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1. A Few Noetherian Rings

After a review of the definition and basic properties of noetherian modules
and rings, we introduce a few classes of examples of noetherian rings, which
will serve to illustrate and support the later theory. We concentrate particu-
larly on some of the “surrogate” examples outlined in the Prologue, namely,
module-finite algebras over commutative rings, skew-Laurent rings, and the
corresponding skew polynomial rings twisted by automorphisms. The general
theory of skew polynomial rings will be addressed in the following chapter,
where we study the Weyl algebras, formal differential operator rings, and
other examples from the Prologue.

• THE NOETHERIAN CONDITION •
We begin with several basic equivalent conditions which are abbreviated

by the adjective “noetherian,” honoring E. Noether, who first demonstrated
the importance and usefulness of these conditions. Recall that a collection
A of subsets of a set A satisfies the ascending chain condition (or ACC ) if
there does not exist a properly ascending infinite chain A1 ⊂ A2 ⊂ · · · of
subsets from A. Recall also that a subset B ∈ A is a maximal element of A
if there does not exist a subset in A that properly contains B. To emplasize
the order-theoretic nature of these considerations, we often use the notation of
inequalities (≤, <, �≤, etc.) for inclusions among submodules and/or ideals. In
particular, if A is a module, the notation B ≤ A means that B is a submodule
of A, and the notation B < A (or A > B) means that B is a proper submodule
of A.

Proposition 1.1. For a module A, the following conditions are equivalent:
(a) A has the ACC on submodules.
(b) Every nonempty family of submodules of A has a maximal element.
(c) Every submodule of A is finitely generated.

Proof. (a) =⇒ (b): Suppose that A is a nonempty family of submodules of A
without a maximal element. Choose A1 ∈ A. Since A1 is not maximal, there
exists A2 ∈ A such that A2 > A1. Continuing in this manner, we obtain a
properly ascending infinite chain A1 < A2 < A3 < · · · of submodules of A,
contradicting the ACC.
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(b) =⇒ (c): Let B be a submodule of A, and let B be the family of
all finitely generated submodules of B. Note that B contains 0 and so is
nonempty. By (b), there exists a maximal element C ∈ B. If C �= B, choose
an element x ∈ B \ C, and let C ′ be the submodule of B generated by C
and x. Then C ′ ∈ B and C ′ > C, contradicting the maximality of C. Thus
C = B, whence B is finitely generated.

(c) =⇒ (a): Let B1 ≤ B2 ≤ · · · be an ascending chain of submodules of A.
Let B be the union of the Bn. By (c), there exists a finite set X of generators
for B. Since X is finite, it is contained in some Bn, whence Bn = B. Thus
Bm = Bn for all m ≥ n, establishing the ACC for submodules of A. �

Definition. A module A is noetherian if and only if the equivalent conditions
of Proposition 1.1 are satisfied. As follows from the proof of (b) =⇒ (c), a
further equivalent condition is that A have the ACC on finitely generated
submodules.

For example, any finite dimensional vector space V over a field k is a noe-
therian k-module, since a properly ascending chain of submodules (subspaces)
of V cannot contain more than dimk(V ) + 1 terms.

Definition. A ring R is right (left) noetherian if and only if the right module
RR (left module RR) is noetherian. If both conditions hold, R is called a
noetherian ring .

Rephrasing Proposition 1.1 for the ring itself, we see that a ring R is right
(left) noetherian if and only if R has the ACC on right (left) ideals, if and
only if all right (left) ideals of R are finitely generated. For example, Z is
a noetherian ring because all its ideals are principal (singly generated). The
same is true of a polynomial ring k[x] in one indeterminate over a field k.

Exercise 1A. (a) Show that the 2 × 2 matrices over Q of the form
(
a b

0 c

)
with a ∈ Z and b, c ∈ Q make a ring which is right noetherian but not left
noetherian.

(b) Show that any finite direct product of right (left) noetherian rings is
right (left) noetherian. �

Proposition 1.2. Let B be a submodule of a module A. Then A is noether-
ian if and only if B and A/B are both noetherian.

Proof. First assume that A is noetherian. Since any ascending chain of sub-
modules of B is also an ascending chain of submodules of A, it is immediate
that B is noetherian. If C1 ≤ C2 ≤ · · · is an ascending chain of submodules
of A/B, each Ci is of the form Ai/B for some submodule Ai of A that con-
tains B, and A1 ≤ A2 ≤ · · · . Since A is noetherian, there is some n such
that Ai = An for all i ≥ n, and then Ci = Cn for all i ≥ n. Thus A/B is
noetherian.
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Conversely, assume that B and A/B are noetherian, and let A1 ≤ A2 ≤ · · ·
be an ascending chain of submodules of A. There are ascending chains of
submodules

A1 ∩B ≤ A2 ∩B ≤ · · ·
(A1 +B)/B ≤ (A2 +B)/B) ≤ · · ·

in B and in A/B. Hence, there is some n such that Ai ∩ B = An ∩ B and
(Ai + B)/B = (An + B)/B for all i ≥ n, and the latter equation yields
Ai +B = An +B. For all i ≥ n, we conclude that

Ai = Ai ∩ (Ai+B) = Ai ∩ (An+B) = An+ (Ai ∩B) = An+ (An ∩B) = An

(using the modular law for the third equality). Therefore A is noetherian. �
In particular, Proposition 1.2 shows that any factor ring of a right noether-

ian ring is right noetherian. (Note that if I is an ideal of a ring R, then the
right ideals of R/I are the same as the right R-submodules.)

Corollary 1.3. Any finite direct sum of noetherian modules is noetherian.

Proof. It suffices to prove that the direct sum of any two noetherian modules
A1 and A2 is noetherian. The module A = A1 ⊕ A2 has a submodule B =
A1 ⊕ 0 such that B ∼= A1 and A/B ∼= A2. Then B and A/B are noetherian,
whence A is noetherian by Proposition 1.2. �
Corollary 1.4. If R is a right noetherian ring, all finitely generated right
R-modules are noetherian.

Proof. If A is a finitely generated right R-module, then A ∼= F/K for some
finitely generated free right R-module F and some submodule K ≤ F . Since
F is isomorphic to a finite direct sum of copies of the noetherian module
RR, it is noetherian by Corollary 1.3. Then, by Proposition 1.2, A must be
noetherian. �
Corollary 1.5. Let S be a subring of a ring R. If S is right noetherian and
R is finitely generated as a right S-module, then R is right noetherian.

Proof. By Corollary 1.4, R is noetherian as a right S-module. Since all right
ideals of R are also right S-submodules, the ACC on right ideals follows. �

Using Corollary 1.5, we obtain some easy examples of noncommutative
noetherian rings.

Proposition 1.6. If R is a module-finite algebra over a commutative noe-
therian ring S, then R is a noetherian ring.

Proof. The image of S in R is a noetherian subring S′ of the center of R
such that R is a finitely generated (right or left) S′-module. Apply Corollary
1.5. �
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For instance, let S = Z + Zi + Zj + Zk, a subring of the division ring H.
Since S is a finitely generated module over the noetherian ring Z, Proposition
1.6 shows that S is a noetherian ring. For another example, Proposition 1.6
shows that, for any positive integer n, the ring of all n × n matrices over a
commutative noetherian ring is noetherian. This also holds for matrix rings
over noncommutative noetherian rings, as follows.

Definition. Given a ring R and a positive integer n, we useMn(R) to denote
the ring of all n × n matrices over R. The standard n × n matrix units in
Mn(R) are the matrices eij (for i, j = 1, . . . , n) such that eij has 1 for the
i, j-entry and 0 for all other entries.

Proposition 1.7. Let R be a right noetherian ring and S a subring of a
matrix ring Mn(R). If S contains the subring

R′ =
{


r 0 ··· 0

0 r ··· 0
...

. . .
...

0 0 ··· r




∣∣∣∣ r ∈ R
}

of all “scalar matrices,” then S is right noetherian. In particular, Mn(R) is a
right noetherian ring.

Proof. Clearly R′ ∼= R, whence R′ is a right noetherian ring. Observe that
Mn(R) is generated as a right R′-module by the standard n×n matrix units.
Hence, Corollary 1.4 implies that Mn(R) is a noetherian right R′-module. As
all right ideals of S are also right R′-submodules of Mn(R), we conclude that
S is right noetherian. �

• FORMAL TRIANGULAR MATRIX RINGS •
One way to construct rings to which Corollary 1.5 and Proposition 1.7

apply is to take an upper (or lower) triangular matrix ring over a known ring,
or to take a subring of a triangular matrix ring. For instance, if S and T are
subrings of a ring B, the set R of all matrices of the form

(
s b

0 t

)
(for s ∈ S,

b ∈ B, t ∈ T ) is a subring of M2(B). (If S and T are right noetherian, and
BT is finitely generated, it follows easily from Corollary 1.5 that R is right
noetherian.) Note that B need not be a ring itself in order for R to be a ring
– rather, B must be closed under addition, left multiplication by elements
of S, and right multiplication by elements of T . More formally, the symbols(
s b

0 t

)
will form a ring under matrix addition and multiplication provided only

that B is simultaneously a left S-module and a right T -module satisfying an
associative law connecting its left and right module structures. We focus on
this ring construction because it provides a convenient source for any number
of interesting examples. Later, we shall see such left/right modules as B
appearing for their own sake in noetherian ring theory.
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Definition. Let S and T be rings. An (S, T )-bimodule is an abelian group B
equipped with a left S-module structure and a right T -module structure (both
utilizing the given addition) such that s(bt) = (sb)t for all s ∈ S, b ∈ B, t ∈ T .
The symbol SBT is used to denote this situation. An (S, T )-sub-bimodule of B
(or just a sub-bimodule, if S and T are clear from the context) is any subgroup
of B which is both a left S-submodule and a right T -submodule. Note that if
C is a sub-bimodule of B, the factor group B/C is a bimodule in the obvious
manner.

For instance, if S is a ring and T is a subring, then S itself (or an ideal of S)
can be regarded as an (S, T )-bimodule (or as a (T, S)-bimodule). For another
example, if B is a right module over a ring T and S is a subring of EndT (B),
then B is an (S, T )-bimodule. Perhaps most importantly, if I ⊆ J are ideals
in a ring S, then J/I is an (S, S)-bimodule. The next exercise shows that in
a sense every bimodule appears this way, as an ideal of a formal triangular
matrix ring.

Exercise 1B. Let SBT be a bimodule, and write
(
S B

0 T

)
for the abelian

group S ⊕B ⊕ T , where triples (s, b, t) from S ⊕B ⊕ T are written as formal
2× 2 matrices

(
s b

0 t

)
.

(a) Show that formal matrix addition and multiplication make sense in(
S B

0 T

)
, and that by using those operations

(
S B

0 T

)
becomes a ring.

(b) Show that there is also a ring
(
T 0

B S

)
of formal lower triangular matrices,

and that
(
T 0

B S

) ∼=
(
S B

0 T

)
.

(c) Observe that the set
(

0 B

0 0

)
of matrices

(
0 b

0 0

)
is an ideal of

(
S B

0 T

)
,

and that, under the obvious abelian group isomorphism of B onto
(

0 B

0 0

)
, left

S-submodules (right T -submodules, (S, T )-sub-bimodules) of B correspond
precisely to left ideals (right ideals, two-sided ideals) of

(
S B

0 T

)
contained in(

0 B

0 0

)
. �

Definition. A formal triangular matrix ring is any ring of the form
(
S B

0 T

)
or

(
T 0

B S

)
as described in Exercise 1B. By way of abbreviation, we write “let(

S B

0 T

)
be a formal triangular matrix ring” in place of “let S and T be rings,

let B be an (S, T )-bimodule, and let
(
S B

0 T

)
be the corresponding formal

triangular matrix ring.”

Observe that if S and T are subrings of a ring U , and B is an (S, T )-sub-
bimodule of U , the formal triangular matrix ring

(
S B

0 T

)
is isomorphic to the
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subring of M2(U) consisting of all honest matrices of the form
(
s b

0 t

)
with

s ∈ S, b ∈ B, t ∈ T .
Proposition 1.8. Let R =

(
S B

0 T

)
be a formal triangular matrix ring. Then

R is right noetherian if and only if S and T are right noetherian and BT is
finitely generated. Similarly, R is left noetherian if and only if S and T are
left noetherian and SB is finitely generated.

Proof. Assume first that S and T are right noetherian and BT is finitely
generated. Observe that the diagonal subring

(
S 0

0 T

)
is isomorphic to S × T

and so is right noetherian. Observe also that if elements b1, . . . , bn generate
B as a right T -module, then the matrices(

1 0

0 1

)
,
(

0 b1
0 0

)
,
(

0 b2
0 0

)
, . . . ,

(
0 bn

0 0

)

generate R as a right
(
S 0

0 T

)
-module. Consequently, Corollary 1.5 shows that

R is right noetherian.
Conversely, assume that R is right noetherian. Observing that the projec-

tion maps
(
s b

0 t

)
�→ s and

(
s b

0 t

)
�→ t are ring homomorphisms of R onto S

and of R onto T , we see that S and T must be right noetherian. Moreover,(
0 B

0 0

)
is a right ideal of R and must have a finite list of generators

(
0 b1
0 0

)
,
(

0 b2
0 0

)
, . . . ,

(
0 bn

0 0

)
,

from which we infer that the elements b1, . . . , bn generate BT .
The left noetherian analog is proved in the same manner. �

For example, it is immediate from Proposition 1.8 that the ring
(

Z Q

0 Q

)
is

right noetherian but not left noetherian (Exercise 1A(a)).

Exercise 1C. Let R =
(
S B

0 T

)
be a formal triangular matrix ring. The

purpose of this exercise is to give a description of all right R-modules in
terms of right S-modules and T -modules.

(a) Let A be a right S-module, C a right T -module, and f a homomorphism
in HomT (A⊗S B,C). For (a, c) ∈ A⊕ C and

(
s b

0 t

)
∈ R, define

(a, c)
(
s b

0 t

)
= (as, f(a⊗ b) + ct).

Show that, using this multiplication rule, A⊕ C is a right R-module.
(b) Show that the R-module A⊕ C in (a) is finitely generated if and only

if A is a finitely generated S-module and C/f(A⊗S B) is a finitely generated
T -module.

(c) Show that every right R-module is isomorphic to one of the type A⊕C
constructed in (a). �
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Exercise 1D. Let SBT be a bimodule, and form the ring R = Sop ⊗Z T ,
where Sop denotes the opposite ring of S. (That is, Sop is the same abelian
group as S, but with the opposite multiplication: The product of s1 and
s2 in Sop is s2s1.) Show that B can be made into a right R-module where
b(s ⊗ t) = sbt for all s ∈ S, t ∈ T , b ∈ B, and that the right R-submodules
of B are precisely its (S, T )-sub-bimodules. Conversely, show that every right
R-module can be made into an (S, T )-bimodule. �

• THE HILBERT BASIS THEOREM •
A large class of examples of noetherian rings (particularly, commutative

ones) is revealed by this famous theorem. There are several different proofs
available; we sketch one that we shall adapt later for skew polynomial rings.

Theorem 1.9. [Hilbert’s Basis Theorem] Let S = R[x] be a polynomial ring
in one indeterminate. If the coefficient ring R is right (left) noetherian, then
so is S.

Proof. The two cases are symmetric; let us assume that R is right noetherian
and prove that any right ideal I of S is finitely generated. We need only
consider the case when I �= 0.

Step 1. Let J be the set of leading coefficients of elements of I, together
with 0. More precisely,

J = {r ∈ R | rxd + rd−1x
d−1 + · · ·+ r0 ∈ I for some rd−1, . . . , r0 ∈ R}.

Then check that J is a right ideal of R. (Note that if r, r′ ∈ J are leading
coefficients of elements s, s′ ∈ I with degrees d, d′, then, after replacing s and
s′ by sxd

′
and s′xd, we may assume that s and s′ have the same degree.)

Step 2. Since R is right noetherian, J is finitely generated. Let r1, . . . , rk
be a finite list of generators for J ; we may assume that they are all nonzero.
Each ri occurs as the leading coefficient of a polynomial pi ∈ I of some degree
ni. Set n = max{n1, . . . , nk} and replace each pi by pixn−ni . Thus, there is
no loss of generality in assuming that all the pi have the same degree n.

Step 3. Set N = R+Rx+ · · ·+Rxn−1 = R+xR+ · · ·+xn−1R, the set of
elements of S with degree less than n. This is not an ideal of S, but it is a left
and right R-submodule. Viewed as a right R-module, N is finitely generated,
and so it is noetherian by Corollary 1.4. Now I ∩N is a right R-submodule of
N , and consequently it must be finitely generated. Let q1, . . . , qt be a finite
list of right R-module generators for I ∩N .

Step 4. We claim that p1, . . . , pk, q1, . . . , qt generate I. Let I0 denote the
right ideal of S generated by these polynomials; then I0 ⊆ I and it remains
to show that any polynomial p ∈ I actually lies in I0. This is easy if p has
degree less than n, since in that case p ∈ I ∩N and p = q1a1 + · · ·+ qtat for
some aj ∈ R.
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Step 5. Suppose that p ∈ I has degree m ≥ n and that I0 contains
all elements of I with degree less than m. Let r be the leading coefficient
of p. Then r ∈ J , and so r = r1a1 + · · · + rkak for some ai ∈ R. Set
q = (p1a1 + · · · + pkak)xm−n, an element of I0 with degree m and leading
coefficient r. Now p − q is an element of I with degree less than m. By the
induction hypothesis, p− q ∈ I0, and thus p ∈ I0.

Therefore I = I0 and we are done. �
It immediately follows that any polynomial ring R[x1, . . . , xn] in a finite

number of indeterminates over a right (left) noetherian ring R is right (left)
noetherian, since we may view R[x1, . . . , xn] as a polynomial ring in the single
indeterminate xn with coefficients from the ring R[x1, . . . , xn−1].

Corollary 1.10. Let R be an algebra over a field k. If R is commutative and
finitely generated as a k-algebra, then R is noetherian.

Proof. Let x1, . . . , xn generate R as a k-algebra, and let S = k[y1, . . . , yn]
be a polynomial ring over k in n independent indeterminates. Since R is
commutative, there exists a k-algebra map φ : S → R such that φ(yi) = xi for
each i, and φ is surjective because the xi generate R. Hence, R ∼= S/ ker(φ).
By the Hilbert Basis Theorem, S is a noetherian ring, and therefore R is
noetherian. �

Noncommutative finitely generated algebras need not be noetherian, as the
following examples show.

Exercise 1E. Let k be a field.
(a) Let V be a countably infinite dimensional vector space over k with a

basis {v1, v2, . . . }. Define s, t ∈ Endk(V ) so that s(vi) = vi+1 for all i while
t(vi) = vi−1 for all i > 1 and t(v1) = 0, and let R be the k-subalgebra
of Endk(V ) generated by s and t. Show that R is neither right nor left
noetherian. [Hint: Define e1, e2, . . . in Endk(V ) so that ei(vi) = vi for all i
while ei(vj) = 0 for all i �= j, and show that each ei ∈ R. Then show that∑
i eiR and

∑
iRei are not finitely generated.]

(b) If F is the free k-algebra on letters X and Y , there is a unique k-al-
gebra homomorphism φ : F → R such that φ(X) = s and φ(Y ) = t. Since
φ is surjective (by definition of R), we have R ∼= F/ ker(φ), and so it is clear
from part (a) that F cannot be right or left noetherian. Give a direct proof of
this fact. [For instance, show that

∑
iX

iY F and
∑
i FXY

i are not finitely
generated.] �
Exercise 1F. Let R be an algebra over a field k, and suppose that R is
generated by two elements x and y such that xy = −yx. Show that x2 and
y2 are in the center of R, and that R is a finitely generated module over
the subalgebra S generated by x2 and y2. [Hint: Use 1, x, y, xy to generate
R.] Then apply Corollary 1.10 and Proposition 1.6 to conclude that R is
noetherian.
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Now suppose that, instead of xy = −yx, we have xy = ξyx for some scalar
ξ ∈ k× which is a root of unity, that is, ξn = 1 for some positive integer n.
Modify the steps above to show that R is also noetherian in this case. �

.

• SKEW POLYNOMIAL RINGS
TWISTED BY AUTOMORPHISMS •

In the Prologue we saw several examples of rings that look like polynomial
rings in one indeterminate but in which the indeterminate does not commute
with the coefficients – rather, multiplication by the indeterminate has been
“skewed” or “twisted” by means of an automorphism of the coefficient ring,
or a derivation, or a combination of such maps. To help the reader get used to
constructing and working with such twisted polynomial rings, we begin here
by concentrating on the case where the twisting is done by an automorphism.
In Chapter 2, we move on to twists by derivations and then to general skew
polynomial rings.

Thus, let R be a ring, α an automorphism of R, and x an indeterminate.
Let S be the set of all formal expressions a0 + a1x + · · · + anx

n, where n is
a nonnegative integer and the ai ∈ R. It is often convenient to write such
an expression as a sum

∑
i aix

i, leaving it understood that the summation
runs over a finite sequence of nonnegative integers i, or by thinking of it as
an infinite sum in which almost all of the coefficients ai are zero. We define
an addition operation in S in the usual way:

(∑
i

aix
i
)
+

(∑
i

bix
i
)
=

∑
i

(ai + bi)xi.

As for multiplication, we would like the coefficients to multiply together as
they do in R, and we would like the powers of x to multiply following the usual
rules for exponents. We take the product of an element a ∈ R with a power
xi (in that order) to be the single-term sum axi. It is in a product of the form
xia that the twist enters. We define xa to be α(a)x and iterate that rule to
obtain xia = αi(a)x. This leads us to define the following multiplication rule
in S:

(∑
i

aix
i
)(∑

j

bjx
j
)
=

∑
i,j

aiα
i(bj)xi+j =

∑
k

( ∑
i+j=k

aiα
i(bj)

)
xk.

Exercise 1G. Verify that the set S together with the operations defined
above is a ring, and that when R is identified with the set of elements of S
involving no positive powers of x, it becomes a subring of S. �
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Exercise 1H. Here is a more formal description of S, in which the symbol
x does not make an a priori appearance.

Let S denote the set of those infinite sequences a = (a0, a1, a2, . . . ) of
elements of R in which ai = 0 for all but finitely many indices i. For any
a, b ∈ S, define a+ b and ab to be the sequences in S with entries

(a+ b)i = ai + bi (ab)k =
∑
i+j=k

aiα
i(bj)

for all i and k. Show that S with these operations is a ring, and that S ∼= S
via the rule a �→ ∑

i aix
i. This isomorphism makes it clear that x is just

a name for a particular special element of S, corresponding to the sequence
(0, 1, 0, 0, 0, . . . ) in S. �

We have glossed over an important point in our discussion of S – the ques-
tion of when two formal expressions define the same element of S. Namely,
we have taken it as understood that two elements of S are the same only if
their coefficients are the same, that is,

∑
i aix

i =
∑
i bix

i if and only if ai = bi
for all i. Missing coefficients are understood to be zero: In case the equation
concerns finite sums and an index i occurs in the first sum but not in the
second, equality of coefficients means that ai = 0. Using the language of
linear algebra, we can thus say that the elements 1, x, x2, . . . in S are linearly
independent over R. Since every element of S is a linear combination of these
powers, S is thus a free left R-module with the powers of x forming a basis.
This leads us to the following definition.

Definition. Let R be a ring and α an automorphism of R. We write

S = R[x;α]

(where S and x may or may not already occur in the discussion) to mean that
(a) S is a ring, containing R as a subring;
(b) x is an element of S;
(c) S is a free left R-module with basis {1, x, x2, . . . };
(d) xr = α(r)x for all r ∈ R.

Thus, the expression S = R[x;α] can be used either to introduce a new ring
S (constructed as above) or to say that a given ring S and element x satisfy
conditions (a)–(d). Whenever S = R[x;α], we say that S is a skew polynomial
ring over R.

In many algebra texts, rings of polynomials are introduced as specific rings
resulting from special constructions. Note that the definition above is of a
different type, since R[x;α] is defined to be any ring extension of R satisfy-
ing certain properties, rather than as any specific ring (although some con-
struction is needed to guarantee that such skew polynomial rings exist). In
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particular, the element x in R[x;α] is just a ring element with certain special
properties, not a mysterious “indeterminate.”

The advantage of the type of definition just given is that, in many situ-
ations, we will be able to say that some ring equals a skew polynomial ring
R[x;α], rather than having to say that it is isomorphic to R[x;α]. This is
useful even in the context of ordinary polynomial rings. For example, we can
say that the subring of R generated by Q and π is a polynomial ring Q[π],
instead of having to name an indeterminate x and a Q-algebra isomorphism
of Q[x] onto Q[π].

The discussion above shows that, given R and α, a skew polynomial ring
S = R[x;α] does exist. As is the case for ordinary polynomial rings, we would
like S to be unique, up to appropriate isomorphisms. We prove this with the
help of the following universal mapping property , in which the map ψ may be
thought of as an analog of an evaluation map on ordinary polynomials in the
commutative theory. The main ingredients of the lemma may be displayed as
in the following diagram.

R[x;α]
∃! ψ

��������

R

⊂
��

φ �� T

Lemma 1.11. Let R be a ring, α an automorphism of R, and S = R[x;α].
Suppose that we have a ring T , a ring homomorphism φ : R → T , and an
element y ∈ T such that yφ(r) = φα(r)y for all r ∈ R. Then there is a unique
ring homomorphism ψ : S → T such that ψ|R = φ and ψ(x) = y.

Proof. Clearly any such map would have to be given by the rule

ψ
(∑
i

aix
i
)
=

∑
i

φ(ai)yi,

and so there is at most one possibility for ψ. This rule does give a well-
defined function ψ : S → T such that ψ|R = φ and ψ(x) = y, and so we just
need to show that ψ is a ring homomorphism. It is clear that ψ is additive
and that ψ(1) = 1. The rule yφ(r) = φα(r)y implies (by induction) that
yiφ(r) = φαi(r)yi for all i ∈ Z+ and r ∈ R. Hence,

[
ψ

(∑
i

aix
i
)][

ψ
(∑
j

bjx
j
)]

=
[∑
i

φ(ai)yi
][∑

j

φ(bj)yj
]

=
∑
i,j

φ(ai)φαi(bj)yi+j =
∑
k

( ∑
i+j=k

φ(ai)φαi(bj)
)
yk

= ψ
[∑
k

( ∑
i+j=k

aiα
i(bj)

)
xk

]
= ψ

[(∑
i

aixi
)(∑

j

bjx
j
)]
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for all elements
∑
i a
ixi and

∑
j bjx

j in S. Therefore ψ is a ring homomor-
phism, as required. �

Corollary 1.12. Let R be a ring and α an automorphism of R. Suppose
that S = R[x;α] and S′ = R[x′;α]. Then there is a unique ring isomorphism
ψ : S → S′ such that ψ(x) = x′ and ψ|R is the identity on R.

Proof. First, apply Lemma 1.11 with φ : R → S′ being the inclusion map;
we obtain a unique ring homomorphism ψ : S → S′ such that ψ(x) = x′

and ψ|R = φ. We may rephrase the last property by saying that ψ|R is the
identity on R. By symmetry, Lemma 1.11 also provides a ring homomorphism
ψ′ : S′ → S such that ψ′(x′) = x and ψ′|R is the identity on R.

Now ψ′ψ : S → S is a ring homomorphism such that (ψ′ψ)(x) = x and
(ψ′ψ)|R is the identity on R. The identity map on S enjoys the same prop-
erties. Hence, the uniqueness part of Lemma 1.11 (where now T = S and
y = x) implies that ψ′ψ equals the identity map on S. Similarly, ψψ′ equals
the identity map on S′.

Therefore ψ and ψ′ are mutually inverse isomorphisms. �

The proof of Corollary 1.12 illustrates a general principle, that objects with
universal mapping properties are unique up to isomorphism. We shall see this
principle in action a number of times later.

It is time to consider a specific example. Let R = k[y] be an ordinary
polynomial ring over a field k. Given a nonzero scalar q ∈ k, we can define a
k-algebra automorphism α on R such that α(y) = qy. (In function notation,
α
(
p(y)

)
= p(qy) for p(y) ∈ k[y].) Now let S = R[x;α]. Then xy = α(y)x =

qyx, the basic “commutation rule” in S. Since the polynomials in R are just
k-linear combinations of powers of y, elements of S can be written in the
form

∑
i,j λijy

ixj for scalars λij (all but finitely many of which are zero), and
multiplication in S follows the rule

(∑
i,j

λijy
ixj

)(∑
s,t

µsty
sxt

)
=

∑
i,j,s,t

λijµstq
jsyi+sxj+t

=
∑
l,m

( ∑
i+s=l
j+t=m

λijµstq
js

)
ylxm.

This example looks very much like one from the Prologue, which we now
recall.

Definition. Let k be a field and q ∈ k×. The quantized coordinate ring of k2

(corresponding to the choice of q) is a k-algebra, denoted Oq(k2), presented
by two generators x and y and the relation xy = qyx. In short,

Oq(k2) = k〈x, y | xy = qyx〉.
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In algebraic geometry, k2 is the affine plane over k. Hence, Oq(k2) is also
known as a coordinate ring of a quantum plane (over k), or just as – the
handiest abbreviation – a quantum plane.

In the example discussed just prior to the definition, S is a k-algebra, and
it is generated by elements called x and y, which satisfy the relation xy = qyx.
Does this mean that Oq(k2) and S are the same? To answer this question,
we must make clear exactly what is meant by the definition we have given for
Oq(k2). We do not mean “any algebra generated by two elements satisfying
the given relation,” since there are too many possibilities. For instance, the
polynomial ring k[x] is generated as a k-algebra by x and 0, and certainly
x0 = q0x. Even more extreme, the base field k itself is generated as a k-alge-
bra by 1 and 0, and 1 ·0 = q0 ·1. These algebras have “unnecessary” relations
– for instance, the second generator is zero in these algebras but not in S.

What is tacitly assumed in the definition of Oq(k2) (and is encoded by
using the term “presented”) is that x and y satisfy no “extra” relations, i.e.,
no relations beyond those consequences of the given relation xy = qyx forced
by the axioms for a k-algebra (such as xy3 = q3y3x). The way to make the
idea of “no extra relations” precise is to start with a free algebra and factor
out the minimum required to achieve the desired relations. Thus, if k〈X,Y 〉
is the free algebra on two letters X and Y (which satisfy no relations at all),
and 〈XY − qY X〉 denotes the ideal of k〈X,Y 〉 generated by XY − qY X, we
are declaring that

Oq(k2) = k〈X,Y 〉/〈XY − qY X〉.
The elements x and y in the definition of Oq(k2) are then the cosets of X
and Y . It follows easily from this description that Oq(k2) satisfies a universal
mapping property and is therefore uniquely determined up to isomorphism of
k-algebras, as follows.

Exercise 1I. Let k be a field, q ∈ k×, and T a k-algebra. Suppose there
are elements u, v ∈ T satisfying the equation uv = qvu. Show that there is
a unique k-algebra homomorphism φ : Oq(k2) → T such that φ(x) = u and
φ(y) = v.

Conclude that if Oq(k2)′ is a k-algebra presented by two generators x′ and
y′ and one relation x′y′ = qy′x′, then Oq(k2)′ ∼= Oq(k2). �

To continue our discussion above, let us keep the symbols x and y as in the
definition ofOq(k2) but use new symbols x̂ and ŷ to rename the indeterminates
in the skew polynomial ring S. By Exercise 1I, there is a unique k-algebra
homomorphism φ : Oq(k2) → S such that φ(x) = x̂ and φ(y) = ŷ. Observe
that φ is at least surjective, since x̂ and ŷ generate S. There are several ways
to see that φ is actually an isomorphism; here are two.

Exercise 1J. (a) Use the relation xy = qyx to show that every element of
Oq(k2) is a k-linear combination of the monomials yixj . Then show that the



14 CHAPTER 1

monomials ŷix̂j in S are linearly independent over k. Since φ(yixj) = ŷix̂j

for all i, j, conclude that the monomials yixj are linearly independent and
thus that φ is an isomorphism.

(b) Since R = k[ŷ] is a polynomial ring over k, there is a unique k-algebra
homomorphism η : R → Oq(k2) such that η(ŷ) = y. Show that xη(r) =
ηα(r)x for all r ∈ R, and conclude from Lemma 1.11 that η extends uniquely
to a ring homomorphism ψ : S → Oq(k2) such that ψ(x̂) = x. Finally, show
that φ and ψ are inverses of each other. �

Now that we have Oq(k2) ∼= S, we can say that Oq(k2) is a skew polynomial
ring. Let us record this information in the following form.

Proposition 1.13. Let k be a field and q ∈ k×. Then Oq(k2) = k[y][x;α],
where k[y] is a polynomial ring and α is the k-algebra automorphism of k[y]
such that α(y) = qy. �

Of course, all this can be done with the variables in the reverse order.
Thus,

Oq(k2) = k[x][y;β],

where β is the k-algebra automorphism of the polynomial ring k[x] such that
β(x) = q−1x. We can also adapt the above discussion to any number of
variables, as follows.

Definition. Let k be a field. A multiplicatively antisymmetric matrix over k
is an n×n matrix q = (qij) with entries qij ∈ k× such that qii = 1 for all i and
qji = q−1

ij for all i, j. Given such a matrix, the corresponding multiparameter
quantized coordinate ring of affine n-space, or just multiparameter quantum n-
space, is the k-algebraOq(kn) presented by generators x1, . . . , xn and relations
xixj = qijxjxi for all i, j. For short, we write

Oq(kn) = k〈x1, . . . , xn | xixj = qijxjxi for 1 ≤ i, j ≤ n〉.

(The assumptions on q mean that the relation xixi = qiixixi is trivial and
that the relation xjxi = qjixixj duplicates the relation xixj = qijxjxi. This
prevents undesired relations, such as x2

i = 0, from occurring.)
As a special case, fix q ∈ k× and let q be the unique multiplicatively

antisymmetric n × n matrix with qij = q for all i < j. In this case, we use
the subscript q in place of q. Thus, Oq(kn) is the k-algebra with generators
x1, . . . , xn and relations xixj = qxjxi for all i < j. It is called a single
parameter quantum n-space.

Exercise 1K. Show that any quantum n-space can be expressed as an iter-
ated skew polynomial ring , that is,

Oq(kn) = k[x1][x2;α2][x3;α3] · · · [xn;αn],
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where k[x1] is an ordinary polynomial ring and αi (for i = 2, . . . , n) is a
k-algebra automorphism of k[x1][x2;α2] · · · [xi−1;αi−1]. �

The simplest example of an enveloping algebra discussed in the Prologue
arose from a 2-dimensional Lie algebra L with a basis {x, y} such that [yx] = x.
These elements generate the enveloping algebra U(L), where the basic relation
becomes yx − xy = x. This enveloping algebra can be exhibited as a skew
polynomial ring in the following way.

Exercise 1L. Let A be the algebra over a field k presented by two elements x
and y and the relation yx−xy = x. Show that A = k[y][x;α], where α is the k-
algebra automorphism of the polynomial ring k[y] such that α(y) = y−1. �

• SKEW-LAURENT RINGS •
The discusion of group algebras in the Prologue led us to the idea of a

twisted version of a Laurent polynomial ring. Such a ring would look very
much like the skew polynomial rings we have just developed, except that
the indeterminate would now be invertible, i.e., negative as well as positive
powers would occur. Making the obvious modifications to our definition of
skew polynomial rings, we now define skew-Laurent (polynomial) rings.

Definition. Let R be a ring and α an automorphism of R. We write

T = R[x±1;α]

to mean that
(a) T is a ring, containing R as a subring;
(b) x is an invertible element of T ;
(c) T is a free left R-module with basis {1, x, x−1, x2, x−2, . . . };
(d) xr = α(r)x for all r ∈ R.

When T = R[x±1;α], we say that S is a skew-Laurent ring over R, or a
skew-Laurent extension of R.

Exercise 1M. Let α be an automorphism of a ring R.
(a) Show that a skew-Laurent ring R[x±1;α] exists.
(b) If T = R[x±1;α] and S =

∑∞
i=0Rx

i ⊆ T , show that S is a subring of
T and that S = R[x;α]. �

Skew-Laurent rings satisfy a universal mapping property and are conse-
quently unique up to isomorphism, as follows.

Exercise 1N. Let α be an automorphism of a ring R and T = R[x±1;α].
(a) Suppose that we have a ring U , a ring homomorphism φ : R→ U , and

a unit y ∈ U such that yφ(r) = φα(r)y for all r ∈ R. Show that there is a
unique ring homomorphism ψ : T → U such that ψ|R = φ and ψ(x) = y.

(b) If U = R[y±1;α], show that there is a unique ring isomorphism ψ :
T → U such that ψ(x) = y and ψ|R is the identity map on R.


