
isting systems, including RSA) can be easily extended to an elliptic curve
cryptosystem. The following is the elliptic curve analog of the ElGamal cryp-
tosystem (see also Figure 2.12).
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(g, q) public

ga mod q

(gb, Mgab)

M = Mgab/(gb)a

Alice Bob

Alice chooses a Bob chooses b

Figure 2.11. ElGamal System

[1] Alice and Bob publicly choose an elliptic curve E over Fq with q = pr

and p ∈ Primes, and a random base point P ∈ E.
[2] Alice chooses a random integer ra and computes raP ; Bob also chooses

a random integer rb and computes rbP .
[3] To send a message-point M to Bob, Alice chooses a random integer k

and sends the pair of points (kP, M + k(rbP )).
[4] To read M , Bob computes

M + k(rbP )− rb(kP ) = M. (2.37)

[5] An eavesdropper who can solve the discrete logarithm problem on E can,
of course, determine rb from the publicly known information P and rbP .
Since there is no known efficient way to compute discrete logarithms, the
system is secure.

Goldwasser-Micali System

The RSA encryption is deterministic in the sense that under a fixed public-
key, a particular plaintext M is always encrypted to the same ciphertext C.
Some of the drawbacks of such a deterministic scheme are:

(1) It is not secure for all probability distributions of the message space. For
example, in RSA encryption, the messages 0 and 1 always get encrypted
to themselves, and hence are easy to detect.

(2) It is easy to obtain some partial information of the secret key (p, q)
from the public modulus n (assume that n = pq). For example, when
the least-significant digit of n is 3, then it is easy to obtain the partial
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Alice chooses a Bob chooses b

(E, P, q) public

aP mod q

(bP, M + b(aP ))

M = M + b(aP )− a(bP )

Alice Bob

Figure 2.12. Elliptic Curve Analog of ElGamal System

information that the least-significant digits of p and q are either 1 and 3
or 7 and 9 since

183 = 3 · 61 253 = 11 · 23
203 = 7 · 29 303 = 3 · 101
213 = 3 · 71 323 = 17 · 19.

(3) It is sometimes easy to compute partial information about the plaintext
M from the ciphertext C. For example, given (C, e, N), the Jacobi symbol
of M over N can be easily deduced from C:

(
C

N

)
=

(
Me

N

)(
M

N

)e

=
(

M

N

)
.

d) It is easy to detect when the same message is sent twice.

Probabilistic encryption, or randomized encryption, however, utilizes ran-
domness to attain a strong level of security, namely, the polynomial security
and semantic security, defined as follows:

Definition 2.5.2. A public-key encryption scheme is said to be polynomially
secure if no passive adversary can, in expected polynomial-time, select two
plaintexts M1 and M2 and then correctly distinguish between encryptions of
M1 and M2 with probability significantly greater that 1/2.

Definition 2.5.3. A public-key encryption scheme is said to be semantically
secure if, for all probability distributions over the message space, whatever a
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passive adversary can compute in expected polynomial-time about the plain-
text given the ciphertext, it can also be computed in expected polynomial
time without the ciphertext.

Intuitively, a public-key encryption scheme is semantically secure if the ci-
phertext does not leak any partial information whatsoever about the plaintext
that can be computed in expected polynomial-time. That is, given (C, e, N),
it should be intractable to recover any information about M . Clearly, a public-
key encryption scheme is semantically secure if and only if it is polynomially
secure.

Recall that an integer a is a quadratic residue modulo N , denoted by
a ∈ QN , if gcd(a,N) = 1 and there exists a solution x to the congruence
x2 ≡ a (mod N), otherwise a is a quadratic nonresidue modulo N , denoted
by a ∈ QN . The Quadratic Residuosity Problem (QRP) may be stated as
follows:

Given positive integers a and n, decide whether or not a ∈ QN .

It is believed that solving QRP is equivalent to computing the prime factor-
ization of N , so it is computationally infeasible. The Jacobi symbol

(
x
N

)
is

defined for any x ∈ ZN and has a value in {1,−1}. If N is prime then

a ∈ QN ⇐⇒
( a

N

)
= 1 (2.38)

and if N is composite, then

a ∈ QN =⇒
( a

N

)
= 1 (2.39)

but
a ∈ QN

?⇐=
( a

N

)
= 1. (2.40)

However
a ∈ QN ⇐=

( a

N

)
= −1. (2.41)

That is, whenever N is composite, a may belong to QN even if
(

a
N

)
= 1.

Let Jn = {a ∈ (Z/nZ)∗ :
(

a
N

)
= 1}, then Q̃N = JN −QN . Thus, Q̃N is the

set of all pseudosquares modulo N ; it contains those elements of JN that do
not belong to QN .

In what follows, we present a cryptosystem whose security is based on the
infeasibility of the Quadratic Residuosity Problem; it was first proposed by
Goldwasser and Micali in 1984, under the term probabilistic encryption.

Algorithm 2.5.3 (Goldwasser-Micali Probabilistic Encryption).
This algorithm uses the randomized method to encrypt messages and is based
on the quadratic residuosity problem (QRP). The algorithm divides into three
parts: key generation, message encryption and decryption.
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[1] Key generation: Both Alice and Bob should do the following to generate
their public and secret keys:
– Select two large distinct primes p and q, each with roughly the same size,

say, each with β bits.
– Compute N = pq.

– Select a y ∈ ZN , such that y ∈ QN and
( y

N

)
= 1. (y is thus a pseu-

dosquare modulo N).
– Make (N, y) public, but keep (p, q) secret.

[2] Encryption: To send a message to Alice, Bob should do the following:
– Obtain Alice’s public-key (N, y).
– Represent the message m as a binary string m = m1m2 · · ·mk of length

k.
– For i from 1 to k do

– Choose at random an x ∈ (ZN )∗ and call it xi.
– Compute ci:

ci =

{
x2

i mod N, if mi = 0, (r.s.)

yx2
i mod N, if mi = 1, (r.p.s.),

(2.42)

where r.s. and r.p.s. represent random square and random pseu-
dosquare, respectively.

– Send the k-tuple c = (c1, c2, · · · , ck) to Alice. (Note first that each ci is
an integer with 1 ≤ ci < N . Note also that since n is a 2β-bit integer,
it is clear that the ciphertext c is a much longer string than the original
plaintext m.)

[3] Decryption: To decrypt Bob’s message, Alice should do the following:
– For i from 1 to k do

– Evaluate the Legendre symbol:

e′i =
(

ci

p

)

– Compute mi:

mi =

{
0, if e′i = 1

1, if otherwise.
(2.43)

That is, mi = 0 if ci ∈ QN , otherwise, mi = 1.

– Finally, get the decrypted message m = m1m2 · · ·mk.

One of the most important feature of the Goldwasser-Micali encryption
is that

Theorem 2.5.8. The Goldwasser-Micali probabilistic encryption based on
QRP is semantically secure.

Readers interested in semantically secure probabilistic encryption may
wish to consult [124] and [121].
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2.6 Chapter Notes and Further Readings

The underlying number-theoretic and computational complexity-theoretic
ideas and concepts of the public-key cryptography in general and RSA cryp-
tography in particular have been introduced in this chapter.

The idea of public-key cryptography was first publicly conceived and pro-
posed by Diffie and Hellman [101], then both at Stanford University, in their
seminal paper “New Directions in Cryptography” [101]; which was in turn
based on some idea of Merkle [208], a PhD student of Hellman. Based on the
work of Diffie, Hellman and Merkle (DHM), Rivest, Shamir and Addleman
(RSA), then all at MIT, developed the first practical public-key cryptosystem
in 1977 (see [115], [261], and [262]), now known as the RSA cryptosystem.
These six people Diffie, Hellman, Merkle, Rivest, Shamir and Addleman are
now regarded as the co-inventors of the public-key cryptography. Incidently,
they jointly received the 1996 ACM Paris Kanellakis Theory and Practice
Award “for the conception and first effective realization of public-key cryp-
tography. The idea of a public-key cryptosystem was a major conceptual
breakthrough that continues to stimulate research to this day, and without
it today’s rapid growth of electronic commerce would have been impossi-
ble.” It is interesting to note that in December 1997 the Communication-
Electronics Security Group (CESG) of the British Government Communica-
tions Headquarters (GCHQ), the successor of the Blechley Park (the British
Government’s Cryptography Centre during the 2nd World War for breaking
the German Enigma codes), claimed that public-key cryptography was con-
ceived (secretly) by James H. Ellis in 1970 and implemented by two of his
colleagues Clifford C. Cocks and Malcolm J. Williamson between 1973 and
1976 in CESG, by declassifying five of their papers. The US Government’s
National Security Agency (NSA) also made a similar claim that they had
public-key cryptography a decade earlier. However, according to the “first to
publish, not first to keep secret” rule, the credit of the invention of public-key
cryptography goes to Diffie, Hellman and Merkle for their seminar idea and to
Rivest, Shamir and Adleman for their first implementation. The claims from
CESG/GCHQ and NSA, however, are interesting footnote to the history of
modern cryptography.

RSA is now the most popular cryptosystem used to safe-guard our pri-
vate communications and/or business transactions over the insecure Internet.
Readers are suggested to consult the following references for more informa-
tion about RSA cryptography and cryptnanlysis: Buchmann [60], Delfs and
Knebl [97], Wagstaff Jr. [321], Koblitz [172], [174], [175], Koblitz and Menezes
[176], Konheim [179], Mollin [216], Mao [196], Menezes et al [207], Muller
[225], Rothe [269], Salomann [274], Schneier [277], and Stamp and Low [310],
Stinson [311], de Weger [323].

There are many variants of RSA, and there are many other types of cryp-
tosystems whose security are also rely on the intractability of integer factor-
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ization problem or the related discrete logarithm problem. Notable systems
on these directions include but are not limited to, Rabin’s M2 mod N system
[252], Williams M3 mod N system [327], ElGamal discrete logarithm system
[106], Koblitz [170] and Miller [213] elliptic curve discrete logarithm systems,
Goldwasser and Micali’s quadratic residuosity system [124], and Goldwasser,
Micali and Rackoff’s zero-knowledge proof system [125].


