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6.2 Chvátal–Gomory Cutting Planes 152
6.3 Gomory Cutting Planes 156
6.4 Tightening a Constraint 167
6.5 Constraint Generation for Combinatorial-Optimization

Problems 171
6.6 Further Study 176

7 Branch-&-Bound 177
7.1 Branch-&-Bound Using Linear-Programming Relaxation 179
7.2 Knapsack Programs and Group Relaxation 184
7.3 Branch-&-Bound for Optimal-Weight Hamiltonian Tour 188



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

CB636-FM CB636-Lee CB636-Lee-v2.cls December 11, 2003 16:30 Char Count= 0

Contents xi

7.4 Maximum-Entropy Sampling and Branch-&-Bound 191
7.5 Further Study 193

8 Optimizing Submodular Functions 194
8.1 Minimizing Submodular Functions 194
8.2 Minimizing Submodular Functions Over Odd Sets 197
8.3 Maximizing Submodular Functions 200
8.4 Further Study 201

Appendix: Notation and Terminology 203
A.1 Sets 203
A.2 Algebra 203
A.3 Graphs 204
A.4 Digraphs 205

References 207
Background Reading 207
Further Reading 207

Indexes 209
Examples 209
Exercises 209
Problems 209
Results 210
Algorithms 211



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

CB636-FM CB636-Lee CB636-Lee-v2.cls December 11, 2003 16:30 Char Count= 0

1
Matroids and the Greedy Algorithm

Matroids are objects that generalize certain combinatorial aspects of linear
dependence of finite sets of points in a vector space. A graph can be encoded
by means of its 0/1-valued vertex-edge incidence matrix. It turns out that, when
this matrix is viewed over GF(2), each linearly independent set of columns
corresponds to a forest in the underlying graph, and vice versa. Therefore, a
fortiori, matroids generalize aspects of graphs. From this viewpoint, Hassler
Whitney founded the subject of matroid theory in 1935.

In a natural sense, matroids turn out to yield the precise structure for which
the most naı̈ve “greedy” algorithm finds an optimal solution to combinatorial-
optimization problems for all weight functions. Therefore, matroid theory is
a natural starting point for studying combinatorial-optimization methods. Fur-
thermore, matroids have algorithmic value well beyond the study of greedy
algorithms (see, for example, Chapter 3).

In addition to the algorithmic importance of matroids, we also use matroids
as a starting point for exploring the power of polytopes and linear-programming
duality in combinatorial optimization.

1.1 Independence Axioms and Examples of Matroids

A matroid M is a finite set E(M) together with a subset I(M) of 2E(M) that
satisfies the following properties:

Independence Axioms

I1. ∅ ∈ I(M).
I2. X ⊂ Y ∈ I(M) =⇒ X ∈ I(M).
I3. X ∈ I(M), Y ∈ I(M), |Y | > |X | =⇒ ∃ e ∈ Y \ X such that X + e ∈

I(M).

49
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50 1 Matroids and the Greedy Algorithm

The set I(M) is called the set of independent sets of M . The set E(M) is
called the ground set of M . Property I3 is called the exchange axiom.

What follows are some examples that we will revisit as we proceed.

Example (Linear matroid). Let A be a matrix over a field F, with columns
indexed by the finite set E(A). Let E(M) := E(A), and let I(M) be the set
of X ⊂ E(M) such that the columns of AX are linearly independent. In this
case, we say that M is the linear matroid of A and that A is a representation
of M over F. It is very easy to see that properties I1 and I2 hold. To see how I3
holds, suppose that X + e /∈ I(M) for every e ∈ Y \ X . Then the columns of
AY are in c.s.(AX ) (the column space or linear span of AX ). Hence, c.s.(AY ) is
a subset of c.s.(AX ). Therefore, the dimension of c.s.(AY ) is no more than that
of c.s.(AX ). Therefore, we have |Y | ≤ |X |. ♠

Let G be a graph with vertex set V (G) and edge set E(G). We denote the
numbers of connected components of G (counting isolated vertices as compo-
nents) by κ(G). For F ⊂ E(G), let G.F (G restricted to F) denote the graph
with V (G.F) := V (G) and E(G.F) := F . A set of edges F of graph G is a
forest if it contains no cycle.

Lemma (Forest components). Let F be a forest of a graph G. Then |F | =
|V (G)| − κ(G.F).

Proof. By induction of |F |. Clearly true for |F | = 0. For the inductive step, we
just observe that, for e ∈ F , κ(G.(F − e)) = κ(G.F) − 1. �

Example (Graphic matroid). Let G be a graph. Let E(M) := E(G), and let
I(M) be the set of forests of G. In this case, we say that M is the graphic
matroid of G. It is easy to see that I1 and I2 hold. To see how I3 holds, suppose
that X and Y are forests such that X + e is not a forest for every e ∈ Y \ X .
Then every edge in Y \ X would have both ends in the same component of G.X .
Hence, κ(G.Y ) ≥ κ(G.X ). Therefore, by the Lemma (Forest components), we
have |Y | ≤ |X |. ♠

Example (Uniform matroid). Let E(M) be a finite set, and let r be an integer
satisfying 0 ≤ r ≤ |E(M)|. Let I(M) := {X ⊂ E(M) : |X | ≤ r}. In this case,
we say that M is a uniform matroid. ♠

Example (Direct sum). Let M1 and M2 be matroids with E(M1) ∩ E(M2) =
∅. Define M by E(M) := E(M1) ∪ E(M2), and I(M) := {X1 ∪ X2 : X1 ∈
I(M1), X2 ∈ I(M2)}. Then matroid M is the direct sum of M1 and M2. ♠
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A system that respects I1 and I2 but not necessarily I3 is called an inde-
pendence system. As the following example indicates, not every independence
system is a matroid.

Example (Vertex packing on a star). Let G be a simple undirected graph.
Define M by E(M) := V (G), and let I(M) be the set of “vertex packings” of
G – a vertex packing of G is just a set of vertices X with no edges of G between
elements of X . Clearly M is an independence system. To see that M need not
be a matroid consider the n-star graph:

n

1

2

3

4

with n ≥ 3. The pair X = {1}, Y = {2, 3, . . . , n} violates I3. ♠

1.2 Circuit Properties

For any independence system, the elements of 2E(M) \ I(M) are called the
dependent sets of M . We distinguish the dependent sets whose proper subsets
are in I(M). We call these subsets the circuits of M , and we write the set of
circuits of M as

C(M) := {X ⊂ E(M) : X �∈ I(M), X − e ∈ I(M), ∀ e ∈ X}.

For example, if M is the graphic matroid of a graph G, then the circuits of
M are the cycles of G. Single-element circuits of a matroid are called loops; if
M is the graphic matroid of a graph G, then the set of loops of M is precisely
the set of loops of G.

Problem [Graphic =⇒ linear over GF(2)]. Show that if A(G) is the
vertex-edge incidence matrix of G, then the matroid represented by A(G),
with numbers of A(G) interpreted in GF(2), is precisely the graphic matroid
of G.
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52 1 Matroids and the Greedy Algorithm

If M is a matroid, then C(M) obeys the following properties:

Circuit Properties

C1. ∅ �∈ C(M).
C2. X ∈ C(M), Y ∈ C(M), X ⊂ Y =⇒ X = Y .
C3. X ∈ C(M), Y ∈ C(M), X �= Y , e ∈ X ∩ Y =⇒ ∃ Z ⊂ (X ∪ Y ) − e

such that Z ∈ C(M).

Properties C1 and C2 follow from I1 and I2 and the definition of C(M).

Theorem (Circuit elimination). If M is a matroid, then C(M) satisfies C3.

Proof. Suppose that X , Y , e satisfy the hypotheses of C3 but that (X ∪ Y ) − e
contains no element of C(M). By C2, Y \ X �= ∅, so choose some f ∈ Y \ X .
By the definition of C(M), Y − f ∈ I(M).

Let W be a subset of X ∪ Y that is maximal among all sets in I(M) that
contain Y − f . Clearly f �∈ W . Choose some g ∈ X \ W [the set X \ W is
nonempty because X is a circuit and W ∈ I(M)]. Clearly f and g are dis-
tinct because f ∈ Y \ X . In the following figure W is indicated by the shaded
region.

e

Y
X

f

g

Hence,

|W | ≤ |(X ∪ Y ) \ { f, g}| = |X ∪ Y | − 2 < |(X ∪ Y ) − e|.
Now, applying I3 to W and (X ∪ Y ) − e, we see that there is an element h ∈

((X ∪ Y ) − e) \ W , such that W + h ∈ I(M). This contradicts the maximality
of W . �

Problem (Linear circuit elimination). Give a direct proof of C3 for linear
matroids.
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Problem (Graphic circuit elimination). Give a direct proof of C3 for
graphic matroids.

Property C3 is called the circuit-elimination property. A system satisfying
properties C1 and C2 but not necessarily C3 is called a clutter.

Example [Vertex packing on a star, continued (see p. 51)]. X := {1, i}
and Y := {1, j} are distinct circuits for 1 �= i �= j �= 1, but {i, j} contains no
circuit. ♠

It should be clear that C(M) completely determines I(M) for any indepen-
dence system. That is, given E(M) and C(M) satisfying C1 and C2, there is
precisely one choice of I(M) that has circuit set C(M) that will satisfy I1 and
I2. That choice is

I(M) := {X ⊂ E(M) :� ∃ Y ⊂ X, Y ∈ C(M)}.

Problem (Unique-circuit property). Let M be a matroid. Prove that if
X ∈ I(M) and X + e �∈ I(M), then X + e contains a unique circuit of M .
Give an example to show how this need not hold for a general independence
system.

Problem (Linear unique circuit). Give a direct proof of the unique-circuit
property for linear matroids.

Problem (Graphic unique circuit). Give a direct proof of the unique-
circuit property for graphic matroids.

1.3 Representations

The Fano matroid is the matroid represented over GF(2) by the matrix

F =



1 2 3 4 5 6 7

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1


.
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Exercise [Linear over GF(2) �=⇒ graphic]. Prove that the Fano matroid
is not graphic.

A linear matroid may have many representations. A minimal representation
of M is a representation having linearly independent rows. If A and A′ are
r × n matrices over the same field, having full row rank, and there is a nonsin-
gular matrix B and a nonsingular diagonal matrix D such that A′ = B AD,
then A and A′ are projectively equivalent. It is easy to see that projective
equivalence is an equivalence relation. If A and A′ are projectively equivalent
then they represent the same matroid; however, the converse is not generally
true.

Proposition (Fano representation). The Fano matroid is representable over
a field if and only if the field has characteristic 2. Moreover, F is the only
minimal representation of the Fano matroid over every characteristic-2 field,
up to projective equivalence.

Proof. If the Fano matroid can be represented over a field F, then it has a
minimal representation over F of the form

A =



1 2 3 4 5 6 7

a11 a12 a13 a14 a15 a16 a17

a21 a22 a23 a24 a25 a26 a27

a31 a32 a33 a34 a35 a36 a37


.

The first three columns of A must be linearly independent, so, by using ele-
mentary row operations, we can bring A into the form

A′ =



1 2 3 4 5 6 7

1 0 0 a′
14 a′

15 a′
16 a′

17

0 1 0 a′
24 a′

25 a′
26 a′

27

0 0 1 a′
34 a′

35 a′
36 a′

37


.

We have a′
14 = 0, a′

24 �= 0, and a′
34 �= 0, as {2, 3, 4} is a circuit. Similarly, a′

15 �=
0, a′

25 = 0, a′
35 �= 0, and a′

16 �= 0, a′
26 �= 0, a′

36 = 0. Finally, a′
17 �= 0, a′

27 �= 0,
and a′

37 �= 0, as {1, 2, 3, 7} is a circuit.
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Therefore, any minimal representation of the Fano matroid over a field F, up
to multiplication on the left by an invertible matrix, is of the form




1 2 3 4 5 6 7

1 0 0 0 a b c
0 1 0 d 0 e f
0 0 1 g h 0 i


,

with the letters being nonzeros in the field F. We can bring the matrix into the
form




1 2 3 4 5 6 7

1 0 0 0 1 1 1
0 1 0 1 0 q 1
0 0 1 r s 0 1


,

with the letters being nonzeros, by nonzero row and column scaling (multiply
row 1 by c−1, row 2 by f −1, row 3 by i−1, column 4 by d−1 f , column 5
by a−1c, column 6 by b−1c, column 1 by c, column 2 by f , and column 3
by i).

Now, columns 1, 4, and 7 should be dependent; calculating the determinant
and setting it to 0, we get r = 1. Similarly, the required dependence of columns
2, 5, and 7 implies s = 1, and the dependence of columns 3, 6, and 7 implies
q = 1. Therefore, over any field F, F is the only minimal representation of the
Fano matroid, up to projective equivalence.

Finally, columns 4, 5, and 6 should be dependent, so we get 1 + 1 = 0.
Therefore, the field must have characteristic 2. �

The non-Fano matroid arises when the GF(2) representation of the Fano
matroid is used but the numbers are considered as rational. The representation
F , viewed over Q, is projectively equivalent to the rational matrix

F− =



1 2 3 4 5 6 7

1 0 0 0 1/2 1/2 1/3
0 1 0 1/2 0 1/2 1/3
1 1 1 1 1 1 1


.

Let F ′
− be the matrix that we obtain by deleting the last row (of all 1’s) of F−.

The linear dependencies among the columns of F− are the same as the affine
dependencies among the columns of the matrix F ′

−. We can plot the columns
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of F ′
− as points in the Euclidean plane and then visualize the independent sets

of the non-Fano matroid as the sets of points that are affinely independent (in
the plane, this means pairs of points that are not coincident and triples of points
that do not lie on a straight line):

3                               5 1

2

4

7

6

Exercise (Nonrepresentable matroids). First prove that the non-Fano ma-
troid is representable over a field if and only if the characteristic of the
field is not 2, and then prove that there are matroids representable over
no field by taking the direct sum of the Fano matroid and the non-Fano
matroid.

1.4 The Greedy Algorithm

Associated with any independence system M is its rank function r
M

: 2E(M) �→
R, defined by

r
M

(X ) := max{|Y | : Y ⊂ X, Y ∈ I(M)}.

We call r
M

(E(M)) the rank of M . A set S ⊂ E(M) such that S ∈ I(M) and
|S| = r

M
(E(M)) is a base of M . We write B(M) for the set of bases of M . It

is a simple matter to find a base of the independence system M when M is
a matroid, provided that we can easily recognize when a set is in I(M). We
simply use a “greedy” algorithm:
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Cardinality Greedy Algorithm

1. S := ∅. U := E(M).
2. While (U �= ∅)

i. choose any e ∈ U ; U := U − e;
ii. if S + e ∈ I(M), then S := S + e.

Throughout execution of the algorithm, S ⊂ E(M) and S ∈ I(M). At termi-
nation, |S| = r

M
(E(M)) (convince yourself of this by using I2 and I3).

The algorithm need not find a base of M , if M is a general independence
system.

Example [Vertex packing on a star, continued (see pp. 51, 53)]. If 1 is chosen
as the first element to put in S, then no other element can be added, but the only
base of M is {2, 3, . . . , n}. ♠

With respect to a matroid M and weight function c, we consider the problem
of finding maximum-weight independent sets Sk of cardinality k for all k satis-
fying 0 ≤ k ≤ r

M
(E(M)). This is an extension of the problem of determining

the rank of M ; in that case, c({e}) = 1, ∀ e ∈ E(M), and we concern ourselves
only with k = r

M
(E(M)). A greedy algorithm for the present problem is as

follows:

(Weighted) Greedy Algorithm

1. S0 := ∅. k := 1. U := E(M).
2. While (U �= ∅)

i. choose sk ∈ U of maximum weight; U := U − sk ;
ii. if Sk−1 + sk ∈ I(M), then Sk := Sk−1 + sk and k := k + 1.

Next we demonstrate that each time an Sk is assigned, Sk is a maximum-
weight independent set of cardinality k.

Theorem (Greedy optimality for matroids). The Greedy Algorithm finds
maximum-weight independent sets of cardinality k for every k satisfying
1 ≤ k ≤ r

M
(E(M)).
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Proof. The proof is by contradiction. Note that Sk = {s1, s2, . . . , sk} for 1 ≤
k ≤ r

M
(E(M)). Hence, c(s1) ≥ c(s2) ≥ · · · ≥ c(sk). Let Tk = {t k

1 , t k
2 , . . . , t k

k }
be any maximum-weight independent set of cardinality k, with the elements
numbered so that c(t k

1 ) ≥ c(t k
2 ) ≥ · · · ≥ c(t k

k ). Suppose that c(Tk) > c(Sk);
then there exists p, 1 ≤ p ≤ k, such that c(t k

p) > c(sp). Now, consider the
sets

{
t k
1 , t k

2 , . . . , t k
p−1, t k

p

}
,

{s1, s2, . . . , sp−1}.

Property I3 implies that there is some i , 1 ≤ i ≤ p, such that

t k
i �∈ {s1, s2, . . . , sp−1},
{s1, s2, . . . , sp−1} + t k

i ∈ I(M).

Now c(t k
i ) ≥ c(t k

i+1) ≥ · · · ≥ c(t k
p) > c(sp); therefore, t k

i should have been cho-
sen in preference to sp by the Greedy Algorithm. �

Exercise (Maximum-weight spanning tree). Use the Greedy Algorithm,
with respect to the graphic matroid of the following edge-weighted graph,
to find a maximum-weight spanning tree.

−8

b

c

d

e

10

1
5

5

−1

2

0

−10

−9

a
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The Greedy Algorithm can be used to find a maximum-weight independent
set (with no restriction on the cardinality) by stopping once all positive-weight
elements have been considered in Step 2.i.

Problem (Scheduling). Jobs labeled 1, 2, . . . , n are to be processed by a
single machine. All jobs require the same processing time. Each job j has a
deadline d j and a profit c j , which will be earned if the job is completed by
its deadline. The problem is to find the ordering of the jobs that maximizes
total profit. First, prove that if a subset of the jobs can be completed on time,
then they will be completed on time if they are ordered by deadline. Next,
let E(M) := {1, 2, . . . , n}, and

I(M) := {J ⊂ E(M) : the jobs in J are completed on time}.
Prove that M is a matroid by verifying that I1–I3 hold for I(M), and describe
a method for finding an optimal order for processing the jobs.

Exercise (Scheduling). Solve the scheduling problem with the following
data. The machine is available at 12:00 noon, and each job requires one hour
of processing time.

Job j c j d j

1 20 3:00 p.m.
2 15 1:00 p.m.
3 10 2:00 p.m.
4 10 1:00 p.m.
5 6 2:00 p.m.
6 4 5:00 p.m.
7 3 5:00 p.m.
8 2 4:00 p.m.
9 2 2:00 p.m.

10 1 6:00 p.m.

It is natural to wonder whether some class of independence systems, more
general than matroids, might permit the Greedy Algorithm to always find
maximum-weight independent sets of all cardinalities. The following result
ends such speculation.
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Theorem (Greedy characterization of matroids). Let M be an independence
system. If the Greedy Algorithm produces maximum-weight independent sets of
all cardinalities for every (nonnegative) weight function, then M is a matroid.

Proof. We must prove that I(M) satisfies I3. The proof is by contradiction.
Choose Y and X so that I3 fails. We assign weights as follows:

c(e) :=



1 + ε, if e ∈ X
1, if e ∈ Y \ X
0, if e ∈ E(M) \ (X ∪ Y )

,

with ε > 0 to be determined. Because Y is in I(M), the Greedy Algorithm
should find a maximum-weight independent set of cardinality |Y |. With just
|X | steps, the Greedy Algorithm chooses all of X , and then it completes X to
an independent set X ′ of cardinality |Y | by using 0-weight elements, for a total
weight of |X |(1 + ε). Now we just take care to choose ε < 1/|E(M)|, so that
c(X ′) < c(Y ). This is a contradiction. �

Problem (Swapping Algorithm)

Swapping Algorithm

1. Choose any S ∈ I(M), such that |S| = k.
2. While (∃ S′ ∈ I(M) with |S′| = k, |S	S′| = 2 and c(S′) > c(S)): Let

S := S′.

Prove that if M is a matroid, then the Swapping Algorithm finds a maximum-
weight independent set of cardinality k.

Exercise [Maximum-weight spanning tree, continued (see p. 58)]. Apply
the Swapping Algorithm to calculate a maximum-weight spanning tree for
the edge-weighted graph of the Maximum-weight spanning tree Exercise.

1.5 Rank Properties

Let E be a finite set, and let M be a matroid with E(M) = E . If r := r
M

, then
r satisfies the following useful properties:
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Rank Properties

R1. 0 ≤ r (X ) ≤ |X |, and integer valued, ∀ X ⊂ E .
R2. X ⊂ Y =⇒ r (X ) ≤ r (Y ), ∀ X, Y ⊂ E .
R3. r (X ∪ Y ) + r (X ∩ Y ) ≤ r (X ) + r (Y ), ∀ X, Y ⊂ E .

Property R3 is called submodularity. The rank function of a general inde-
pendence system M need only satisfy R1 and R2 and the weaker property of
subadditivity: r

M
(X ∪ Y ) ≤ r

M
(X ) + r

M
(Y ).

Example [Vertex packing on a star, continued (see pp. 51, 53, 57)]. For X :=
{1, i} and Y := {1, j}, with i �= j , we have r

M
(X ) = 1, r

M
(Y ) = 1, r

M
(X ∪

Y ) = 2, and r
M

(X ∩ Y ) = 1. ♠

Problem (Cuts). Let G be a graph, let E := V (G), let c be a nonnegative-
weight function on E(G), and define r (X ) := ∑

e∈δG (X ) c(e), for X ⊂ E .
Show that r always satisfies R3, but need not satisfy R1 and R2 [even when
c(e) = 1, for all e ∈ E(G)].

Theorem (Submodularity of matroid rank function). If M is a matroid, then
r
M

satisfies R3.

Proof. Let J be a maximal independent subset of X ∩ Y . Extend J to JX (JY ),
a maximal independent subset of X (Y , respectively). We have r

M
(X ∩ Y ) =

|J | = |JX ∩ JY |. If we can show that r
M

(X ∪ Y ) ≤ |JX ∪ JY |, then R3 follows,
because |JX ∪ JY | + |JX ∩ JY | = |JX | + |JY |. Extend JX to a maximal inde-
pendent subset K of X ∪ Y .

Y

K \ JX

\J
Y

J

JX\ J
J

X
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Suppose that |K | > |JX ∪ JY |. Because JX \ J is contained in both K and
JX ∪ JY , we have |K \ (JX \ J )| > |JY |. Now, by the choice of JX , we have
that K \ (JX \ J ) is an independent subset of Y . This contradicts the choice of
JY . �

Our next goal is to show that R1–R3 characterize the rank functions of
matroids. That is, for every E and r satisfying R1–R3, there is a matroid M
with E(M) = E and r

M
= r . First, we establish a useful lemma.

Lemma (Closure). Suppose that r : 2E �→ R satisfies R2 and R3. If X and Y
are arbitrary subsets of E with the property that r (X + e) = r (X ), ∀ e ∈ Y \ X,
then r (X ∪ Y ) = r (X ).

Proof. The proof is by induction on k = |Y \ X |. For k = 1 there is nothing to
show. For k > 1, choose e ∈ Y \ X .

2r (X ) = r (X ∪ ((Y \ X ) − e)) + r (X + e) (by the inductive hypothesis)

≥ r (X ∪ Y ) + r (X ) (by R3)

≥ 2r (X ) (by R2).

Therefore, equality must hold throughout, and we conclude that r (X ∪ Y ) =
r (X ). �

Theorem (Rank characterization of matroids). Let E be a finite set, and
suppose that r : 2E �→ R satisfies R1–R3. Then

I(M) := {Y ⊂ E(M) : |Y | = r (Y )}.
defines a matroid M with E(M) := E and r

M
= r .

Proof. We show that the choice ofI(M) in the statement of the theorem satisfies
I1–I3, and then show that r is indeed the rank function of M .

R1 implies that r (∅) = 0; therefore, ∅ ∈ I(M), and I1 holds for I(M).
Now, suppose that X ⊂ Y ∈ I(M). Therefore, r (Y ) = |Y |. R3 implies that

r (X ∪ (Y \ X )) + r (X ∩ (Y \ X )) ≤ r (X ) + r (Y \ X ),

which reduces to

r (Y ) ≤ r (X ) + r (Y \ X ).
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Using the facts that r (Y ) = |Y |, r (Y \ X ) ≤ |Y \ X |, and r (X ) ≤ |X |, we can
conclude that r (X ) = |X |. Therefore, X ∈ I(M), and I2 holds for I(M).

Next, choose arbitrary X, Y ∈ I(M), such that |Y | > |X |. We prove I3 by
contradiction. If I3 fails, then r (X + e) = r (X ) for all e ∈ Y \ X . Applying the
Closure Lemma, we have r (X ∪ Y ) = r (X ). However, r (X ) = |X | and r (X ∪
Y ) ≥ r (Y ) = |Y | implies |Y | ≤ |X |. Therefore, I3 holds for I(M).

We conclude that M is a matroid on E . Because M is a matroid, it has a
well-defined rank function r

M
which satisfies

r
M

(Y ) = max{|X | : X ⊂ Y, |X | = r (X )}.

R2 for r implies that

max{|X | : X ⊂ Y, |X | = r (X )} ≤ r (Y ).

Therefore, we need show only that Y contains a set X with |X | = r (X ) = r (Y ).
Let X be a maximal independent subset of Y . Because X + e �∈ I(M), ∀ e ∈
Y \ X , we have r (X + e) = r (X ), ∀ e ∈ Y \ X . By the Closure Lemma, we can
conclude that r (Y ) = r (X ) = |X |, and we are done. �

1.6 Duality

Every matroid M has a natural dual M∗ with E(M∗) := E(M) and

I(M∗) := {X ⊂ E(M) : E(M) \ X contains a base of M}.

Theorem (Matroid duality). The dual of a matroid is a matroid.

Proof. Clearly M∗ is an independence system. Therefore, it possesses a well-
defined rank function r

M∗ . First we demonstrate that

r
M∗ (X ) = |X | + r

M
(E(M) \ X ) − r

M
(E(M)), ∀ X ⊂ E(M∗).

Let Y be a subset of X that is in I(M∗). By the definition of I(M∗), E(M) \ Y
contains a base B of M . If Y is a (setwise) maximal subset of X that is in I(M∗),
then (X \ B) \ Y is empty (otherwise we could append such elements to Y to
get a larger set). Therefore, a maximal such Y is of the form X \ B for some
base B of M . Now, if Y = X \ B is a maximum cardinality such set, then


