Coevolution of Black Holes and Galaxies

Black holes are among the most mysterious objects in the Universe. Weighing up to several billion Suns, massive black holes have long been suspected to be the central powerhouses of energetic phenomena such as quasars. Recent advances in astronomy have not only provided spectacular proof of this long-standing paradigm, but also revealed the unexpected result that, far from being rare, exotic beasts, they inhabit the center of virtually all large galaxies. Candidate black holes have been identified in increasingly large numbers of galaxies, both inactive and active, to the point where statistical studies are now possible. Recent work has highlighted the close connection between the formation, growth, and evolution of supermassive black holes and their host galaxies. This volume contains the invited lectures from an international symposium that was held to explore this exciting theme. With contributions from leading authorities in the field with diverse but interrelated observational and theoretical expertise, this is a valuable review for professional astronomers and graduate students.

LUIS C. HO received his undergraduate education at Harvard University and his Ph.D. in astronomy from the University of California at Berkeley. He is currently a staff astronomer at the Carnegie Observatories, where he conducts research on black holes, accretion physics in galactic nuclei, and star formation processes. He is the editor for this series.

This series of four books celebrates the Centennial of the Carnegie Institution of Washington, and is based on a set of four special symposia held by the Observatories in Pasadena. Each symposium explored an astronomical topic of major historical and current interest at the Observatories, and each resulting book contains a set of comprehensive, authoritative review articles by leading experts in the field.

Carnegie Observatories Astrophysics Series Volume 1

COEVOLUTION OF BLACK HOLES AND GALAXIES

Edited by LUIS C. HO

© Cambridge University Press

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© The Observatories of the Carnegie Institution of Washington 2004

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004

Printed in the United Kingdom at the University Press, Cambridge

Typeface Computer Modern 10/12.5pt. System $LAT_EX 2_{\varepsilon}$ [TB]

A catalogue record for this book is available from the British Library

ISBN 0 521 82449 4 hardback

The publisher has used its best endeavors to ensure that the URLs for external websites referred to in this book are correct and active at the time of going to press. However, the publisher has no responsibility for the websites and can make no guarantee that a site will remain live or that the content is or will remain appropriate.

Contents

Preface	<i>page</i> xii
Introduction	XV
List of Participants	xviii
1 The stellar-dynamical search for supermassive black holes nuclei	in galactic
John Kormendy	1
1.1 Introduction	1
1.2 The History of BH Mass Measurements	4
1.3 How Robust Are Stellar-Dynamical BH Mass Estimates?	5
1.4 Are They Really Black Holes?	15
1.5 Conclusion	17
References	18
2 Black holes in active galaxies	
Aaron J. Barth	21
2.1 Introduction	21
2.2 Black Hole Masses from Dynamics of Ionized Gas Disks	23
2.3 Black Hole Masses from Observations of H ₂ O Masers	29
2.4 Reverberation Mapping	31
2.5 Future Work and Some Open Questions	33
References	34
3 Intermediate-mass black holes in the Universe: a review o theories and observational constraints	f formation
Roeland P. van der Marel	37
3.1 Introduction	37
3.2 Formation Theories	38
3.3 IMBHs: The Missing Baryonic Dark Matter?	42
3.4 Searches for Individual IMBHs	44
3.5 Concluding Remarks	49
References	49

vi		Contents	
	4	The supermassive black hole at the center of the Milky Way	
		Andrea M. Ghez	53
	4.1	Introduction	54
	4.2	Proper Motion Measurements	55
	4.3	Spectral Line Measurements	57
	4.4	Discussion	59
	4.5	Conclusions	64
		References	65
	5	The first nonlinear structures and the reionization history of the	
		Universe	
		Zoltán Haiman	67
		Introduction	67
		Theoretical Expectations	68
	5.3	Observational Prospects	71
		References	82
	6	Adiabatic growth of massive black holes	
		Steinn Sigurdsson	86
		Introduction	86
		Spherical Growth	89
		Non-spherical Systems	93
	6.4	Conclusions	99
		References	99
	7	Formation of supermassive black holes: simulations in general relativity	
		Stuart L. Shapiro	103
		Introduction	103
		The Boltzmann Equation	103
		Numerical Relativity	106
		Collapse of a Rotating SMS to a SMBH	106
		Collapse of Collisionless Matter to a SMBH	110
	7.6	Conclusions and Final Thoughts	118
		References	119
	8	Gas-dynamical processes in dense nuclei	
		Cathie J. Clarke	122
		Introduction	122
		The IMF and the Maximum Object Mass	125
		The Origin of the Characteristic Stellar Mass	128
		The Origin of the Upper End of the Power-law IMF	130
		The Highest Mass Stars	133
	8.6	Conclusions	135
		References	136

	Contents	vii
9	Formation of massive black holes in dense star clusters	
	Frederic A. Rasio, Marc Freitag, and M. Atakan Gürkan	138
9.1	Introduction	138
9.2	Monte Carlo Simulations of Dense Star Cluster Dynamics	142
9.3	Core Collapse in Young Star Clusters	145
9.4	The Runaway Collision Process	145
	References	152
10	Accretion onto black holes	
	Roger D. Blandford	153
10.1	The Cosmological Context	153
	Modes of Disk Accretion	154
	Transport Mechanisms in Disks	156
	Adiabatic Accretion Models	160
	ADiabatic Inflow-Outflow Solutions	161
10.6	Implications for Black Hole Growth	167
	References	168
11	QSO lifetimes	
	Paul Martini	169
11.1	Introduction	169
	The Net Lifetime	171
	Limits on Episodic Activity	174
	Future Prospects	177
11.5	Summary	182
	References	184
12	Fueling gas to the central region of galaxies	
	Keiichi Wada	186
	Conventional Picture of the Fueling Problem	186
	The Fueling Flowchart and Its Revision	187
	Gas Dynamics in the Inner 100 pc	192
12.4	Summary: Do We Need Triggers for Nuclear Activity?	197
	References	200
13	The AGN-disk dynamics connection	
	J. A. Sellwood and Juntai Shen	203
	Introduction	203
	Gas Flow in a Simple Bar	204
	Nuclear Rings	205
	Double Bars	206
	Do Bars Feed AGNs?	206
	Dissolution of Bars Formation of Bars—a Tale of Two Halos	207 209
	SMBHs in Non-barred Galaxies	209
	Pseudo-bulges	213
13.9	1 seudo-burges	214

viii	Contents	
13.10	Halo Mass Profiles	214
13.11	Relation to Other Models of SMBH Formation	214
13.12	Conclusions	215
	References	217
14	Black holes and the central structure of early-type galaxies	
	Tod R. Lauer	219
	Introduction	219
	The Cores of Early-type Galaxies	220
	Core Formation and Black Holes	225
	Double Nuclei and Hollow Galaxies	227
14.5	Desiderata	229
	References	230
15	The inner properties of late-type galaxies	
	C. Marcella Carollo	231
	Disk Galaxies: Recipe Still Missing	231
	First Fact: Complexity is the Rule	233
	News on Bulges	234
	News on Disks	235 236
	A Zoom on the Centers: Point Sources and Distinct Nuclei	230
	Future Challenges Concluding Remarks	237 245
15.7	References	243 246
16	Influence of black holes on stellar orbits	
10	Karl Gebhardt	248
16.1	Introduction	248
	The Suite of Dynamical Models	249
	Results and Discussion	257
16.4	The Future	259
	References	260
17	Single and binary black holes and their influence on nuclear structure	
	David Merritt	263
17.1	Introduction	263
17.2	Preliminaries	264
17.3	The Adiabatic Growth Model	264
	The Binary Black Hole Model	267
	N-Body Studies	275
17.6	Observational Evidence for the Binary Black Hole Model	276
	References	277
18	Supermassive black holes: demographics and implications	
	Douglas Richstone	280
18.1	Introduction	280

	Contents	ix
18.2	Correlations of BH Mass with Main Body Galaxy Properties	280
	Are They Really BHs?	282
18.4	The Density of BHs and of the AGN Background	283
18.5	Supermassive BH Formation and Evolution	287
	References	289
19	Black hole demography from nearby active galactic nuclei	
	Luis C. Ho	292
	Introduction	292
	Spectral Classification of Galactic Nuclei	293
	Spectroscopic Surveys of Nearby Galactic Nuclei	299
	Demographics of Nearby AGNs	301
	The Nature of LINERs	311
19.6	Summary	318
	References	319
20	The evolution of quasars	
•••	Patrick S. Osmer	324
	Introduction and Background	324
	Observational Techniques, Selection Effects, and Surveys	325
	Evolution of the AGN Population	328
	Estimating Black Hole Masses Theoretical Considerations: How the Masses Grow	333 334
	Current Research Programs	334
	Next Steps	333
20.7	References	337
21	Ourseen bests and the black hale enhancid connection	
21	Quasar hosts and the black hole-spheroid connection James S. Dunlop	341
21.1	Introduction	341
	The Host Galaxies of Low-redshift Quasars	342
	The Black Hole-Spheroid Mass Ratio in Low-redshift Quasars	348
	Cosmological Evolution of the Black Hole-Spheroid Mass Ratio	350
	Future Prospects	356
	References	356
22	Star formation in active galaxies: a spectroscopic perspective	
	Timothy M. Heckman	358
22.1	Introduction	358
	Young Stars in Active Galactic Nuclei	364
	Young Stars in AGN Host Galaxies	365
	Summary	370
	References	371
23	AGN feedback mechanisms	
	Mitchell C. Begelman	374

X		Contents	
23	3.1	Introduction	374
23	3.2	Forms of Feedback	374
23	3.3	Energy Budget	378
23	3.4	AGN Feedback in Clusters	379
23	3.5	Feedback and the Growth of Supermassive Black Holes	385
23	3.6	Conclusions	386
		References	387
	24	Pieces of the galaxy formation puzzle: where do black holes fit in?	
		Rachel S. Somerville	390
24	4.1	Introduction	390
24	4.2	The Internal Structure of Dark Matter Halos	391
24	4.3	Formation of Galactic Disks	393
24	4.4	Radiative Cooling	395
24	4.5	Star Formation and Feedback	398
24	4.6	Conclusions	401
		References	402
	25	Joint formation of supermassive black holes and galaxies	
		Martin G. Haehnelt	405
25	5.1	Supermassive Black Holes in Galactic Bulges	405
25	5.2	The Assembly of SMBHs	406
25	5.3	Hierarchical Galaxy Formation	408
25	5.4	SMBHs in Hierarchically Merging Galaxies	410
2	5.5	Early Evolution	415
2	5.6	Open Questions	418
25	5.7	Summary	418
		References	419
	26	The formation of spheroidal stellar systems	
		Andreas Burkert and Thorsten Naab	421
20	6.1	The Realm of Spheroids	421
20	6.2	Rotating Spheroids	424
20	6.3	Stellar Equilibrium Systems	426
20	6.4	Fundamental Plane Relations	427
20	6.5	The Formation of Elliptical Galaxies	430
20	6.6	Conclusions	433
		References	434
	27	Massive black holes, gravitational waves, and pulsars	
		Donald C. Backer, Andrew H. Jaffe, and Andrea N. Lommen	438
2	7.1	Introduction	438
2	7.2	MBH-MBH Coalescences in the Universe	439
2	7.3	Gravitational Wave Detection and Pulsar Timing Experiments	443
2	7.4	Conclusion	444
		References	445

	Contents	xi
28	Obscured active galactic nuclei and obscured accretion	
	Andrew C. Fabian	446
28.1	Introduction	446
28.2	Obscured AGNs	447
28.3	X-ray Constraints on the Radiative Growth of Massive Black Holes	448
28.4	The Redshift Distribution of Obscured Sources	452
28.5	Models for the Evolution of the XRB	454
28.6	Some Comments on Fueling and Obscuration	454
28.7	Contributions to the Far-infrared and Sub-mm Backgrounds	456
28.8	Summary	457
	References	457
29	Conference summary	
	P. Tim de Zeeuw	460
29.1	Introduction	460
29.2	Black Hole Masses	460
29.3	Black Hole Demography	464
29.4	Black Hole Formation and Growth	466
29.5	Black Holes and Galaxy Formation	469
29.6	Challenges	470
	References	470
	Credits	472

Preface

In 1902, Andrew Carnegie, a man of uncommon vision and philanthropy, bequeathed a sizable sum to establish a scientific research organization whose purpose was "to encourage, in the broadest and most liberal manner, investigation, research, and discovery, and the application of knowledge to the improvement of mankind." For the past century, the Carnegie Institution of Washington has been a haven for many influential and creative scientists, covering disciplines ranging from geophysics, earth and planetary science, cellular and genetic biology, plant science, global ecology, and last, but not least, astronomy.

Astronomy has been a major part of the Institution almost from its inception, thanks to persistence and courage of another visionary, George Ellery Hale. Convinced that southern California had conditions favorable for astronomical observations, Hale persuaded Carnegie in 1904 to establish an observatory at Mount Wilson, located near Pasadena, California. There, Hale consecutively built the world's next two largest telescopes, the 60-inch in 1908 and the renowned 100-inch Hooker telescope in 1917. Arguably no other telescope since Galileo's has had a more profound impact on astronomy-indeed in shaping our view of humankind's footing in the cosmos-than those on Mount Wilson. Using the 60-inch to map the distribution of globular clusters in the Milky Way, Harlow Shapley concluded that our Galaxy was significantly larger than previously thought, and deduced that the Sun lies not at the center of the Galaxy but in its remote outskirts. But the Universe proved to be far greater still. With the 100-inch Edwin Hubble established the extragalactic nature of "nebulae," and therefore the existence of a multitude of galaxies beyond our own, followed by the discovery that the Universe is expanding. This was the birth of modern cosmology. Among the many other significant, if less sensational, advances attributable to the 100-inch includes Walter Baade's recognition of two distinct stellar populations, a concept central to the subsequent development of stellar and galactic evolution.

The supremacy of the 100-inch was not eclipsed until the completion in 1948 of Hale's last and most ambitious feat—the mighty 200-inch reflector at Mount Palomar. Although the "Big Eye" was not finished before he died, Hale was chiefly responsible for securing the funding for the project, and he was the main driving force behind its long, difficult construction. The accomplishments stemming from the 200-inch are too numerous and varied to be recounted here. It suffices to say that the Palomar 200-inch, which was operated in partnership with Caltech until 1980, has played a major role in ground-based optical astronomy for the latter half of the twentieth century.

In search of more pristine skies and to gain access to the southern hemisphere, Carnegie astronomers in 1969 established the Las Campanas Observatory in Chile's Atacama Desert,

Preface

where they operate the Swope 1-meter and the du Pont 2.5-meter telescopes. However, in the era of ever-increasing large telescopes, this was not enough. In the mid-1980's, plans were under way for the design and construction of a pair of large optical telescopes at Las Campanas. The outcome—the twin 6.5-meter Magellan telescopes—is a collaboration between Carnegie, University of Arizona, Harvard University, University of Michigan, and Massachusetts Institute of Technology. Both the Baade and Clay telescopes, each equipped with state-of-the-art instrumentation, are now fully functional. Though nominally smaller than the current generation of 8–10 meter-class telescopes, Magellan is every bit as competitive thanks to its superb image quality and wide field-of-view.

Headquartered at 813 Santa Barbara Street, Carnegie Observatories presently supports a small, but distinguished group of about two dozen scientific staff members and postdoctoral fellows, along with a sizable group of engineers and instrument scientists who are responsible for technical developments. The research interests at the Observatories are diverse, ranging from observational cosmology to galaxy formation and evolution, large-scale structure, the intergalactic medium, stellar populations, stellar chemical composition, supernovae, star clusters, black holes, and accretion processes in galactic nuclei. In keeping with the tradition of the Observatories, some of staff devote considerable effort building innovative instruments for the telescopes.

This year marks the 100th anniversary of the founding of Carnegie Observatories. We stand at an important crossroad. To be sure, we glance back at our accomplishments of the past century with significant pride. But we are also confronted with many challenges for the years ahead, for our discipline is constantly driven by larger and more ambitious telescope enterprises, which carry sky-rocketing price tags and daunting technological hurdles. While the future success of a research institution, no matter how distinguished its past, should not be taken for granted, in reflecting on Carnegie's legacy in astronomy we cannot help but draw from it a measure of inspiration and optimism.

To commemorate our Centennial, we thought it would be fitting to host a series of scientific meetings, organized by Carnegie astronomers, on a range of topics that both celebrates Carnegie's past astronomical contributions and recognizes its current, diverse research interests. In the end, we organized four international-level meetings, held in Pasadena, from Fall 2002 to Winter 2003. The <u>Carnegie Observatories</u> <u>Centennial Symposia</u> covered the following topics: (1) *Coevolution of Black Holes and Galaxies* (hosted by Luis Ho; 20– 25 October 2002), (2) *Measuring and Modeling the Universe* (hosted by Wendy Freedman; 17–22 November 2002), (3) *Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution* (hosted by John Mulchaey, Alan Dressler, and Gus Oemler; 27–31 January 2003), and (4) *Origin and Evolution of the Elements* (hosted by Andy McWilliam and Michael Rauch; 16–21 February 2003). The meetings were very well attended, and, by most measures, highly successful.

To complement the Symposia, we have planned from the outset to use the invited papers to compile a set of volumes of sufficiently high standards to have lasting value as an authoritative reference, one that potentially can be used for graduate-level course work. To achieve this goal, we have subjected each contribution to a battery of quality controls atypical for conventional conference proceedings; this includes a formal peer-review process, careful editing by the scientific organizers, and final scrutiny and copy-editing by the series editor. The product of this exercise is the first four volumes of the *Carnegie Observatories Astrophysics Series*.

xiv Preface

An undertaking of this scope would not have been possible without the help of many people. First and foremost, I would like to thank the organizers of the Symposia and editors of this *Series*, my colleagues Wendy Freedman, John Mulchaey, Alan Dressler, Gus Oemler, Andy McWilliam, and Michael Rauch, for allowing me to twist their arms into this zany venture. Paul Martini helped me through many queries on how to set up HTML pages and troubleshoot Latex class files. There were myriad details associated with the local organization, from seemingly trivial items like how many cookies to order for coffee breaks to major ones like securing a venue, all necessary for the successful execution of the meetings. They were handled patiently and efficiently by Karen Gross during the initial phase, and later by Silvia Hutchison and Becky Lynn. I am most grateful for their assistance. I also appreciate the help of the facilities staff, especially Steve Wilson, Scott Rubel, Earl Harris, and Greg Ortiz, who worked hard to set up the technical logistics and to ensure the smooth operation of the audio-visual equipment. Lastly, I thank P Street for their financial support to help cover the cost overrun incurred for the meetings.

Luis C. Ho Carnegie Observatories January 2004

Introduction

Few subjects in astronomy capture the popular imagination like black holes. Black holes and their varied manifestations as active galaxies certainly occupy the attention of a large segment of the current astronomical community. While Carnegie's involvement in this subject may not be widely known, the fact is that it has had a long historical connection to this field. Following the initial work by Edward Fath at Lick Observatory in 1908 and by Vesto Slipher at Lowell Observatory in 1917, Edwin Hubble himself noted in 1926 the unusual nature of the emission-line spectrum in NGC 1068, NGC 4051, and NGC 4151. But it was really the 1943 paper by Carl Seyfert, based on observations obtained at Mount Wilson, which first systematically studied the class of active galaxies that today bear his name, although the significance of this work remained unrecognized for some time to come.

Carnegie's role in the early development of AGN research was most pronounced after World War II, when advances in radio astronomy led to the discovery of extragalactic radio sources. In the ensuing period, much of the community with access to large optical telescopes was keen on obtaining optical identifications of these mysterious sources. At Carnegie, the early effort was led by Rudolf Minkowski and Walter Baade, and subsequently by Allan Sandage and his colleagues. Sandage's extensive work on optical identification and spectroscopy of radio sources led to the discovery of a large population of radio-quiet objects that show an ultraviolet excess.

Once the redshift puzzle of quasars was solved in 1963 by Maarten Schmidt and Jesse Greenstein, it was thereafter quickly realized that the quasar phenomenon most likely draws its power from the gravitational energy of a massive collapsed object—a massive black hole. There is just too much energy coming out of too tiny a volume for anything else to be viable. In the 1970s, Jerome Kristian, working with Peter Young and others at Caltech, was one of the first to search for supermassive objects in the centers of giant elliptical galaxies. Kristian's work on quasar host galaxies was also very much a forerunner to what has become a lively pursuit. In more recent times, a number of Carnegie astronomers have also been involved in various aspects of black hole and AGN research. Some of the notable examples include Ray Weymann's seminal contributions on quasar absorption-line systems and quasar outflows, Alan Dressler's mass determination for the nuclei of M31 and M32, Pat McCarthy's multifaceted work on radio galaxies, and John Mulchaey's investigations on Seyfert galaxies and AGN fueling.

While it has long been suspected that massive black holes and nuclear activity are somehow related to galaxy formation and evolution, it is fair to say that until recently very few people realized the depth of the interconnection. Most of the practitioners in these sub-

xvi Introduction

fields belong to communities that rarely overlapped. Though AGN research commands a strong following, it has had a somewhat checkered reputation in the broader community as a largely phenomenological endeavor, too often preoccupied with taxonomy. AGNs are useful for exploring some aspects of relativistic and high-energy astrophysics, and they make good background probes for absorption-line work, but beyond that they are really not that relevant to mainstream work on "normal" galaxies. Such is often the prejudice.

There has been a refreshing change of attitude in the last few years, which is largely triggered, I think, by the persuasive evidence that massive black holes are not only common but evidently tightly coupled to the life-cycle of galaxies. The term "normal galaxy" is woefully inadequate. Most respectable-sized galaxies, we now suspect, come naturally endowed with a massive central black hole, whose mass—somehow— has an uncanny familiarity with the large-scale properties of its host galaxy. A symbiotic relationship between black hole growth and galaxy assembly seems inescapable. As black holes grow through accretion, they ignite briefly as AGNs of many flavors, dumping radiation and kinetic energy into their host galaxies, and perhaps beyond. The cumulative deposition of accretion energy lights up the sky in X-rays. Black holes inspiral during galaxy mergers; some may coalesce, generating gravitational radiation. The landscape for observational and theoretical astrophysics has never been so rich.

Given these healthy developments, it seemed opportune to convene a meeting to bring together specialists working on different but interrelated subjects concerning black holes and galaxies. I had tried such an experiment before, in a 1998 meeting in Nagoya, Japan, entitled *The AGN-Galaxy Connection*, which I co-organized with Anne Kinney and Henrique Schmitt. The justification was strong then, and it is even stronger now.

On the occasion of the Centennial of the Carnegie Institution of Washington, Carnegie Observatories hosted a series of four astrophysics symposia in Pasadena, from Fall 2002 to Winter 2003. The first of these symposia, *Coevolution of Black Holes and Galaxies*, was held on 20–25 October 2002. By most accounts, it was a somewhat unusual, but highly effective gathering, which brought together people with very different backgrounds, in an intense but lively atmosphere. A total of 28 invited speakers covered topics ranging from black hole searches to formation and fueling mechanisms of black holes, gas-dynamical processes, dynamical evolution of dense stellar systems, the central and global structures of galaxies, binary black holes, gravitational radiation, AGN statistics, galaxy formation, AGN feedback, reionization, and the X-ray background. At least 100 other participants gave contributed talks or presented posters.

This book contains the review papers based on the presentations of the invited speakers, which forms the first volume of the *Carnegie Observatories Astrophysics Series*. (The contributed papers are published separately in electronic form at the Carnegie web site.) I am happy to say that these papers are of exceptionally high quality. As explained in the Preface, it has been my intention from the outset that the *Series* should aim for a high standard of scholarship, to ensure that the contributions contained therein would have a lasting impact. I am most grateful to all the authors for the enormous effort they have invested in conscientiously preparing the manuscripts, and for agreeing to have them subjected to a peer-review

Introduction

xvii

process and to entrust them to my editorial oversight. I can only hope that they agree that their efforts have been worthwhile.

Luis C. Ho Carnegie Observatories January 2004

List of Participants

Agol, Eric Caltech. USA Alexander, Tal The Weizmann Institute of Science, Israel Amaro-Seoane, Pau Astronomisches Rechen-Institut, Germany Armitage, Philip University of Colorado, USA The Graduate University for Advanced Studies, Japan Asada, Keiichi University of Hertfordshire, UK Axon, Dave Backer, Donald U. C. Berkeley, USA Barth, Aaron Caltech, USA Kapteyn Institute, Netherlands Barthel, Peter Begelman, Mitch JILA/University of Colorado, USA Bender, Peter JILA/University of Colorado, USA Blandford, Roger Caltech, USA Burbidge, Geoffrey U.C. San Diego, USA Burkert, Andreas Max-Planck-Institute for Astronomy Heidelberg, Germany Cappellari, Michele Leiden Observatory, Leiden, Netherlands Cappi, Massimo TeSRE-CNR, Bologna, Italy Carollo, Marcella ETH-Zurich, Zurich, Switzerland Univ. Roma Tor Vergata, Italy Cavaliere, Alfonso S.I.S.S.A., Italy Celotti, Annalisa Chornock, Ryan U. C. Berkeley, USA Cambridge University, UK Clarke, Cathie Colpi, Monica University of Milano Bicocca, Italy Cretton, Nicolas European Southern Observatory, Germany Cruz, Fidel UNAM, Mexico de Zeeuw, Tim Leiden Observatory, Leiden, Netherlands Dressel, Linda Space Telescope Science Institute, USA Dunlop, James University of Edinburgh, UK Emsellem, Eric Observatoire de Lyon, France Erwin, Peter Instituto de Astrofisica de Canarias, Spain Yale University, USA Escala, Andres Fabian, Andy Cambridge University, UK Fall, S. Mike Space Telescope Science Institute, USA

List of Participants

Falomo, Renato Osservatorio Astronomico di Padova, Italy Fan. Xiaohui Institute of Advanced Studies, USA Filho, Mercedes Kapteyn Institute, Netherlands University of Edinburgh, UK Floyd, David Freitag, Marc Caltech, USA Penn State University, USA Gallagher, Sarah Gebhardt, Karl University of Texas, Austin, USA Gerhard, Ortwin University of Basel, Switzerland Space Telescope Science Institute, USA Gerssen, Jouris Gezari, Suvi Columbia University, USA Ghez, Andrea UCLA, USA Gorjian, Varoujan JPL, Pasadena, USA Graham, Alister University of Florida, USA Granato, Gian Luigi Osservatorio Astronomico di Padova, Italy Green, Richard NOAO, USA Greene, Jenny Harvard University, USA Haehnelt, Martin Institute of Astronomy, Cambridge, UK Princeton University, USA Haiman, Zoltan Hao. Lei Princeton University, USA Hayashida, Kiyoshi Osaka University, Japan Heckman, Timothy Space Telescope Science Institute, USA Heidt, Jochen Landessternwarte Heidelberg, Germany Carnegie Observatories, USA Ho. Luis Horiuchi, Shinji JPL, Pasadena, USA Hosokawa, Takashi Kyoto University, Japan Huang, JieHao Nanjing University, China Hughes, Mark University of Hertfordshire, UK Hutchings, John HIA, Canada Jarvis, Matt Leiden University, Netherlands Jian, Hung-Yu National Taiwan University, Taiwan Jones, Dayton JPL, Pasadena, USA Kalogera, Vicky Northwestern University, USA Kauffmann, Guinevere MPA, Garching, Germany University of Tsukuba, Japan Kawakatu, Nozomu Kollatschny, Wolfram University Goettingen, Germany Komossa, Stefanie Max-Planck-Institut fuer extraterrestrische Physik, Germany Kormendy, John University of Texas, Austin, USA University of Edinburgh, UK Kukula, Marek Lacy, Mark IPAC, Pasadena, USA Laine, Seppo Space Telescope Science Institute, USA Lauer, Tod NOAO, USA Lu, Youjun Princeton University, USA Maciejewski, Wiltold Osservatorio Astrofisico di Arcetri, Italy MacMillan, Joseph Queen's University, Canada Malkan, Matt UCLA, USA Maoz, Dani Tel-Aviv University, Israel Marchesini, Danilo S.I.S.S.A., Italy Marconi, Alessandro Osservatorio Astrofisico di Arcetri, Italy

Cambridge University Press 0521824494 - Coevolution of Black Holes and Galaxies Edited by Luis C. Ho Frontmatter More information

xx List of Participants

Markowitz, Alex	UCLA, Los Angeles, USA
Martini, Paul	Carnegie Observatories, USA
Matsumoto, Hironori	Kyoto University, Japan
McLure, Ross	Oxford University, UK
Meier, David	JPL, Pasadena, USA
Merritt, David	Rutgers University, USA
Miller, Mark	JPL, Pasadena, USA
Milosavljevic, Milos	Rutgers University, USA
Nakamura, Masanori	JPL, Pasadena, USA
Nelson, Charles	Drake University, USA
Newman, Peter	Apache Point Observatory/NMSU, USA
Noel-Storr, Jacob	Columbia University, USA
Novak, Gregory	U. C., Santa Cruz, USA
Ohsuga, Ken	Kyoto University, Japan
Oshlack, Alicia	University of Melbourne, Australia
Osmer, Patrick	Ohio State University, USA
Panessa, Francesca	TeSRE-CNR, Bologna, Italy
Peng, Chien	Steward Observatory, USA
Peterson, Bradley	Ohio State University, USA
Petric, Andreea	Columbia University, USA
Phinney, Sterl	Caltech, USA
Rasio, Fred	Northwestern University, USA
Ravindranath, Swara	Carnegie Observatories, USA
Rector, Travis	NRAO, USA
Rich, R. Michael	UCLA, USA
Richstone, Douglas	University of Michigan, USA
Sadler, Elaine	University of Sydney, Australia
Sarzi, Marc	University Durham, UK
Schinnerer, Eva	NRAO, USA
Scoville, Nick	Caltech, USA
Sellwood, Jerry	Rutgers University, USA
Shankar, Francesco	S.I.S.S.A., Italy
	University of Illinois, USA
Shapiro, Stuart Sheinis, Andrew	•
	U. C., Santa Cruz, USA
Shen, Juntai	Rutgers University, USA
Shields, Joe	Ohio University, USA
Sigurdsson, Steinn	Penn State University, USA
Somerville, Rachel	University of Michigan, USA
Strateva, Iskra	Princeton University, USA
Szuszkiewicz, Ewa	University of Szczecin, Poland
Umemura, Masayuki	University of Tsukuba, Japan
Ulvestad, James	NRAO, USA
van Breugel, Wil	LLNL, USA
van der Marel, Roeland	Space Telescope Science Institute, USA
Verdoes Kleijn, Gijs	Space Telescope Science Institute, USA
Vestergaard, Marianne	Ohio State University, USA
Viollier, Raoul	Inst. Theoretical Physics and Astrophysics, South Africa
Wada, Keiichi	National Astronomical Observatory, Japan

List of Participants

xxi

Walcher, Jakob	Max-Planck-Institute for Astronomy Heidelberg, Germany
,	
Wandel, Amri	The Hebrew University of Jerusalem, Israel
Wang, Yiping	Purple Mountain Observatory, China
Yu, Qingjuan	CITA, Canada
Yuan, Chi	ASIAA, Taiwan