This book brings together the essential ideas and methods behind current applications of variational theory in theoretical physics and chemistry. The emphasis is on understanding physical and computational applications of variational methodology rather than on rigorous mathematical formalism.

The text begins with an historical survey of familiar variational principles in classical mechanics and optimization theory, then proceeds to develop the variational principles and formalism behind current computational methodology for bound and continuum quantum states of interacting electrons in atoms, molecules, and condensed matter. It covers multiple scattering theory, as applied to electrons in condensed matter and in large molecules. The specific variational principles developed for electron scattering are then extended to include a detailed presentation of contemporary methodology for electron-impact rotational and vibrational excitation of molecules. The book also provides an introduction to the variational theory of relativistic fields, including a detailed treatment of Lorentz and gauge invariance for the nonabelian gauge field of modern electroweak theory.

Ideal for graduate students and researchers in any field that uses variational methodology, this book is particularly suitable as a backup reference for lecture courses in mathematical methods in physics and theoretical chemistry.

Robert K. Nesbet obtained his BA in physics from Harvard College in 1951 and his PhD from the University of Cambridge in 1954. He was then a research associate in MIT for two years, before becoming Assistant Professor of Physics at Boston University. He did research at RIAS, Martin Company, Baltimore, the Institut Pasteur, Paris and Brookhaven National Laboratory, before becoming a Staff Member at IBM Almaden Research Center in San Jose in 1962. He acted as an Associate Editor for the Journal of Computational Physics and the Journal of Chemical Physics, between 1969 and 1974, and was a visiting professor at several universities throughout the world. Professor Nesbet officially retired in 1994, but has continued his research and visiting since then. Over the years he has written more than 270 publications in computational physics, atomic and molecular physics, theoretical chemistry, and solid-state physics.
Variational principles and methods in theoretical physics and chemistry
Robert K. Nesbet
Frontmatter

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

Library of Congress Cataloguing in Publication data
Nesbet, R. K.
Includes bibliographical references and index. ISBN 0 521 80391 8
QC20.7.C3 N48 2003
530.15'564–dc21 2002067614

ISBN 0 521 80391 8 hardback
To Anne, Susan, and Barbara
Contents

Preface xiii

I Classical mathematics and physics 1
1 History of variational theory 3
 1.1 The principle of least time 4
 1.2 The variational calculus 5
 1.2.1 Elementary examples 7
 1.3 The principle of least action 8

2 Classical mechanics 11
 2.1 Lagrangian formalism 11
 2.1.1 Hamilton's variational principle 12
 2.1.2 Dissipative forces 12
 2.1.3 Lagrange multiplier method for constraints 13
 2.2 Hamiltonian formalism 14
 2.2.1 The Legendre transformation 14
 2.2.2 Transformation from Lagrangian to Hamiltonian 15
 2.2.3 Example: the central force problem 16
 2.3 Conservation laws 17
 2.4 Jacobi’s principle 18
 2.5 Special relativity 20
 2.5.1 Relativistic mechanics of a particle 21
 2.5.2 Relativistic motion in an electromagnetic field 22

2 Applied mathematics 25
 3.1 Linear systems 25
 3.2 Simplex interpolation 26
 3.2.1 Extremum in n dimensions 27
 3.3 Iterative update of the Hessian matrix 28
 3.3.1 The BFGS algorithm 29
 3.4 Geometry optimization for molecules 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1</td>
<td>The GDIIS algorithm</td>
<td>31</td>
</tr>
<tr>
<td>3.4.2</td>
<td>The BERNY algorithm</td>
<td>31</td>
</tr>
<tr>
<td>II</td>
<td>Bound states in quantum mechanics</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>Time-independent quantum mechanics</td>
<td>35</td>
</tr>
<tr>
<td>4.1</td>
<td>Variational theory of the Schrödinger equation</td>
<td>36</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Sturm–Liouville theory</td>
<td>36</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Idiosyncracies of the Schrödinger equation</td>
<td>38</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Variational principles for the Schrödinger equation</td>
<td>40</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Basis set expansions</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Hellmann–Feynman and virial theorems</td>
<td>43</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Generalized Hellmann–Feynman theorem</td>
<td>43</td>
</tr>
<tr>
<td>4.2.2</td>
<td>The hypervirial theorem</td>
<td>43</td>
</tr>
<tr>
<td>4.2.3</td>
<td>The virial theorem</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>The N-electron problem</td>
<td>45</td>
</tr>
<tr>
<td>4.3.1</td>
<td>The N-electron Hamiltonian</td>
<td>45</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Expansion in a basis of orbital wave functions</td>
<td>46</td>
</tr>
<tr>
<td>4.3.3</td>
<td>The interelectronic Coulomb cusp condition</td>
<td>48</td>
</tr>
<tr>
<td>4.4</td>
<td>Symmetry-adapted functions</td>
<td>49</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Algorithm for constructing symmetry-adapted functions</td>
<td>50</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Example of the method</td>
<td>51</td>
</tr>
<tr>
<td>5</td>
<td>Independent-electron models</td>
<td>53</td>
</tr>
<tr>
<td>5.1</td>
<td>N-electron formalism using a reference state</td>
<td>54</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Fractional occupation numbers</td>
<td>55</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Janak’s theorem</td>
<td>56</td>
</tr>
<tr>
<td>5.2</td>
<td>Orbital functional theory</td>
<td>57</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Explicit components of the energy functional</td>
<td>57</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Orbital Euler–Lagrange equations</td>
<td>58</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Exact correlation energy</td>
<td>59</td>
</tr>
<tr>
<td>5.3</td>
<td>Hartree–Fock theory</td>
<td>61</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Closed shells – unrestricted Hartree–Fock (UHF)</td>
<td>61</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Brillouin’s theorem</td>
<td>62</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Open-shell Hartree–Fock theory (RHF)</td>
<td>62</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Algebraic Hartree–Fock: finite basis expansions</td>
<td>64</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Multiconfiguration SCF (MCSCF)</td>
<td>64</td>
</tr>
<tr>
<td>5.4</td>
<td>The optimized effective potential (OEP)</td>
<td>65</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Variational formulation of OEP</td>
<td>67</td>
</tr>
<tr>
<td>5.5</td>
<td>Density functional theory (DFT)</td>
<td>68</td>
</tr>
<tr>
<td>5.5.1</td>
<td>The Hohenberg–Kohn theorems</td>
<td>68</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Kohn–Sham equations</td>
<td>70</td>
</tr>
</tbody>
</table>
Contents

5.5.3 Functional derivatives and local potentials 71
5.5.4 Thomas–Fermi theory 72
5.5.5 The Kohn–Sham construction 74

6 Time-dependent theory and linear response 77
6.1 The time-dependent Schrödinger equation for one electron 78
6.2 The independent-electron model as a quantum field theory 79
6.3 Time-dependent Hartree–Fock (TDHF) theory 81
 6.3.1 Operator form of Hartree–Fock equations 81
 6.3.2 The screening response 81
6.4 Time-dependent orbital functional theory (TOFT) 83
 6.4.1 Remarks on time-dependent theory 83
 6.4.2 Exact linear response theory 84
 6.4.3 Definition of the response kernel 84
6.5 Reconciliation of N-electron theory and orbital models 85
6.6 Time-dependent density functional theory (TDFT) 86
6.7 Excitation energies and energy gaps 89

III Continuum states and scattering theory 91
7 Multiple scattering theory for molecules and solids 93
 7.1 Full-potential multiple scattering theory 95
 7.1.1 Definitions 96
 7.1.2 Two-center expansion 96
 7.1.3 Angular momentum representation 97
 7.1.4 The surface matching theorem 99
 7.1.5 Surface integral formalism 100
 7.1.6 Muffin-tin orbitals and atomic-cell orbitals 101
 7.1.7 Tail cancellation and the global matching function 102
 7.1.8 Implementation of the theory 103
 7.2 Variational principles 104
 7.2.1 Kohn–Rostoker variational principle 104
 7.2.2 Convergence of internal sums 106
 7.2.3 Schlosser–Marcus variational principle 108
 7.2.4 Elimination of false solutions 111
 7.3 Energy-linearized methods 113
 7.3.1 The LMTO method 113
 7.3.2 The LACO method 115
 7.3.3 Variational theory of linearized methods 116
 7.4 The Poisson equation 118
 7.5 Green functions 120
 7.5.1 Definitions 121
 7.5.2 Properties of the Green function 124
7.5.3 Construction of the Green function 125

8 Variational methods for continuum states 129

8.1 Scattering by an N-electron target system 129

8.1.1 Cross sections 132

8.1.2 Close-coupling expansion 133

8.2 Kohn variational theory 134

8.2.1 The matrix variational method 135

8.2.2 The Hulthen–Kohn variational principle 137

8.2.3 The complex Kohn method 139

8.3 Schwinger variational theory 140

8.3.1 Multichannel Schwinger theory 143

8.3.2 Orthogonalization and transfer invariance 145

8.4 Variational R-matrix theory 147

8.4.1 Variational theory of the R-operator 154

8.4.2 The R-operator in generalized geometry 156

8.4.3 Orbital functional theory of the R-matrix 157

9 Electron-impact rovibrational excitation of molecules 161

9.1 The local complex-potential (LCP) model 163

9.1.1 The projection-operator method 164

9.2 Adiabatic approximations 166

9.2.1 The energy-modified adiabatic approximation (EMA) 168

9.3 Vibronic R-matrix theory 169

9.3.1 Phase-matrix theory 172

9.3.2 Separation of the phase matrix 173

9.3.3 Phase-matrix formalism: EMAP 174

9.3.4 Nonadiabatic theory: NADP 175

IV Field theories 179

10 Relativistic Lagrangian theories 181

10.1 Classical relativistic electrodynamics 182

10.1.1 Classical dynamical mass 184

10.1.2 Classical renormalization and the Dirac equation 185

10.2 Symmetry and Noether’s theorem 186

10.2.1 Examples of conservation laws 187

10.3 Gauge invariance 189

10.3.1 Classical electrodynamics as a gauge theory 190

10.3.2 Noether’s theorem for gauge symmetry 191

10.3.3 Nonabelian gauge symmetries 192

10.3.4 Gauge invariance of the SU(2) field theory 195
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4</td>
<td>Energy and momentum of the coupled fields</td>
<td>197</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Energy and momentum in classical electrodynamics</td>
<td>197</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Energy and momentum in SU(2) gauge theory</td>
<td>199</td>
</tr>
<tr>
<td>10.5</td>
<td>The Standard Model</td>
<td>201</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Electroweak theory (EWT)</td>
<td>202</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Quantum chromodynamics (QCD)</td>
<td>203</td>
</tr>
</tbody>
</table>

References and bibliography 205

Index 225
As theoretical physics and chemistry have developed since the great quantum revolution of the 1920s, there has been an explosive speciation of subfields, perhaps comparable to the late Precambrian period in biological evolution. The result is that these life-forms not only fail to interbreed, but can fail to find common ground even when placed in proximity on a university campus. And yet, the underlying intellectual DNA remains remarkably similar, in analogy to the findings of recent research in biology. The purpose of this present text is to identify common strands in the substrate of variational theory and to express them in a form that is intelligible to participants in these subfields. The goal is to make hard-won insights from each line of development accessible to others, across the barriers that separate these specialized intellectual niches.

Another great revolution was initiated in the last midcentury, with the introduction of digital computers. In many subfields, there has been a fundamental change in the attitude of practicing theoreticians toward their theory, primarily a change of practical goals. There is no longer a well-defined barrier between theory for the sake of understanding and theory for the sake of predicting quantitative data. Given modern resources of computational power and the coevolving development of efficient algorithms and widely accessible computer program tools, a formal theoretical insight can often be exploited very rapidly, and verified by quantitative implications for experiment. A growing archive records experimental controversies that have been resolved by quantitative computational theory.

It has been said that mathematics is queen of the sciences. The variational branch of mathematics is essential both for understanding and predicting the huge body of observed data in physics and chemistry. Variational principles and methods lie in the bedrock of theory as explanation, and theory as a quantitative computational tool. Quite simply, this is the mathematical foundation of quantum theory, and quantum theory is the foundation of all practical and empirical physics and chemistry, short of a unified theory of gravitation. With this in mind, the present text is...
Preface

subdivided into four parts. The first reviews the variational concepts and formalism that developed over a long history prior to the discovery of quantum mechanics, subdivided into chapters on history, on classical mechanics, and on applied mathematics (severely truncated out of respect for the vast literature already devoted to this subject). The second part covers variational formalism and methodology in subfields concerned with bound states in quantum mechanics. There are separate chapters on time-independent quantum mechanics, on independent-electron models, which may at some point be extended to independent-fermion models as the formalism of the Standard Model evolves, and on time-dependent theory and linear response. The third part develops the variational theory of continuum states, including chapters on multiple scattering theory (the essential formalism for electronic structure calculations in condensed matter), on scattering theory relevant to the true continuum state of a quantum target and an external fermion (with emphasis on methodology for electron scattering by atoms and molecules), continuing to a separate chapter on the currently developing theory of electron-impact rotational and vibrational excitation of molecules. The fourth part develops variational theory relevant to relativistic Lagrangian field theories. The single chapter in this part derives the nonquantized field theory that underlies the quantized theory of the current Standard Model of elementary particles.

This book grew out of review articles in specialized subfields, published by the author over nearly fifty years, including a treatise on variational methods in electron–atom scattering published in 1980. Currently relevant topics have been extracted and brought up to date. References that go more deeply into each of the topics treated here are included in the extensive bibliography. The purpose is to set out the common basis of variational formalism, then to open up channels for further exploration by any reader with specialized interests. The most recent source of this text is a course of lectures given at the Scuola Normale Superiore, Pisa, Italy in 1999. These lectures were presented under the present title, but concentrated on the material in Parts I and II here. The author is indebted to Professor Renato Colle, of Bologna and the Scuola Normale, for making arrangements that made these lectures possible, and to the Scuola Normale Superiore for sponsoring the lecture series.