

Environmental biology
of
agaves and cacti

Environmental biology of agaves and cacti

Park S. Nobel
University of California
Los Angeles

Cambridge University Press

Cambridge
New York New Rochelle
Melbourne Sydney

Cambridge University Press
0521543347 - Environmental Biology of Agaves and Cacti
Park S. Nobel
Frontmatter
[More information](#)

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

<http://www.cambridge.org>

© Cambridge University Press 1988

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1988

First paperback edition 2003

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing-in-Publication Data

Nobel, Park S.

Environmental biology of agaves and cacti / Park S. Nobel.

p. cm.

Includes index.

1. Agave – Physiology. 2. Cactus – Physiology. 3. Agave – Ecology.

4. Cactus – Ecology. I. Title.

QK495.A26N63 1988

584'.25 – dc 19 87-17314

ISBN 0 521 34322 4 hardback

ISBN 0 521 54334 7 paperback

Contents

Preface	ix
1 Introduction	1
Uses	2
Agaves	4
<i>Beverages</i> • <i>Fiber</i> • <i>Additional uses</i>	
Cacti	10
<i>Specialized uses</i> • <i>Food</i> • <i>Forage and fodder</i> • <i>Summary of Indian uses</i>	
Early environmental research	17
The Arizona school	17
<i>Cannon</i> • <i>MacDougal and co-workers</i> • <i>Shreve</i> • <i>Others</i>	
Other early research	23
Taxonomy and morphology	25
Agaves	26
Cacti	29
Organs and anatomy	37
Roots	37
Stems	38
<i>Areoles, tubercles, and ribs</i> •	
<i>Meristem – apex of Cactoideae</i> •	
<i>Chlorenchyma and adjacent tissues of cacti</i>	
Leaves	40
<i>Agaves</i> • <i>Cacti</i> • <i>Photosynthetic cell</i>	
2 Gas exchange	43
Daily patterns for agaves	45
Early observations on <i>Agave americana</i>	45
Other species	46
<i>Subgenus Littaea</i> • <i>Subgenus Agave</i>	
Age effects	46
Daily patterns for cacti	48
Subfamily Pereskioideae	48
Subfamily Opuntioideae	48
Subfamily Cactoideae	50
Biochemistry	51
C ₃ and CAM pathways	51
Daily acidity changes	53
Carbon isotope ratios	55
Occurrence of CAM	57
Gas-exchange equations	57
Transpiration and CO ₂ uptake	57
<i>Transpiration</i> • <i>CO₂ uptake</i> •	
<i>Chlorenchyma cells</i>	
Water-use efficiency	62
<i>Basic equation</i> • <i>Examples</i> •	
<i>Stomatal effects</i>	
3 Water relations	66
Water uptake from the soil	67
Rainfall and soil water potential	67
Plant water potential	68
Root properties	70
<i>Rain roots</i> • <i>Rectifierlike activities</i> •	
<i>Distribution in soil</i>	
Water storage – capacitance	74
Morphological aspects	74
Anatomical aspects	76
Electrical circuit representation	77
<i>Resistance</i> • <i>Capacitance</i> • <i>Storage resistance</i> • <i>Electrical circuit</i> •	
<i>Osmotic effects</i>	
Temporal variations in water availability	81
Short-term stomatal responses	81
Intermediate-time responses	82
<i>Overwatering an agave</i> • <i>Droughting</i>	

Contents

vi

<i>leafy cacti</i> • <i>Droughting plants in CAM mode</i> • <i>Watering droughted plants</i>	
Long-term responses	85
Seedling establishment	86
Agaves	87
Cacti	88
<i>Carnegiea gigantea</i> • <i>Ferocactus acanthodes</i>	
Reproduction	90
Agaves	91
<i>Inflorescence requirements</i> • <i>Ramets</i>	
Cacti	93
4 Temperature 94	
Gas exchange	94
Water vapor conductance at night	95
Optimal nocturnal temperatures for CO ₂ uptake – acclimation	95
Daily patterns for CO ₂ exchange	98
Total daily CO ₂ uptake and acidity changes	100
Daytime temperature effects	102
Low-temperature tolerances	103
Cooling curves and cell viability	103
Mechanism of death by freezing	105
Tolerable temperatures and cold hardening	106
High-temperature tolerances	109
Tolerable temperatures and heat hardening	110
Highest temperatures tolerated	111
Changes accompanying high-temperature stress	114
Photosynthetic aspects	114
Fire	117
Predicting plant temperatures	117
Energy budget terms	118
<i>Shortwave radiation</i> • <i>Longwave radiation</i> • <i>Heat conduction</i> • <i>Heat convection</i> • <i>Latent heat</i> • <i>Heat storage</i>	
Models	120
Sensitivity analyses	124
<i>Environmental factors</i> • <i>Shortwave absorptance</i> • <i>Plant size</i> • <i>Spines and pubescence</i> • <i>Other factors affecting temperature</i>	
Further ecological aspects	128
Seed germination	128
Seedling establishment and growth	130
Roots	131
Distributions	132
Nurse plants	135
Flowering	137
5 Photosynthetically active radiation 138	
Gas exchange	138
Response of daytime CO ₂ uptake to instantaneous PAR	138
Response of nocturnal CO ₂ uptake to total daily PAR	140
Nocturnal acid accumulation	141
Agaves	142
Daily patterns for CO ₂ exchange	142
Model	143
PAR distribution over the rosette	145
Pruning	146
Platyopuntias	148
Orientation when unshaded	148
PAR interception for various seasons and latitudes	149
<i>Radiation relations</i> • <i>Predictions of PAR</i>	
Topographical and seasonal effects	155
<i>Topographical features</i> • <i>Seasonal variations</i>	
Orientation mechanism	157
Other cacti	159
Height	159
Spines	161
Ribs	163
Branching	164
Tilting	167
Other aspects of PAR	169
Canopy PAR attenuation	169
Absorptance – photon requirement	170
Photoinhibition	171
Photoperiod	173
Nurse plants	173
6 Nutrient relations 175	
Tissue element levels	176
Chlorenchyma and parenchyma levels	176
Nutritive value	180
Correlation with nocturnal acid accumulation	181
Macronutrients	182
Nitrogen	182
Phosphorus	185
Potassium	186
Calcium	187
Magnesium and sulfur	188

Contents

vii

Micronutrients	188	Cacti	219
Copper and zinc	188	<i>Ferocactus acanthodes</i> • <i>Opuntia</i> <i>ficus-indica</i>	
Boron	190	Field tests	222
Other	190	Refinements of EPI	223
Other elements	191	Nutrients	223
Sodium	191	Carbon dioxide	225
Hydrogen – pH	193	Physical factor dependence of component indices	227
Soils	195	Ecological applications of EPI	228
Texture	195	Elevation	228
Water-holding capacity	196	Plant ages	231
Influences on growth and distribution	197	Competition – nurse plants	231
7 Productivity	199	Predicting agronomic productivities	233
Aboveground	201	Geographical variation	234
Agaves	201	<i>Three succulents in the southwestern</i> <i>United States</i> • <i>Agave lechuguilla</i> – <i>Chihuahuan Desert</i>	
Cacti	205	Ray-tracing techniques – plant spacing	237
Belowground	207	<i>Model</i> • <i>Influence of canopy position</i> • <i>Influence of leaf and stem area</i> <i>indices</i>	
Root/shoot ratios	207	Future promise	241
Root respiration	208		
Environmental productivity index (EPI)	209	References	243
Introduction	210		
Agaves	211	Index	263
Agave deserti • Agave fourcroydes and A. lechuguilla • Agave salmiana and A. tequilana			

Preface

Agaves and cacti capture the imagination of nearly everyone. Who can resist admiring their unique shapes or empathizing with their tolerance of droughts and high temperatures? How do these interesting and economically important desert succulents respond to specific environmental factors? We shall see that the monocotyledonous agaves are actually quite similar to the dicotyledonous cacti in their reactions to the environment. The aims of this book are quite ambitious: (1) to help interpret the environmental responses of agaves and cacti; (2) to consolidate the present level of our knowledge of these succulents for comparison with other plant groups; (3) to show how modeling can be used to analyze relations between morphology, microclimate, and productivity; (4) to serve as an example for the study of the environmental responses of relatively uninvestigated groups of plants; and (5) to provide a basis for evaluating whether certain arid, semiarid, and other regions can be successfully exploited for the cultivation of these succulents in the future. Although well over 600 references are cited, considerable emphasis is placed on research emanating from my laboratory since 1975.

To set the stage, we will describe the many uses of as well as early environmental research on agaves and cacti together with their taxonomy, morphology, and anatomy, including pictures of over thirty species that have played important roles in environmental research (Chapter 1). The physiological key to their ecological success is the water-saving

consequences of Crassulacean acid metabolism (Chapter 2). The responses of agaves and cacti to three physical factors of the environment are discussed next: water relations, including a discussion of such topics as rain roots, capacitance, stomatal responses, C₃/CAM shifts, seedling establishment, and reproduction (Chapter 3); temperature aspects of gas exchange and survival limits, together with a model relating morphology, tissue temperature, and species distribution (Chapter 4); and photosynthetically active radiation, with a presentation of models describing radiation interception and the resulting morphological adaptations of agaves and cacti (Chapter 5). Nutrient responses are reviewed, and the importance of nitrogen is demonstrated (Chapter 6). To help integrate the environmental effects, an environmental productivity index is proposed and then used to discuss productivity and its morphological correlates for agaves and cacti; productivity is also predicted over wide geographical areas to help evaluate the agronomic potential of these succulent plants (Chapter 7).

The level of presentation is between that of an elementary textbook and the research literature. Approximately 100 photographs, over 200 figure panels, and about 30 tables are used to illustrate the state of our research knowledge for agaves and cacti. Because emphasis is on principles of wide biological applicability, certain aspects of universal appeal are developed in considerable detail. The book can therefore serve as a text for a course on

Preface

the environmental responses of organisms, as well as meeting the needs of plant physiologists, ecologists, and agronomists. Another intended audience is animal ecophysicists and modelers. The succulent plant enthusiast/hobbyist should also find the material comprehensible and useful. To facilitate understanding by readers of such different backgrounds, every major scientific term is italicized and defined the first time used, and the first entry in the index indicates the definition of that term. We should also emphasize that much of the information on the environmental responses culminating in productivity predictions is pertinent to decision makers in Latin America as well as many other arid or semiarid regions where agaves and cacti can be grown. Thus, the book summarizes the present state of our knowledge and clearly points to the future, with respect to both needed research and authenticated utilization of these plants.

Thanks are due to many. First of all, my research on desert succulents has been generously supported by the Ecological Research Division (ERD) of the United States Department of Energy, the U.S. National Science

x

Foundation, and the University of California at Los Angeles. Experiments specifically designed for this book and capably performed by Terry L. Hartsock were also supported by ERD. Many graduate students, postdoctoral fellows, and visiting scientists have contributed to the overall research effort of my laboratory, as detailed in the literature cited. A tremendous debt of gratitude is expressed to Marjorie Macdonald for her excellent typing. The figures were skillfully drawn by Hildy Heinkel, Amy Roberts prepared the references, and the photographs were taken by the person cited in the figure caption, or by me. The following individuals also made important critical comments that greatly enhanced the final manuscript: Dr. Wade L. Berry, Dr. Arthur C. Gibson, Dr. Barry A. Prigge, Dr. Paul J. Schulte, Augusto C. Franco, Loraine U. Kohorn, Michael E. Loik, Gretchen B. North, Mark T. Patterson, Cheryl C. Swift, and David T. Tissue. As you peruse this book, I hope you discover and share my enthusiasm for the special environmental responses of these remarkable plants.

Los Angeles
30 November 1987

Park S. Nobel