
PREFACE

What this book is about. The theory of sets is a vibrant, exciting mathematical
theory, with its own basic notions, fundamental results and deep open prob-
lems, and with significant applications to other mathematical theories. At the
same time, axiomatic set theory is often viewed as a foundation of mathematics:
it is alleged that all mathematical objects are sets, and their properties can be
derived from the relatively few and elegant axioms about sets. Nothing so
simple-minded can be quite true, but there is little doubt that in standard,
current mathematical practice, “making a notion precise” is essentially syn-
onymous with “defining it in set theory”. Set theory is the official language of
mathematics, just as mathematics is the official language of science.

Like most authors of elementary, introductory books about sets, I have
tried to do justice to both aspects of the subject.

From straight set theory, these Notes cover the basic facts about “abstract
sets”, including the Axiom of Choice, transfinite recursion, and cardinal and
ordinal numbers. Somewhat less common is the inclusion of a chapter on
“pointsets” which focuses on results of interest to analysts and introduces
the reader to the Continuum Problem, central to set theory from the very
beginning. There is also some novelty in the approach to cardinal numbers,
which are brought in very early (following Cantor, but somewhat deviously),
so that the basic formulas of cardinal arithmetic can be taught as quickly as
possible. Appendix A gives a more detailed “construction” of the real numbers
than is common nowadays, which in addition claims some novelty of approach
and detail. Appendix B is a somewhat eccentric, mathematical introduction
to the study of natural models of various set theoretic principles, including
Aczel’s Antifoundation. It assumes no knowledge of logic, but should drive
the serious reader to study it.

About set theory as a foundation of mathematics, there are two aspects of
these Notes which are somewhat uncommon. First, I have taken seriously
this business about “everything being a set” (which of course it is not) and
have tried to make sense of it in terms of the notion of faithful representation
of mathematical objects by structured sets. An old idea, but perhaps this
is the first textbook which takes it seriously, tries to explain it, and applies
it consistently. Those who favor category theory will recognize some of its
basic notions in places, shamelessly folded into a traditional set theoretical
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approach to the foundations where categories are never mentioned. Second,
computation theory is viewed as part of the mathematics “to be founded”
and the relevant set theoretic results have been included, along with several
examples. The ambition was to explain what every young mathematician or
theoretical computer scientist needs to know about sets.

The book includes several historical remarks and quotations which in some
places give it an undeserved scholarly gloss. All the quotations (and most
of the comments) are from papers reprinted in the following two, marvellous
and easily accessible source books, which should be perused by all students
of set theory:

Georg Cantor, Contributions to the founding of the theory of transfinite
numbers, translated and with an Introduction by Philip E. B. Jourdain, Dover
Publications, New York.

Jean van Heijenoort, From Frege to Gödel, Harvard University Press, Cam-
bridge, 1967.

How to use it. About half of this book can be covered in a Quarter (ten
weeks), somewhat more in a longer Semester. Chapters 1 – 6 cover the
beginnings of the subject and they are written in a leisurely manner, so that
the serious student can read through them alone, with little help. The trick
to using the Notes successfully in a class is to cover these beginnings very
quickly: skip the introductory Chapter 1, which mostly sets notation; spend
about a week on Chapter 2, which explains Cantor’s basic ideas; and then
proceed with all deliberate speed through Chapters 3 – 6, so that the theory
of well ordered sets in Chapter 7 can be reached no later than the sixth week,
preferably the fifth. Beginning with Chapter 7, the results are harder and the
presentation is more compact. How much of the “real” set theory in Chapters
7 – 12 can be covered depends, of course, on the students, the length of the
course, and what is passed over. If the class is populated by future computer
scientists, for example, then Chapter 6 on Fixed Points should be covered in
full, with its problems, but Chapter 10 on Baire Space might be omitted, sad
as that sounds. For budding young analysts, at the other extreme, Chapter
6 can be cut off after 6.27 (and this too is sad), but at least part of Chapter
10 should be attempted. Additional material which can be left out, if time is
short, includes the detailed development of addition and multiplication on the
natural numbers in Chapter 5, and some of the less central applications of the
Axiom of Choice in Chapter 9. The Appendices are quite unlikely to be taught
in a course (I devote just one lecture to explain the idea of the construction
of the reals in Appendix A), though I would like to think that they might be
suitable for undergraduate Honors Seminars, or individual reading courses.

Since elementary courses in set theory are not offered regularly and they
are seldom long enough to cover all the basics, I have tried to make these
Notes accessible to the serious student who is studying the subject on their
own. There are numerous, simple Exercises strewn throughout the text, which
test understanding of new notions immediately after they are introduced. In
class I present about half of them, as examples, and I assign some of the rest
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for easy homework. The Problems at the end of each chapter vary widely in
difficulty, some of them covering additional material. The hardest problems
are marked with an asterisk (∗).

Acknowledgments. I am grateful to the Mathematics Department of the
University of Athens for the opportunity to teach there in Fall 1990, when I
wrote the first draft of these Notes, and especially to Prof. A. Tsarpalias who
usually teaches that Set Theory course and used a second draft in Fall 1991;
and to Dimitra Kitsiou and Stratos Paschos for struggling with PCs and laser
printers at the Athens Polytechnic in 1990 to produce the first “hard copy”
version. I am grateful to my friends and colleagues at UCLA and Caltech
(hotbeds of activity in set theory) from whom I have absorbed what I know of
the subject, over many years of interaction. I am especially grateful to my wife
Joan Moschovakis and my student Darren Kessner for reading large parts of
the preliminary edition, doing the problems and discovering a host of errors;
and to Larry Moss who taught out of the preliminary edition in the Spring
Term of 1993, found the remaining host of errors and wrote out solutions to
many of the problems.

The book was written more-or-less simultaneously in Greek and English, by
the magic of bilingual LATEXand in true reflection of my life. I have dedicated it
to Prof. Nikos Kritikos (a student of Caratheodory), in fond memory of many
unforgettable hours he spent with me back in 1973, patiently teaching me how
to speak and write mathematics in my native tongue, but also much about the
love of science and the nature of scholarship. In this connection, I am also
greatly indebted to Takis Koufopoulos, who read critically the preliminary
Greek version, corrected a host of errors and made numerous suggestions
which (I believe) improved substantially the language of the final Greek draft.

Palaion Phaliron, Greece November 1993

About the 2nd edition. Perhaps the most important changes I have made
are in small things, which (I hope) will make it easier to teach and learn from
this book: simplifying proofs, streamlining notation and terminology, adding
a few diagrams, rephrasing results (especially those justifying definition by
recursion) to ease their applications, and, most significantly, correcting errors,
typographical and other. For spotting these errors and making numerous,
useful suggestions over the years, I am grateful to Serge Bozon, Joel Hamkins,
Peter Hinman, Aki Kanamori, Joan Moschovakis, Larry Moss, Thanassis
Tsarpalias and many, many students.

The more substantial changes include:
— A proof of Suslin’s Theorem in Chapter 10, which has also been signifi-

cantly massaged.
— A better exposition of ordinal theory in Chapter 12 and the addition of

some material, including the basic facts about ordinal arithmetic.
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— The last chapter, a compilation of solutions to the Exercises in the
main part of the book – in response to popular demand. This eliminates the
most obvious, easy homework assignments, and so I have added some easy
problems.

I am grateful to Thanos Tsouanas, who copy-edited the manuscript and
caught the worst of my mistakes.

Palaion Phaliron, Greece July 2005



CHAPTER 2

EQUINUMEROSITY

After these preliminaries, we can formulate the fundamental definitions of
Cantor about the size or cardinality of sets.

2.1. Definition. Two setsA, B are equinumerous or equal in cardinality if there
exists a (one-to-one) correspondence between their elements, in symbols

A =c B ⇐⇒df (∃f)[f : A�→ B ].

This definition of equinumerosity stems from our intuitions about finite
sets, e.g., we can be sure that a shoe store offers for sale the same number
of left and right shoes without knowing exactly what that number is: the
correspondence of each left shoe with the right shoe in the same pair estab-
lishes the equinumerosity of these two sets. The radical element in Cantor’s
definition is the proposal to accept the existence of such a correspondence as
the characteristic property of equinumerosity for all sets, despite the fact that
its application to infinite sets leads to conclusions which had been viewed as
counterintuitive. A finite set, for example, cannot be equinumerous with one
of its proper subsets, while the set of natural numbers N is equinumerous with
N \ {0} via the correspondence (x �→ x + 1),

{0, 1, 2, . . . } =c {1, 2, 3, . . . }.
In the real numbers, also,

(0, 1) =c (0, 2)
via the correspondence (x �→ 2x), where as usual, for any two reals α < �

(α, �) = {x ∈ R | α < x < �}.
We will use the analogous notation for the closed and half-closed intervals
[α, �], [α, �), etc.
2.2. Proposition. For all sets A,B,C ,

A =c A,

if A =c B, then B =c A,

if (A =c B &B =c C ), then A =c C.

Proof. To show the third implication as an example, suppose that the
bijections f : A �→ B and g : B �→ C witness the equinumerosities of the
hypothesis; their composition gf : A�→ C then witnesses that A =c C . �

7
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Figure 2.1. Deleting repetitions.

2.3. Definition. The setA is less than or equal to B in size if it is equinumerous
with some subset of B , in symbols:

A ≤c B ⇐⇒ (∃C )[C ⊆ B &A =c C ].

2.4. Proposition. A ≤c B ⇐⇒ (∃f)[f : A� B ].

Proof. If A =c C ⊆ B and f : A �→ C witnesses this equinumerosity,
then f is an injection from A into B . Conversely, if there exists an injection
f : A� B , then the same f is a bijection of A with its image f[A], so that
A =c f[A] ⊆ B and so A ≤c B by the definition. �
2.5. Exercise. For all sets A,B,C ,

A ≤c A,
if (A ≤c B &B ≤c C ), then A ≤c C.

2.6. Definition. A set A is finite if there exists some natural number n such
that

A =c {i ∈ N | i < n} = {0, 1, . . . , n − 1},
otherwiseA is infinite. (Thus the empty set is finite, since ∅ = {i ∈ N | i < 0}.)

A set A is countable if it is finite or equinumerous with the set of natu-
ral numbers N, otherwise it is uncountable. Countable sets are also called
denumerable, and correspondingly, uncountable sets are non-denumerable.

2.7. Proposition. The following are equivalent for every set A:
(1) A is countable.
(2) A ≤c N.
(3) Either A = ∅, or A has an enumeration, a surjection � : N →→ A, so that

A = �[N] = {�(0), �(1), �(2), . . . }.

Proof. We give what is known as a “round robin proof”.
(1) =⇒ (2). If A is countable, then either A =c {i ∈ N | i < n} for some n

orA =c N, so that, in either case,A =c C for someC ⊆ N and henceA ≤c N.
(2) =⇒ (3). Suppose A �= ∅, choose some x0 ∈ A, and assume by (2) that

f : A� N. For each i ∈ N, let

�(i) =

{
x0, if i /∈ f[A],
f−1(i), otherwise, i.e., if i ∈ f[A].
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The definition works (because f is an injection, and so f−1(i) is uniquely
determined in the second case), and it defines a surjection � : N →→ A, because
x0 ∈ A and for every x ∈ A, x = �(f(x)).

(3) =⇒ (1). If A is finite then (1) is automatically true, so assume that
A is infinite but it has an enumeration � : N →→ A. We must find another
enumeration f : N →→ A which is without repetitions, so that it is in fact a
bijection of N with A, and hence A =c N. The proof is suggested by Figure
2.1: we simply delete the repetitions from the given enumeration � of A. To
get a precise definition of f by recursion, notice that because A is not finite,
for every finite sequence a0, . . . , an of members of A there exists somem such
that �(m) /∈ {a0, . . . , an}. Set

f(0) = �(0),

mn = the least m such that �(m) /∈ {f(0), . . . , f(n)},
f(n + 1) = �(mn).

It is obvious that f is an injection, so it is enough to verify that every x ∈ A
is a value of f, i.e., that for every n ∈ N, �(n) ∈ f[N]. This is immediate for
0, since �(0) = f(0). If x = �(n + 1) for some n and x ∈ {f(0), . . . , f(n)},
then x = f(i) for some i ≤ n; and if x /∈ {f(0), . . . , f(n)}, thenmn = n+ 1
and f(n + 1) = �(mn) = x by the definition. �
2.8. Exercise. If A is countable and there exists an injection f : B � A, then
B is also countable; in particular, every subset of a countable set is countable.

2.9. Exercise. If A is countable and there exists a surjection f : A →→ B , then
B is also countable.

The next, simple theorem is one of the most basic results of set theory.

2.10. Theorem (Cantor). For each sequence A0, A1, . . . of countable sets, the
union

A =
⋃∞
n=0An = A0 ∪A1 ∪ . . .

is also a countable set.
In particular, the union A ∪ B of two countable sets is countable.

Proof. The second claim follows by applying the first to the sequence

A,B,B, · · ·

For the first, it is enough (why?) to consider the special case where none
of the An is empty, in which case we can find for each An an enumeration
�n : N →→ An. If we let

ani = �n(i)

to simplify the notation, then for each n

An = {an0 , an1 , . . . },

and we can construct from these enumerations a table of elements which lists
all the members of the unionA. This is pictured in Figure 2.2, and the arrows
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Figure 2.2. Cantor’s first diagonal method.

in that picture show how to enumerate the union:

A = {a0
0 , a

1
0 , a

0
1 , a

2
0 , a

1
1 , . . . }. �

2.11. Corollary. The set of rational (positive and negative) integers

Z = {. . .− 2,−1, 0, 1, 2, . . . }

is countable.

Proof. Z = N∪{−1,−2, . . . , } and the set of negative integers is countable
via the correspondence (x �→ −(x + 1)). �
2.12. Corollary. The set Q of rational numbers is countable.

Proof. The set Q+ of non-negative rationals is countable because

Q+ =
⋃∞
n=1{
m

n
| m ∈ N}

and each {mn | m ∈ N} is countable via the enumeration (m �→ m
n ). The set

Q− of negative rationals is countable by the same method, and then the union
Q+ ∪ Q− is countable. �

This corollary was Cantor’s first significant result in the program of classifi-
cation of infinite sets by their size, and it was considered somewhat “paradoxi-
cal” because Q appears to be so much larger than N. Immediately afterwards,
Cantor showed the existence of uncountable sets.

2.13. Theorem (Cantor). The set of infinite, binary sequences

Δ = {(a0, a1, . . . , ) | (∀i)[ai = 0 ∨ ai = 1]}

is uncountable.

Proof. Suppose (towards a contradiction) that Δ is countable, so there
exists an enumeration

Δ = {α0, α1, . . . },
where for each n,

αn = (an0 , a
n
1 , . . . )
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Figure 2.3. Cantor’s second diagonal method.

is a sequence of 0’s and 1’s.3 We construct a table with these sequences as
before, and then we define the sequence � by interchanging 0 and 1 in the
“diagonal” sequence a0

0 , a
1
1 , . . . :

�(n) = 1 − ann .
It is obvious that for each αn , � �= αn, since

�(n) = 1 − αn(n) �= αn(n),

so that the sequence α0, α1, . . . does not enumerate the entire Δ, contrary to
our hypothesis. �
2.14. Corollary (Cantor). The set R of real numbers is uncountable.

Proof. We define first a sequence of sets C0, C1, . . . , of real numbers which
satisfy the following conditions:

1. C0 = [0, 1].
2. Each Cn is a union of 2n closed intervals and

C0 ⊇ C1 ⊇ · · · Cn ⊇ Cn+1 ⊇ · · · .
3. Cn+1 is constructed by removing the (open) middle third of each interval

in Cn, i.e., by replacing each [a, b] in Cn by the two closed intervals

L[a, b] = [a, a +
1
3

(b − a)],

R[a, b] = [a +
2
3

(b − a), b].

With each binary sequence � ∈ Δ we associate now a sequence of closed
intervals,

F �0 , F
�
1 , . . . ,

3To prove a proposition � by the method of reduction to a contradiction, we assume its negation
¬� and derive from that assumption something which violates known facts, a contradiction,
something absurd: we conclude that � cannot be false, so it must be true. Typically we will begin
such arguments with the code-phrase towards a contradiction, which alerts the reader that the
supposition which follows is the negation of what we intend to prove.
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C0
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C3

Figure 2.4. The first four stages of the Cantor set construction.

by the following recursion:

F �0 = C0 = [0, 1],

F �n+1 =
{
LF �n , if �(n) = 0,
RF �n , if �(n) = 1.

By induction, for each n, F �n is one of the closed intervals of Cn of length 3−n

and obviously
F �0 ⊇ F �1 ⊇ · · · ,

so by the fundamental completeness property of the real numbers the intersec-
tion of this sequence is not empty; in fact, it contains exactly one real number,
call it

f(�) = the unique element in the intersection
⋂∞
n=0F

�
n .

The function f maps the uncountable set Δ into the set

C =
⋂∞
n=0Cn,

the so-called Cantor set, so to complete the proof it is enough to verify that
f is one-to-one. But if n is the least number for which �(n) �= ε(n) and (for
example) �(n) = 0, we have F �n = F εn from the choice of n,

f(�) ∈ F �n+1 = LF �n , f(ε) ∈ F εn+1 = RF �n , and LF �n ∩RF �n = ∅,

so that indeed f is an injection. �
The basic mathematical ingredient of this proof is the appeal to the com-

pleteness property of the real numbers, which we will study carefully in Ap-
pendix A. Some use of a special property of the reals is necessary: the rest
of Cantor’s construction relies solely on arithmetical properties of numbers
which are also true of the rationals, so if we could avoid using completeness
we would also prove that Q is uncountable, contradicting Corollary 2.12.

The fundamental importance of this theorem was instantly apparent, the
more so because Cantor used it immediately in a significant application to the
theory of algebraic numbers. Before we prove this corollary we need some
definitions and lemmas.

2.15. Definition. For any two sets A,B , the set of ordered pairs of members
of A and members of B is denoted by

A× B = {(x, y) | x ∈ A& y ∈ B}.
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In the same way, for each n ≥ 2,

A1 × · · · ×An = {(x1, . . . , xn) | x1 ∈ A1, . . . , xn ∈ An},
An = {(x1, . . . , xn) | x1, . . . , xn ∈ A}.

We call A1 × · · · ×An the Cartesian product of A1, . . . , An.

2.16. Lemma. (1) If A1, . . . , An are all countable, so is their Cartesian product
A1 × · · · ×An.

(2) For every countable set A, each An (n ≥ 2) and the union⋃∞
n=2A

n = {(x1, . . . , xn) | n ≥ 2, x1, . . . , xn ∈ A}
are all countable.

Proof. (1) If someAi is empty, then the product is empty (by the definition)
and hence countable. Otherwise, in the case of two sets A,B , we have some
enumeration

B = {b0, b1, . . . }
of B , obviously

A× B =
⋃∞
n=0(A× {bn}),

and each A × {bn} is equinumerous with A (and hence countable) via the
correspondence (x �→ (x, bn)). This gives the result for n = 2. To prove the
proposition for all n ≥ 2, notice that

A1 × · · · ×An × An+1 =c (A1 × · · · ×An) × An+1

via the bijection

f(a1, . . . , an, an+1) = ((a1, . . . , an), an+1).

Thus, if every product of n ≥ 2 countable factors is countable, so is every
product of n + 1 countable factors, and so (1) follows by induction.

(2) Each An is countable by (1), and then
⋃∞
n=2A

n is also countable by
another appeal to Theorem 2.10. �

2.17. Definition. A real numberα is algebraic if it is a root of some polynomial

P(x) = a0 + a1x + · · · + anxn

with integer coefficients a0, . . . , an ∈ Z (n ≥ 1, an �= 0), i.e., if

P(α) = 0.

Typical examples of algebraic numbers are
√

2, (1 +
√

2)2 (why?) but also
the real root of the equation x5 +x+ 1 = 0 which exists (why?) but cannot be
expressed in terms of radicals, by a classical theorem of Abel. The basic fact
(from algebra) about algebraic numbers is that a polynomial of degree n ≥ 1
has at most n real roots; this is all we need for the next result.

2.18. Corollary. The setK of algebraic real numbers is countable (Cantor), and
hence there exist real numbers which are not algebraic (Liouville).
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Proof. The set Π of all polynomials with integer coefficients is countable,
because each such polynomial is determined by the sequence of its coefficients,
so that Π can be injected into the countable set

⋃∞
n=2Z

n. For each polynomial
P(x), the set of its roots

Λ(P(x)) = {α | P(α) = 0}
is finite and hence countable. It follows that the set of algebraic numbersK is
the union of a sequence of countable sets and hence it is countable. �

This first application of the (then) new theory of sets was instrumental
in ensuring its quick and favorable acceptance by the mathematicians of the
period, particularly since the earlier proof of Liouville (that there exist non-
algebraic numbers) was quite intricate. Cantor showed something stronger,
that “almost all” real numbers are not algebraic, and he did it with a much
simpler proof which used just the fact that a polynomial of degree n cannot
have more than n real roots, the completeness of R, and, of course, the new
method of counting the members of infinite sets.

So far we have shown the existence of only two “orders of infinity”, that of
N—the countable, infinite sets—and that of R. There are many others.

2.19. Definition. The powerset P(A) of a set A is the set of all its subsets,

P(A) = {X | X is a set and X ⊆ A}.

2.20. Exercise. For all sets A,B ,

A =c B =⇒P(A) =c P(B).

2.21. Theorem (Cantor). For every set A,

A <c P(A),

i.e., A ≤c P(A) but A �=c P(A); in fact there is no surjection � : A→→ P(A).
Proof. That A ≤c P(A) follows from the fact that the function

(x �→ {x})

which associates with each member x of A its singleton {x} is an injection.
(Careful here: the singleton {x} is a set with just the one member x and it is
not the same object as x, which is probably not a set to begin with!)

To complete the proof, we assume (towards a contradiction) that there
exists a surjection

� : A→→ P(A),
and we define the set

B = {x ∈ A | x /∈ �(x)},
so that for every x ∈ A,

x ∈ B ⇐⇒ x /∈ �(x). (2-1)

Now B is a subset of A and � is a surjection, so there must exist some b ∈ A
such that B = �(b); and setting x = b and �(b) = B in (2-1), we get

b ∈ B ⇐⇒ b /∈ B
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which is absurd. �
So there are many orders of infinity, and specifically (at least) those of the

sets

N <c P(N) <c P(P(N)) <c · · · .

If we name these sets by the recursion

T0 = N,
Tn+1 = P(Tn),

(2-2)

then their unionT∞ =
⋃∞
n=0Tn has a larger cardinality than eachTn, Problem

x2.8. The classification and study of these orders of infinity is one of the central
problems of set theory.

Somewhat more general than powersets are function spaces.

2.22. Definition. For any two sets A,B ,

(A→ B) =df {f | f : A→ B}
= the set of all functions from A to B.

2.23. Exercise. If A1 =c A2 and B1 =c B2, then (A1 → B1) =c (A2 → B2).

Function spaces are “generalizations” of powersets because each subset
X ⊆ A can be represented by its characteristic function cX : A→ {0, 1},

cX (t) =
{

1, if t ∈ A ∩X,
0, if t ∈ A \ X, (t ∈ A). (2-3)

We can recover X from cX ,

X = {t ∈ A | cX (t) = 1},

and so the mapping (X �→ cX ) is a correspondence ofP(A) with (A→ {0, 1}).
Thus

(A→ {0, 1}) =c P(A) >c A, (2-4)

and the function space operation also leads to large, uncountable sets. The
next obvious problem is to compare for size these uncountable sets, starting
with the two simplest ones, P(N) and the set R of real numbers.

2.24. Lemma. P(N) ≤c R.

Proof. It is enough to prove that P(N) ≤c Δ, since we have already shown
that Δ ≤c R. This follows immediately from (2-4), as Δ = (N → {0, 1}). �
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Figure 2.5. Proof of the Schröder-Bernstein Theorem.

2.25. Lemma. R ≤c P(N).

Proof. It is enough to show that R ≤c P(Q), since the set of rationals Q is
equinumerous with N and hence P(N) =c P(Q). This follows from the fact
that the function

x �→ �(x) = {q ∈ Q | q < x} ⊆ Q

is an injection, because if x < y are distinct real numbers, then there exists
some rational q between them, x < q < y and q ∈ �(y) \ �(x). �

With these two simple Lemmas, the equinumerosity R =c P(N) will follow
immediately from the following basic theorem.

2.26. Theorem (Schröder-Bernstein). For any two sets A,B ,

if A ≤c B and B ≤c A, then A =c B.

Proof.
4 We assume that there exist injections

f : A� B, g : B � A,

and we define the sets An, Bn by the following recursive definitions:

A0 = A,
An+1 = gf[An],

B0 = B,
Bn+1 = fg[Bn],

4A different proof of this theorem is outlined in Problems x4.26, x4.27.
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wherefg[X ] = {f(g(x)) | x ∈ X} and correspondingly for the function gf.
By induction on n (easily)

An ⊇ g[Bn] ⊇ An+1,
Bn ⊇ f[An] ⊇ Bn+1,

so that we have the “chains of inclusions”
A0 ⊇ g[B0] ⊇ A1 ⊇ g[B1] ⊇ A2 · · · ,
B0 ⊇ f[A0] ⊇ B1 ⊇ f[A1] ⊇ B2 · · · .

We also define the intersections

A∗ =
⋂∞
n=0An, B

∗ =
⋂∞
n=0Bn,

so that
B∗ =

⋂∞
n=0Bn ⊇

⋂∞
n=0f[An] ⊇

⋂∞
n=0Bn+1 = B∗

and since f is an injection, by Problem x1.7,

f[A∗] = f[
⋂∞
n=0An] =

⋂∞
n=0f[An] = B∗.

Thus f is a bijection of A∗ with B∗. On the other hand,

A = A∗ ∪ (A0 \ g[B0]) ∪ (g[B0] \ A1) ∪ (A1 \ g[B1]) ∪ (g[B1] \ A2) . . .

B = B∗ ∪ (B0 \ f[A0]) ∪ (f[A0] \ B1) ∪ (B1 \ f[A1]) ∪ (f[A1] \ B2) . . .

and these sequences are separated, i.e., no set in them has any common element
with any other. To finish the proof it is enough to check that for every n,

f[An \ g[Bn]] = f[An] \ Bn+1,

g[Bn \ f[An]] = g[Bn] \ An+1,

from which the first (for example) is true because f is an injection and so

f[An \ g[Bn]] = f[An] \ fg[Bn] = f[An] \ Bn+1.

Finally we have the bijection � : A�→ B ,

�(x) =
{
f(x), if x ∈ A∗ or (∃n)[x ∈ An \ g[Bn]],
g−1(x), if x /∈ A∗ and (∃n)[x ∈ g[Bn] \ An+1],

which verifies that A =c B and finishes the proof. �
Using the Schröder-Bernstein Theorem we can establish easily several equinu-

merosities which are quite difficult to prove directly.

Problems for Chapter 2

x2.1. For any α < � where α, � are reals, ∞ or −∞, construct bijections
which prove the equinumerosities

(α, �) =c (0, 1) =c R.
∗x2.2. For any two real numbers α < � , construct a bijection which proves the
equinumerosity

[α, �) =c [α, �] =c R.
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x2.3. P(N) =c R =c Rn, for every n ≥ 2.

x2.4. For any two sets A,B , (A → B) ≤c P(A × B). Hint. Represent each
f : A→ B by its graph, the set

Gf = {(x, y) ∈ A× B | y = f(x)}.

x2.5. (N → N) =c P(N).
∗x2.6. (N → R) =c R.
∗x2.7. For any three sets A,B,C ,

((A× B) → C ) =c (A→ (B → C )).

Hint. For any p : A × B → C , define �(p) = q : A → (B → C ) by the
formula

q(x)(y) = p(x, y).

x2.8. Using the definition (2-2), for every m,

Tm <c T∞ =
⋃∞
n=0Tn.

You need to know something about continuous functions to do the last two
problems.

∗x2.9. The set C [0, 1] of all continuous, real functions on the closed interval
[0, 1] is equinumerous with R.

∗x2.10. The set of all monotone real functions on the closed interval [0, 1] is
equinumerous with R.


