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Principles of Quantum Mechanics

This introduction describes the mathematical tools used in the formulation
of quantum mechanics and the connections between the physical world and
mathematical formalism. Such links constitute the fundamental principles of
quantum mechanics.! They are valid for every specific realization of these
principles. Subsequently, their most immediate consequences are presented:
the quantum process of measurement and relations of uncertainty. Frequent
shortcomings existing in many introductions can thus be avoided.?

2.1 Classical Physics

If our vision of a moving object is interrupted by a large billboard, and is
resumed after the reappearance of the object, we naturally assume that it
has traveled all the way behind the billboard (Fig. 2.1). This is implied in the
notion of physical reality, one of the postulates in the famous EPR paradox
written by Einstein in collaboration with Boris Podolsky and Nathan Rosen
[16]. “If, without in any way disturbing a system, we can predict with certainty
the value of a physical quantity, then there is an element of physical reality
corresponding to this physical quantity.”

! Presentations of quantum mechanics resting upon few basic principles start with
[15], which remains a cornerstone on the subject.

2 In many presentations it is assumed that the solution of any wave equation for
a free particle is the plane wave exp[i(kx — wt)]. Subsequently, the operators
corresponding to the momentum and energy are manipulated in order to obtain
an equation yielding the plane wave as solution of differential equations. This pro-
cedure is not very satisfactory because: (a) plane waves display some difficulties
as wave functions, not being square integrable; (b) quantum mechanics appears
to be based on arguments that are only valid within a differential formulation;
(c) it leads to the misconception that the position wave function is the only way
to describe quantum states.
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Fig. 2.1. The trajectory of the car behind the billboard as an element of physical
reality

This classical framework relies on the acceptance of some preconceptions,
most notably the existence of the continuous functions of time called tra-
jectories x(t) [or x(t) and p(t), where p is the momentum of the particle].
The concept of trajectory provides an important link between the physical
world and its mathematical description. For instance, it allows us to formulate
Newton’s second law:

d’x
F(x)=M ol (2.1)
This equation of motion predicts the evolution of the system in a continuous
and deterministic way. Since this is a second order equation, the state of a
system is determined if the position and velocity of each particle are known
at any one time.

Maxwell’s theory of electromagnetism is also part of classical physics. It
is characterized in terms of fields, which must be specified at every point
in space and time. Unlike particles, fields can be made as small as desired.
Electromagnetism is also a deterministic theory.

Essential assumptions in classical physics about both particles and fields
are:

e The possibility of nondisturbing measurements
e There is no limit to the accuracy of values assigned to physical properties

In fact, there is no distinction between physical properties and the numerical
values they assume. Schwinger characterizes classical physics as:

the idealization of nondisturbing measurements and the correspond-
ing foundations of the mathematical representation, the consequent
identification of physical properties with numbers, because nothing
stands in the way of the continual assignment of numerical values to
these physical properties ([14], p.11).

Such “obvious” assumptions are no longer valid in quantum mechanics.
Therefore, other links have to be created between the physical world and the
mathematical formalism.

2.2* Mathematical Framework of Quantum Mechanics

According to classical electromagnetism, an inhomogeneous magnetic field B
directed along an axis (for instance, the z-axis) should bend the trajectory
of particles perpendicular to this axis. The amount of bending of these tiny
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magnets will be proportional to the projection u, of their magnetic moment
p. Therefore, if the beam is unpolarized (all values —|p| < p, < |p| are
present), particles are classically expected to impact over a continuous region
of a screen. However, it was shown in 1921 by Otto Stern and Walther Gerlach
that silver atoms distribute themselves over each of two lines. Since the mag-
netic moment is proportional to an intrinsic angular momentum called spin
(o< S), it is apparent that only two projections of the spin are allowed by
nature [17]. The values of these projections are

:I:lh' h i,
2 2

)

(2.2)

where h is the Planck constant. It has the dimensions of classical action
(energy x time). (See Table 14.1 and Sect. 5.2.1 for more details.)

Note, however, the fact that a physical quantity may have only two values
does not require by itself the abandonment of classical physics. For instance,
your PC works upon bits, i.e., classical systems that may be in one of two
states.> As befits classical systems, their state is not altered upon measure-
ment (thus contributing to the stability of classical computers).

A different description is provided by vectors on a plane. While the sum
of the two states of a bit does not make sense, the addition of two vectors on
a plane is always another vector. Any vector ¥ may be written as a linear
combination (Fig. 2.2a)

U=c0, + 9, (2.3)

where ¢, ¢, are amplitudes and ¢, ¢, two perpendicular vectors of module
one. This last property is expressed by the relation (@, | ¢;) = d;;, which is a
particular case of the scalar product

(U0') = ¢y, + ce, (2.4)

Cx O

(@) (b)

Fig. 2.2. Representation of a vector in two-dimensions. The same vector ¥ can be
expressed as the sum of two different systems of basis vectors

3 Although the bits in your PC function on the basis of quantum processes (for
instance, semiconductivity) they are not in themselves quantum systems.
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In quantum mechanics we allow complex values of the amplitudes.

Another crucial property of the vector space is that the same vector ¥ may
be expressed as a combination of other sets of perpendicular vectors 1,, 1,
along rotated axis (Fig. 2.2b)

v =bm, + byn,. (2.5)

This two-dimensional space may be easily generalized to spaces with any
number of dimensions, called Hilbert spaces. Here we outline some properties
that are specially relevant from the point of view of quantum mechanics. This
overview is expanded in Sect. 2.7*:

e Any vector ¥ may be expressed as a linear combination of orthonormal
basis states @, [as in (2.3)]

=0 o= (g]V) = (V) (2.6)
(9:19;) = 6. (2.7)

e Linear operators Q act on vectors belonging to a Hilbert space, transform-
ing one vector into another

d=QU. (2.8)

These operators obey a noncommutative algebra, as shown in Sect.2.7*
for the case of rotations in three-dimensions. We define the commutation
operation through the symbol

where the order of application of the operators is from right to left [QR U=
Q (RT)]. .
o If the vector Q @, is proportional to ¢,, then ¢, is said to be an eigen-

vector of the operator Q The constant of proportionality ¢; is called the
eigenvalue

Qo, = qi 9, (2.10)

e The scalar product between a vector &, = Q W, and another vector ¥y is
called the matrix element of the operator ) between the vectors ¥, and
U, and it is symbolically represented as?

(Wo|QI¥a) = (0]Qla) = (¥ [ Da). (2.11)

The matrix elements of the unit operator are the scalar products
(U, | W) = (a]b) = (¥, | T,)*. The norm (¥|W)/2 is a real, positive
number.

* Dirac called the symbols (a| and |a) the bra and ket, respectively [15].
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e The Hermitian conjugate Q" of an operator Q is defined through the

relation
(01Q|a) = (a|Q[b)". (2.12)
The operator is said to be Hermitian if
ot =0. (2.13)

The eigenvalues ¢; of a Hermitian operator are real numbers and the cor-
responding eigenvectors ¢, constitute a basis set of orthogonal vectors.
e The matrix & with matrix elements U, is said to be unitary if the matrix
elements of its inverse are given by
@), =Up,. (2.14)
Unitary transformations preserve the norm of the vectors and relate two
sets of basis states (see Fig.2.2)

n= Yo, 215)

These abstract mathematical tools (vectors, Hermitian operators and
unitary transformations) may be represented through concrete, well-known
mathematical objects, such as column vectors and matrices (Chap. 3), or by
means of functions of the coordinate and differential operators (Chap. 4).

2.3 Basic Principles of Quantum Mechanics

In this section we present the quantum mechanical relation between the phys-
ical world and the mathematical tools that have been outlined in Sect. 2.2*.
This relation requires the representation of states, observables, measurements,
correlations between particles and dynamical evolution. It is formulated
through the quantum principles:

Principle 1. The state of the system is completely described by a vector ¥ —
the state vector or state function — belonging to a Hilbert space.

The state vector ¥ constitutes an unprecedented way of describing physical
systems. It is an abstract entity that carries information about the results
of possible measurements. It replaces the classical concepts of position and
momentum.

The fact that the sum of two-state vectors is another state vector belonging
to the same Hilbert space, i.e., describing another state of the system, is
usually called the superposition principle. The sum ¢, ¥, + ¢, ¥, must not
be interpreted in the sense that we have a conglomerate of systems in which
some of them are in the state ¥, and some in the state ¥y, but rather, that
the system is simultaneously in both component states. This statement is also
valid when the system is reduced to a single particle.
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This superposition is fundamentally different from any property of classical
particles, which are never found as a linear combination of states associated
with different trajectories: a tossed coin may fall as head or tails, but not as
a superposition of both.

By establishing that the state vector completely describes the state of
the system, Principle 1 assumes that there is no way of obtaining information
about the system, unless this information is already present in the state vector.
However, for a given problem, one may be interested only in some of the
degrees of freedom of the system (e.g., magnetic moment, linear momentum,
angular momentum, etc.), not in the complete state vector.

The state vector may be multiplied by an arbitrary complex constant and
still represent the same physical state. However, we require that the state
vector is normalized, i.e., that its norm has the value 1. Even if we enforce
this requirement, an arbitrary overall phase is left, which has no physical
significance. This is not the case for the relative phase of the terms in the sum
ca¥a + ¥y, which encodes important physical information.

The relation between the physical world and states ¥ is more subtle than
the classical relation with position and momenta @, p. It relies on the following
two principles.

Principle 2. To every physical quantity there corresponds a single linear
operator. In particular, the operators & and p, corresponding to the coordi-
nate and momentum of a particle, satisfy the commutation relation®

£, p] = ih. (2.16)

The commutator is defined in (2.9) and the constant % has been already used
in (2.2). Its value (Table 14.1) provides an estimate of the domain in which
quantum mechanics becomes relevant. Classical physics should be applicable
to systems in which the action is much larger than h.

This is also fundamentally different from classical physics, for which physi-
cal properties are identified with numbers (Sect. 2.1).

Since any classical physical quantity may be expressed as a function of
coordinate and momentum @ = Q(x,p), the replacement x — & and p — p
in the classical expression Q(z,p) yields the operator Q = Q(&,p). Thus, a
one-to-one correspondence between operators Q and physical quantities or ob-
servables () is established. However, there are also purely quantum operators,
such as the spin operators, that cannot be obtained through such substitution.

The operator corresponding to the classical Hamilton function H(p,x) is
called the Hamiltonian. For a conservative system,

- 1
H=_——p+V( 2.17
S+ V (@), (2.17)
where M is the mass of the particle and V the potential.
® This commutation relation has been derived from relativistic invariance [18], using

the fact that spatial translations [generated by p, see (4.9)] do not commute with
Lorentz transformations even in the limit ¢ — oco. See also (12.5).
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Principle 3. The eigenvalues q; of an operator Q constitute the possible
results of measurements of the physical quantity Q. The probability® of obtain-
ing the eigenvalue q; is the modulus squared |c;|* of the amplitude of the eigen-
vector @, if the state vector ¥ =Y. ¢;Q, is expanded in terms of eigenstates
of the operator Q.

Since the results of measurements are real numbers, the operators
representing observables are restricted to be Hermitian (2.13). In particular,
the possible values of the energy F; are obtained by solving the eigenvalue
equation )

Ho, = E;9,. (2.18)

The above three principles are sufficient for the treatment of static situa-
tions involving a single particle. A number of simple, typical, well-known prob-
lems of a particle moving in one-dimensional space are discussed in Chaps. 3
and 4. The extension to three-dimensional space is made in Chaps. 5 and 6.

Two more principles, concerning many particle systems and the time-
evolution of states, are presented in Chaps. 7 and 9, respectively.

2.3.1 Some Comments on the Basic Principles

As in the case of classical mechanics, quantum mechanics may be applied
to very different systems, from single-particle to many-body systems to fields.
Thus quantum mechanics constitutes a framework in which to develop physical
theories, rather than a physical theory by itself.

In the present text we adopt the interpretation that the vector state rep-
resents our knowledge about reality, rather than reality itself. This knowledge
includes the formulation of the possible tests (measurements) to which the
system can be submitted and the probabilities of their outcomes.”

We have postulated the existence of new links between the physical world
and mathematics: physical quantities are related to (noncommuting) oper-
ators; state vectors are constructed through operations with these mathe-
matical entities; the feedback to the physical world is made by predicting
as possible results of measurements the eigenvalues of the corresponding
operators and the probabilities of obtaining them. This two-way relation bet-
ween physical world and formalism is not an easy relation. Following David
Mermin [19]:

The most difficult part of learning quantum mechanics is to get a good
feeling for how the abstract formalism can be applied to actual phe-
nomena in the laboratory. Such applications almost invariably involve
formulating oversimplified abstract models of the real phenomena, to

5 Notions of probability theory are given in Sect. 2.8%.

" Therefore, we have accepted the reduction interpretation of the measurement
process. Historically, this was the path followed by most physicists. However, we
present one more discussion of the measurement problem in Chap. 12.



12 2 Principles of Quantum Mechanics

which the quantum formalism can effectively be applied. The best
physicists have an extraordinary intuition for what features of the
actual phenomena are essential and must be represented in the
abstract model, and what features are inessential and can be ignored.

It is almost as useful to state what the principles do not mean, as to say
what they do mean. In the following we quote some common misconceptions
regarding quantum states [20].

e “The state vector is similar to other fields used in the description of the
physical world.” It is fundamentally different from the electric or magnetic
fields in electromagnetic waves, which carry momentum, energy, etc., and
in which any externally caused change propagates at a finite, medium-
dependent speed.

e “Energy eigenstates are the only allowed ones.” This misconception prob-
ably arises from the generalized emphasis on the solution of the eigenvalue
equation (2.18) and from its similarity to the correct statement: “Energy
eigenvalues are the only allowed energies.”

e “A state vector describes an ensemble of classical systems.” In the standard
Copenhagen interpretation, the state vector describes a single system. In
none of the acceptable statistical interpretations is the ensemble classical.

e “A state vector describes a single system averaged over some amount of
time.” The state vector describes a single system at a single instant.

2.4 Measurement Process

In this section we specify some basic concepts involved in the process of
measurement.

2.4.1 The Concept of Measurement

Two or more systems are in interaction if the presence of one leads to changes
in the other, and vice versa. Different initial conditions generally lead to
different changes, although this may not always be the case.

A measurement is a process in which a system is put in interaction with
a piece of apparatus. The apparatus determines the physical quantity or
observable to be measured (length, weight, etc.).

There are two important steps in a measurement. The first is the prepa-
ration of the system to be measured, i.e., the determination of the initial
state. Bohr’s definition of the word “phenomenon” refers to “an observation
obtained under specified circumstances, including an account of the whole ex-
perimental arrangement” [22], p. 64. This should be contrasted with the EPR
definition of physical reality (Sect.2.1).

8 See also [21], specially Sects. 1.2, 2.1, and 3.6.



2.4 Measurement Process 13

The second important step, also crucial in the case of quantum systems,
is a (macroscopic) change in the apparatus that should be perceptible by a
cognitive system. In many cases this change is produced by a detector at one
end of the apparatus. The magnitude of the physical quantity has a value if
the change can be represented in numerical form.

2.4.2 Quantum Measurements

The most fundamental difference between a classical and a quantum system
is that the latter cannot be measured without being irrevocably altered, no
matter how refined the measuring instruments are.? This is a consequence of
the principles presented in Sect. 2.3.

Assume that a measurement of the physical quantity @, performed on a
system in the state ¥ expanded as in (2.6), yields the result g;. If the same
measurement could be repeated immediately afterwards, the same value g;
should be obtained with certainty. Thus, the measurement has changed the
previous value of the coefficients ¢; — ;5. In other words, as a result of
the measurement, the system jumps to an eigenstate of the physical quantity
that is being measured (the reduction of the state vector) (Fig.2.3). The only
exceptions occur when the initial state is already represented by one of the
eigenvectors.

Given an initial state vector ¥, we do not know in general to which eigen-
state the system will jump. Only the probabilities, represented by |¢;|?, are

A
Y — @y
Py
A
le,1?
Cyl v —
0y > Oy
A
v
- > Oy
Cx
Y =Cyx 9y +Cy @y |cx|2
— Y — @y R

Fig. 2.3. The reduction of the state vector as a result of a measurement

9 Although classical systems may also be disturbed by measurements, there is
always the assumption that the disturbance can be made as small as required, or
that it may be predicted by a calculation.
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determined. This identification of the probabilities is consistent with the
following facts:

Their value is always positive

Their sum is 1 (if the state ¥ is normalized)

The orthogonality requirement (2.7) ensures that the probability of
obtaining any eigenvalue ¢q; # ¢; vanishes if the initial state of the
system is the eigenstate @, (see Table 2.1).

The fact that, given a state vector ¥, we can only predict the probabil-
ity |c;|? of obtaining eigenvalues ¢; constitutes an indeterminacy inherent in
quantum mechanics. Our knowledge about the system cannot be improved,
for instance, through a second measurement, since the state ¥ has been trans-
formed into @,.

According to the interpretation adopted in Sect. 2.3.1, it is our knowledge
of the system that jumps when we perform a measurement, rather than the
physics of the system.

If in the expansion (2.6) there is a subset of basis states ¢, with the same
eigenvalue g, = ¢, the probability of obtaining this eigenvalue is >, |cx|?. The
system is projected after the measurement into the (normalized) state

/

1
U = — c .
NoSACT Z FO

The concept of probability implies that we must consider a large number
of measurements performed on identical systems, all of them prepared in the
same initial state .

The diagonal matrix element'® is given by the sum of the eigenvalues
weighted by the probability of obtaining them:

(V]QI¥) = ZQi|Ci‘2- (2.20)

(2.19)

It is also called the expectation value or mean value of the operator Q The
mean value does not need to be the result g; of any single measurement, but
it is the average value of all the results obtained through the measurement of
identical systems.

The uncertainty or standard deviation AQ in a given measurement is
defined as the square root of the average of the quadratic deviation:

AQ = (T](Q — (¥|Q|W))* |w)*/2
1/2

= ((w]Q*[w) — (w|Qw))?, (2.21)

10 The matrix element is said to be diagonal if the same vector appears on both
sides of the matrix element.
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where

(W@ = 3 el (222

2.5 Some Consequences of the Basic Principles

This section displays some consequences of quantum principles in the form of
thought experiments. Alternatively, one may obtain the quantum principles
as a generalization of the results of such thought experiments (see [23]).

Let us consider a Hilbert space consisting of only two independent states
¢,. We also assume that these states are eigenstates of an operator S cor-
responding to the eigenvalues 41, respectively. Thus the eigenvalue equation
S’(pi = £, is satisfied. The scalar products (¢, |¢,) = (¢_|¢_) = 1 and
(@, |¢_) = 0 are verified. There are many examples of physical observables
that may be represented by such operator. For instance, the z-component
of the spin'! is frequently used in this book (Sects.2.2*, 3.1.3, 5.2, 9.2,
etc.).

We start by constructing a filter, i.e., an apparatus such that the exiting
particles are in a definite eigenstate. In the first part of the apparatus, a beam
of particles is split into the two separate @, beams, as in the experiment
of Stern and Gerlach (Sect.5.2.1). In the second part, each beam is pushed
toward the original direction. Each separate beam may be masked off at the
half-way point. Such an apparatus is sketched in Fig. 2.4a, with the ¢_ beam
masked off. It will be called a @-filter. It is enclosed within a box drawn with
continuous lines.

Any experiment requires first the preparation of the system in some
definite initial state (Sect.2.4.1). Particles leave the oven in unknown linear
combinations W of @ states

U= (0, [V, + (o_[¥)o_. (2.23)

They are collimated and move along the y-axis. In the following cases, we
prepare the particles in the filtered state @, , by preventing particles in the
state @_ from leaving the first filter (Fig. 2.4b).

In the last stage of the experimental setup we insert another filter as part
of the detector, in order to measure the degree of filtration. The detector
includes also a photographic plate which records the arriving particles and is
observed by an experimentalist (Fig. 2.4c).

In the first experiment, we place the detector immediately after the first
filter (Fig.2.4d). If the @_ channel is also blocked in the detector, every parti-
cle goes through; if the channel ¢__is blocked, nothing passes. The amplitudes

1 Another example is given by the polarization states of the photon (see
Sect.9.5.2f). Most of the two-state experiments are realized by means of such
optical devices.
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Fig. 2.4. Quantum mechanical thought experiments illustrating the basic principles
listed in Sect. 2.3: (a) schematic representation of a filter; (b) preparation of the state
of a particle; (c) detector (filter, photoplate, observer); (d—g) experiments (see text).
The vertical bars denote fixed path blocking, while the slanting bars indicate paths
that can be either opened or closed. For each experiment we perform a measurement
in which the upper channel of the detector is open and the down channel blocked,
and another measurement with the opposite features

for these processes are (@, |¢,) = 1 and (@_|¢,) = 0, respectively.
The corresponding probabilities, [(@, |9, )* and [(¢_|@,)[*, also are 1
and 0.

We now consider another set of basis states 1, thus satisfying the ortho-
normality conditions (M M) = M_|n_) =1, (M |n_) =0 (Fig.2.2b). It is
easy to verify that an operator R, satisfying the eigenvalue equation Rni =
+1n,, does not commute with S. Let us perform the necessary modifications
of the detector filter so that it can block the particles in either of the states
Ny If R corresponds the spin component in the z-direction, the required
modification of the detector amounts to a rotation of its filter by an angle 7/2
around the y-axis. Dashed boxes represent filters such that particles exit in
the . states (n-type filters) (Fig. 2.4e).
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A particle exiting the first filter in the state ¢ reorients itself, by chance,
within the second filter. This process is expressed by expanding the states ¢
in the new basis

O =My oy +(M_|on_. (2.24)

According to Principle 3, a particle will emerge from the detector filter in
the state n, with probability [(n, |¢, )| or in the state n_ with probability
|(n_|@,)|?. If the n_ channel of the second filter is blocked, the particle is
either projected into the state 1, with probability [(¢, [n,)|* or is absorbed
with probability 1 — [(@, |n,)[* = [(¢, [n_)|*. This result sounds classical:
it is the quantum version of the classical Malus law. However, the projection
process is probabilistic. Any information about the previous orientation @_
is lost.

In the experiment of Fig. 2.4e, let us replace the detector with the original
Stern—Gerlach apparatus sketched in Fig. 5.3. Classical waves may simultane-
ously increase their intensities at each of the two spots on the screen. However,
this would lead to a violation of charge conservation in the case of electrons:
quantum mechanics determines probabilities at each spot for just one parti-
cle!?. We are not dealing with classical waves.

We now perform two other experiments which yield results that are spec-
tacularly different from classical expectations. Let us restore the detector fil-
ter to the @-type and introduce a filter of the nm-type between the first filter
and the detector (Fig.2.4f). Thus particles prepared in the ¢, state exit
the second filter in the m_ state. In the spin example, particles leave the
first filter with the spin pointing in the direction of the positive z-axis, and
the second filter pointing along the positive z-axis. The detector measures
the number of particles exiting in one of the ¢, states (spin pointing up
or down in the z-direction). We use now the inverse expansion'® of (2.24),
namely

Ny = (04 [MN)9y +(0_ [Ny ). (2.25)

Thus, the total amplitudes for particles emerging in one of the states
¢, are't

(o mp)(nyloy) (2.26)

(o_ny)(nylo,). (2.27)

12°An alternative could be that the electron chooses its path just upon entering
the second filter. However, this interpretation is inconsistent with the results of
experiment 2.4g.

3 The amplitudes in (2.24) and in (2.25) are related by (0, Iny) = My |e,)" and
(o_Iny) =My |9_)", according to Table 2.1.

14 One reads from right to left.
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Both components ¢, may emerge from the detector filter, in spite of the
fact that the fraction of the beam in the @_ state was annihilated inside the
first filter. There is no way in classical physics to explain the reconstruction
of the beam @_. This example illustrates the quantum rule concerning the
impossibility of determining two observables associated with operators which
do not commute: a precise determination of R destroys the previous informa-
tion concerning S.

The result of this experiment is also consistent with Principle 1 in Sect. 2.3,
since the state vector 1, contains all possible information about the system:
its past history is not relevant for what happens to it next. The information
is lost in the collision with the blocking mask that has been put inside the
second filter.

If we repeat the last experiment, but remove the mask from the second
filter (Fig.2.4g), the total amplitude is given by the sum of the amplitudes
associated with the two possible intermediate states

(@, )myley) + (o n_)n_lo,) =(o, o ) =1 (2.28)
(o_mpMmiley) + (o In_)n_ley) =(o_lo,) =0,  (2.29)

where the closure property has been applied [See (2.47)]. All the particles get
through in the first case; none in the second case. In going from the amplitude
(2.27) to (2.29) we get fewer particles, despite the fact that more channels are
opened.

The result of this last experiment is equivalent to an interference pattern.
Classically, such patterns are associated with waves. However, unlike the case
of waves, particles here are always detected as lumps of the same size on
a screen placed in front of the exit side of the detector filter. No fractions
of a lump are ever detected, as befits the behavior of indivisible particles.
Therefore, these experiments display wave—particle duality'®, which is thus
accounted for by Principles 1-3.

The famous question about which of the two intermediate channels the
particle went through does not make sense in quantum mechanics, because
this path cannot be determined, even in principle. Determination of the path
would restore the intensity in both channels of the detector.

It is important that none of the intermediate beams suffers an additional
disturbance (for example, the influence of an electric field), which may change
the relative phases of the two channels.

Let us again replace the detector in Fig.2.4f with the original Stern—
Gerlach apparatus. Thus we could also obtain information about the order of
¢, states appearing in the detector (provided the counting rate is sufficiently
slow). Consistently with Principle 3, this order turns out to be completely

15 See Sect. 11.1 for a presentation of real two-slit experiments.
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random, since relative probabilities [(@, |1, )|* are the only information that
we can extract from measurements.

2.6 Commutation Relations and the Uncertainty
Principle

In this section, it is shown that the commutation relation between two
Hermitian operators 7, § determines the precision with which the values of the
corresponding physical quantities may be simultaneously determined. Thus
Heisenberg uncertainty relations between momenta and coordinates become
extended to any pair of observables, and appear as a consequence of their
commutation relation.

One assumes two Hermitian operators, R, S’, and defines a third (non-
Hermitian) operator Q such that

Q= R+i)S, (2.30)

where ) is a real constant. The minimization with respect to A of the positively
defined norm [see (2.41)]

0 < (QUIQT) = (¥|QTQ|T)
= (U|R?|W) + 1A (U|[R, S]|¥) + \2(T|S?|W), (2.31)

yields the value
i
Amin = =5 (| [R, S]|9)/(¥|$?|@)
i *
= —5 (Y[R, ST |)"/(¥|S*| W)

i *
= 5 (W[, §]|w)"/(W]S*|®). (2.32)
In the second line we have used the definition (2.12) of the Hermitian conju-
gate. In the last line, the relation [R, S]* = —[R, S] stems from the Hermitian
character of the operators [see (2.40)]. Substituting the value Ay, into (2.31)
yields

2 1 [(W|[R, S]|W)?
0< (PR — 4o (2.33)
(U|R?|W)(W|S?| W) > i [(W|[R, S]|W)|* . (2.34)
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The following two operators 7, § have zero expectation value:
F=R—(U|R|¥), §=8—(U|S|T), (2.35)

and the product of their uncertainties is constrained by [see (2.21)]
1
ArAs > 5 [(W][r, s]|®)]. (2.36)

Operators corresponding to observables can always be written in the form
(2.35). If we prepare a large number of quantum systems in the same state
U and then perform some measurements of the observable r in some of the
systems, and of s in the others, then the standard deviation Ar of the r-results
times the standard deviation As of the s-results, should satisfy the inequality
(2.36).

In the case of coordinate and momentum operators, the relation (2.16)
yields the Heisenberg uncertainty relation

AxAp > g (2.37)

We emphasize the fact that this relation stems directly from basic principles
and, in particular, from the commutation relation (2.16). It constitutes a
limitation upon our knowledge that cannot be overcome, for instance, by any
improvement of the experiment.

If the state of the system is an eigenstate of the operator 7, then a mea-
surement of the observable r yields the corresponding eigenvalue. The value of
the observable s associated with a noncommuting operator § is undetermined.
This is the case of a plane wave describing a particle in free space (Sect.4.3)
for which the momentum may be determined with complete precision, while
the particle is spread over all space.

Another consequence of the relation (2.36) is that the state vector ¥
may be simultaneously an eigenstate of # and § only if these two operators
commute, since in this case the product of their uncertainties vanishes. More-
over, if the operators commute and the eigenvalues of § are all different within
a subset of states, then the matrix elements of 7 are also diagonal within the
same subset of states (see Sect.2.7.1%).

Heisenberg conceived the uncertainty relations in order to solve the wave-
particle paradox. Pure particle behavior requires localization of the parti-
cle, while clear wave behavior appears only when the particle has a definite
momentum. Heisenberg’s interpretation of this was that each of these extreme
classical descriptions is satisfied only when the other is completely untenable.
Neither picture is valid for intermediate situations. However, quantum me-
chanics has to be compatible with the description of the motion of elementary
particles (not only with the description of the motion of macroscopic bodies) in
terms of trajectories. Heisenberg’s answer is that one may construct states ¥
that include a certain amount of localization py(t) and @o(t) in both momen-
tum and coordinate. Thus the motion of a particle has some resemblance to
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Fig. 2.5. Apparent classical trajectory of a pion (Reproduced with permission from
the authors)

classical motion along trajectories. However, there should be a certain spread
in the momentum and in the coordinate, such that the amplitudes (p|¥) and
(| P) in momentum eigenstates and position eigenstates allow the uncertainty
relations to hold [24].

For an illuminating example, Fig. 2.5 displays the capture of a pion by a
carbon nucleus [25]. One can determine the mass, energy and charge of the
particles, by measuring the length, the grain density, and the scattering direc-
tion of their tracks. Let us assume a pion kinetic energy of 10 MeV. Using the
pion mass (139 MeV ¢2), one obtains a momentum of p, = 53 MeV ¢~ 1. The
uncertainty in the direction perpendicular to the track may be estimated from
the width of the track ~1pum, which yields Ap, ~ 10~7 MeV c¢~!. The ratio
Ap, /pr =107? is too small to produce a visible alteration of the apparent
trajectory.

2.7* Hilbert Spaces and Operators

A Hilbert space is a generalization of the Euclidean, three-dimensional space
(see Table 2.1). As in ordinary space, the summation ¢, ¥, + ¢, ¥, and the
scalar product (Up|U,) = ¢, between two vectors are well defined opera-
tions.!® While the constants cq, ¢y, Cqp are real numbers in everyday space, it
is essential to allow for complex values in quantum mechanics.

Two vectors are orthogonal if their scalar product vanishes. A vector ¥
is linearly independent of a subset of vectors ¥,, Uy, ... ¥, if it cannot be
expressed as a linear combination of them'” (U #£ coWo+ ¥y + - +cqgVy).

16 Definitions of these fundamental operations is deferred to each realization of
Hilbert spaces [(3.2), (3.4) and (4.1), (4.2)]. In the present chapter we use only
the fact that they exist and that {alb) = (bla)*, (a|a) > 0.

17 Although the term “linear combination” usually refers only to finite sums, we
extend its meaning to include also an infinity of terms.



22 2 Principles of Quantum Mechanics

Table 2.1. Some relevant properties of vectors and operators in Euclidean and
Hilbert spaces

Euclidean space Hilbert space
vectors T v
superposition T = CoTqa + CbTp U =c, Wy + ¥y
scalar product (ra|rs) = 7a"To = Cap (U |Up) = (Wp|To)* = cap
Cay Cb, Cqb Teal Ca, Cb, Cqb COMplex
basis set (vilvj) = &ij (9;l9;) = (ilj) = dy;
dimension v 3 2<rv<oo
completeness =) Tiv; U =73 co,
projection z; = (vi|r) ci = (9,|)
scalar product (ralre) =3, x(a> (b) (Wa| W) =, (c (a))* ()
‘1/2 ‘172
norm (rlr) 12 = (32, 22) / @02 = (2, |eif?) /
operators Ry(0)ra =1 Qv, =
commutators [R 7r/2) R (71/2)] #0 Q, R]
eigenvalues Div; = \iv; Q(pi = q;Q,

These last two concepts allow us to define sets of basis vectors ¢, satisfying
the requirement of orthonormalization. Moreover, these sets may be complete,
in the sense that any vector ¥ may be expressed as a linear combination of
them!® [see (2.6)]. The scalar product (i|¥) is the projection of ¥ onto @,.
The scalar product between two vectors ¥,, ¥, and the square of the norm
of the vector ¥ are also given in terms of the amplitudes ¢; in Table 2.1.

The number of states in a basis set is the dimension v of the associated
Hilbert space. It has the value 3 in normal space. In this book, we use Hilbert
spaces with dimensions ranging from two to a denumerable infinity.

In ordinary space, vectors are defined by virtue of their transformation
properties under rotation operations R,](G) (M denoting the axis of rotation
and 6 the angle). These operations are generally noncommutative, as the
reader may easily verify by performing two successive rotations of § = 7/2,
first around the z-axis and then around the y-axis, and subsequently compar-
ing the result with the one obtained by reversing the order of these rotations
(Fig.2.6). Vectors in Hilbert spaces may also be transformed through the ac-
tion of operators Q upon them. The operators Q obey a noncommutative
algebra. We have defined the commutation operation in (2.9).

In ordinary space, a dilation D is an operation yielding the same vector
multiplied by a (real) constant. This operation has been generalized in terms

18 The most familiar case of the expansion of a function in terms of an orthonormal
basis set is the Fourier expansion in terms of the exponentials exp(ikz), which
constitutes the complete set of eigenfunctions corresponding to the free particle
case (see Sect.4.3).
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Fig. 2.6. The final orientation of the axes depends on the order of the rotations.
R, here represents a rotation of 7/2 around the v-axis

of eigenvectors and eigenvalues in (2.10). In general, linear combinations of
eigenvectors do not satisfy the eigenvalue equation.

2.7.1* Some Properties of Hermitian Operators

The Hermitian conjugate operator Q7 is defined through (2.12). Similarly, we
may write

(T3] QIWa) = (QUa|Ty)" = (QF Ty [T). (2.38)
The following properties are easy to demonstrate:
~ N\ T A .
(Q n cR) —OF + ' RY, (2.39)
~ A\ T AL A
(QR) — RO (2.40)

According to (2.12), the norm of the state QU is obtained from

QUIQU) = (]Q* Q|w)'>. (2.41)
Assume now that the state @, is an eigenstate of the Hermitian operator
@ corresponding to the eigenvalue ¢;. In this case,

({1Qli) = q: (%), (QI)" = gi (i),
(l|Qli) = (QI)" — @i = q;- (2.42)

Therefore, the eigenvalues of Hermitian operators are real numbers.
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Consider now the nondiagonal terms
Glely = a(ily,  GlQl)" =g il4)" = ¢ {jli). (2.43)

Then,
0= (g —q;){j 1), (2.44)

i.e., two eigenstates belonging to different eigenvalues are orthogonal. They
may also be orthonormal, upon multiplication by an appropriate normaliza-
tion constant, which is determined up to a phase.

The eigenvectors of a Hermitian operator constitute a complete set of
states for a given system. This means that any state function ¥, describing
any state of the same system, may be expressed as a linear combination of
basis states @, [see (2.6)].

We define the projection operator (a theoretical filter) |i)(i| through the
equation

(il = (il)9, = 6,59, (2.45)
which implies that

Z iy (i| U =W, (2.46)

for any W. Thus unity may be expressed as the operator ) . |i)(i|. From this
property stems the closure property, according to which the matrix elements
of the product of Hermitian operators may be calculated as the sum over all
possible intermediate states of products of the matrix elements corresponding
to each separate operator:

(iIQRIj) =) _(ilQIk)(k|RIj). (2.47)

k

2.7.2*% Unitary Transformations

The unitary matrix (Uy;) = ((@,|n,)) = ((ila)) in (2.15) transforms the basis
set @, into the basis set m,. Such a matrix does not represent a physical
observable and it is not therefore required to be Hermitian.

The inverse transformation to (3.14) is written as

0=y (alim,. (2.48)

a

Therefore, the inverse transformation &/ ~! is the transposed conjugate:
Ut =(ali)) =u*, UU=uU" =1, (2.49)

where 7 is the unit matrix. A matrix satisfying (2.49) is said to be unitary
[see (2.14)]. Equation (2.49) implies that



2.8 Notions of Probability Theory 25

> _{ali)(ilb) = {alb) = bas,

7

> (ila){alj) = (ilj) = &i;. (2.50)

a

If states are transformed according to M = U @, then the state Z/{Q(p (Q =
physical operator) may be written as

UQe=UQUT U= Rn, (2.51)
which yields the rule for the transformation of operators, namely
R=UQU™. (2.52)

In addition to the norm, unitary transformations preserve the value of the
determinant and the trace:

det((a|R|b)) = det((i|Q|5)),

trace (Q) = Z<Z|Q|Z> = trace (R) = Z<a|R|a>. (2.53)

7 a

2.8*% Notions of Probability Theory

Probability theory studies the likelihood P; that the outcome ¢; of an event
will take place. Probability may be defined as

. U
P, = A}gnoo N (2.54)
where n; is the number of outcomes g; of a total of N = ) .n,; outcomes.
Since the limit N — oo is never attained, N should in practice be made large
enough to ensure that the fluctuations become sufficiently small.
The limits of P; are
0<P<1. (2.55)

If P, = 0, the outcome ¢; cannot occur; if P; = 1, it will take place with
certainty.

If two events (7, j) are statistically independent, the probability that both
i and j take place is given by the product

P(iandj) == PZP] (256)

If two events are mutually exclusive, the probability that one or the other
occur is the sum
P(zorj):Pl+P] (257)
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The collection of P;s is called the (discrete) probability distribution. The
concepts of average (Q), root mean square (Q?)'/? and standard deviation
AQ), applied in Sect. 2.4, are given by

(@) = ZQi P,

1/2
<Q2>1/2 _ (Z qi2Pi> , (2.58)
AQ = ((Q = (@))'? = ((@%) — (@)

In the case of a continuous distribution, the sums ), are replaced by integrals
J dz. Instead of probabilities P;, one defines probability densities p(z) such
that

1= [ pwan @ = [ @l (2.59)

— 00 — 00

Problems

Problem 1. Assume that the state ¥ is given by the linear combination
U = c1¥q 4 co¥sy, where the amplitudes c¢q, co are arbitrary complex numbers,
and both states U1, U5 are normalized.

1. Normalize the state ¥, assuming that (1]2) = 0.
2. Find the probability of the system being in the state W;.
Problem 2. Use the same assumptions as in Problem 1, but (1|2) = ¢ # 0.

1. Find a linear combination W3 = A\;W; + Ay W5 that is orthogonal to ¥y
and normalized.
2. Express the vector ¥ as a linear combination of ¥; and V3.

Problem 3. Prove the equations (2.39) and (2.40). Hint: Apply successively
the definition of Hermitian conjugate to the operators @), R. For instance, start
with (Up|QR|¥,) = (RV,|QT|¥,)*.

Problem 4. Show that
QR =-[RQl, [QR,S]=[Q,5R+QIR,S] (2.60)

Problem 5. Find the commutation relation between the coordinate operator
% and the one-particle Hamiltonian (2.17). Discuss the result in terms of the
simultaneous determination of energy and position of a particle.
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Problem 6. Find the commutation relations

1. [p", &], where n is an integer.
2. [f(p), z]. Hint: Expand f(p) in power series of p and apply 1.

Problem 7. Verify that the commutation relation (2.16) is consistent with
the fact that the operators Z and p are Hermitian.

Problem 8. Assume the basis set of states ;.

1. Calculate the effect of the operator R = >, 1i)(i| on an arbitrary state .
2. Repeat for the operator R = HZ(Q — ¢;), assuming that the equation
Q(pi = ¢, @, is satisfied.

Problem 9. Find the relation between the matrix elements of the operators
p and Z in the basis of eigenvectors of the Hamiltonian (2.17).

Problem 10. Consider the eigenvalue equations

F(Pl = f19;; F(Pz = f29y; G‘h =9g1M1 5 G’h = g2y,
and the relations

1 1
¢1=%(2m+n2) ; ¢2=$(n1—2n2) :

1. Is it possible to simultaneously measure the observables F' and G?

2. Assume that a measurement of F' has yielded the eigenvalue f;. Subse-
quently G and F are measured (in this order). Which are the possible
results and their probabilities?

Problem 11. Consider eigenstates @, of the momentum operator. Assume
that the system is prepared in the state

1 2
v = %((pzp =+ (Pp) + \/;(pp

1. What are the possible results of a measurement of the kinetic energy K,
and what are their respective probabilities?

2. Calculate the expectation value and standard deviation of the kinetic
energy.

3. What is the vector state after a measurement of the kinetic energy that
has yielded the eigenvalue k, = p*/2M?

Problem 12. Evaluate in m.k.s. units possible values of the precision to which
the velocity and the position of a car should be measured in order to verify
the uncertainty relation (2.37).
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Problem 13. A 10 MeV proton beam is collimated by means of diaphragms
with a 5mm aperture.

1. Show that the spread in energy AFEy associated with the uncertainty
principle is negligible relative to the total spread AE =~ 1073 MeV.

2. Calculate the distance x that a proton has to travel in order to traverse
5mm in a perpendicular direction, if the perpendicular momentum is due
only to the uncertainty principle.
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