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Over the past decade, the methods available to analyze the genetic basis of
behavioral phenotypes have changed enormously. Early enthusiasm about the
role that genetics would play in our understanding of mental disorders was tem-
pered in the late 1980s by the failure to replicate a number of well-publicized
claims of linkage for bipolar affective disorder and schizophrenia. It is now well
recognized that the gene-hunt battle will be long and difficult. Discrepant
results have stimulated the development of the genetic epidemiological and
statistical strategies used to study complex genetic disorders, and have led to
refinements in phenotype analyses.

Our objective in Psychiatric Genetics: Methods and Reviews is to provide a
comprehensive overview of the tools and methods that are currently available
in psychiatric genetics, as well as archetypical examples obtained using these
strategies. In particular, Part II of this book tackles the following methodo-
logical issues: study design, molecular techniques, clinical interviews, and
population sampling methods. Part III of this book focuses on alternative meth-
ods for characterizing phenotypes with the aim of identifying entities with
better genetic validity.

In the first chapter of Part II, Elena Grigorenko and David Pauls point out
the advantages and limits of each study design for genetic epidemiology. They
offer a clear vision of some much-debated problems, such as the power of
detection, sensitivity, and specificity of each of the methods. Thomas Bourgeron
and Bruno Giros provide an overview of the classical and novel gene-identifi-
cation strategies available for the study of complex diseases. The future
development of relevant molecular techniques is also usefully described.

Philip Gorwood gives a comprehensive review of the available clinical
interviews for the assessment of classical nosographical entities. This chapter
should enable psychiatrists to choose the most relevant clinical instrument for
a particular research purpose. Sampling procedures for patients, subjects at
risk, and controls are critical issues for the analysis of genetic vulnerability
and protective factors implicated in psychiatric disorders. The advantages and
limits of these sampling procedures, as well as potential sources of bias, are
considered in the chapter written by Frank Bellivier.

The third part of Psychiatric Genetics: Methods and Reviews is introduced by
Marion Leboyer in a comprehensive review of new phenotypic strategies, i.e.,
candidate symptoms and endophenotypes, and their scientific rationale. Athough
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research in this field started only recently in psychiatry, the applications of these
strategies have already provided exciting results. The results of the leading groups
in cognition, brain imaging, and biochemical endophenotypes are summarized
in this section. Michael Egan and Terry Goldberg give a brilliant and compre-
hensive review of their own work and the literature on cognitive intermediate
phenotypes in schizophrenia. They provide the first evidence of an association
between a cognitive deficit and a genetic polymorphism. This result suggests
that there are links between genes and behavioral phenotypes.

A review of the biochemical endophenotypes observed in personality disorders
is then presented by Antonia New and Larry Siever. They hypothesize that person-
ality disorders may form biologically mediated traits that predispose individuals to
the full-blown disorders.

Robert Freedman, the leading figure in the field of physiological
endophenotypes, then describes the data obtained in genetic analysis of eye-
tracking dysfunction, P50 and P300 as endophenotypes in schizophrenia and
alcoholism.

Joseph Callicott and Daniel Weinberger provide a thorough review of one of
the most promising approaches for the identification of valid phenotypes, i.e.,
the union of neuropsychological experimental designs and in vivo physiological
brain mapping.

In the concluding part of this book, Ming Tsuang, Levi Taylor, and Stephen
Faraone give a brilliant perspective on the methodological and ethical challenges
that psychiatric genetics will face in the future.

Psychiatric Genetics: Methods and Reviews tells the very beginning story of a
complicated, yet promising, saga in the field of psychiatric genetics. The message
is clear: it will not be possible to unravel the complexities of psychiatric genetics
unless we can precisely identify the phenotypes involved.

Marion Leboyer, MD, PhD

Frank Bellivier, MD, PhD
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Analytical Methods Applied to Psychiatric
Genetics

Elena L. Grigorenko and David L. Pauls

1. Introduction

The development of gene-mapping methodology has not been a
linear process. Instead, this development has been multidimen-
sional, culminating in the creation of a powerful and heterogeneous
collection of tools. A description of the history of the development
of this would include words such as “opportunistic” (i.e., capitaliz-
ing on the newest developments in computer technology and
genomics) and “problem-solving oriented” (i.e., constantly address-
ing issues (such as the spotted nature of linkage disequilibrium) that
arose during the development of the methodology). Therefore, the
following presentation is method-oriented rather than problem-
oriented. In describing the modern methodology of gene mapping,
attempts will be made to describe the origin of a given methodol-
ogy, the problems it was designed to address, and its known
strengths and weaknesses.

There are several ways to categorize current approaches to gene
mapping. One possible subdivision is whether a given methodology
is a linkage approach or an association approach. A second possible
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division would focus on whether a methodology deals with related
individuals (e.g., family members) or unrelated individuals. A third
possible division would consider the approaches dealing with
related individuals only, summarizing the methods on the basis of
the unit of analysis employed (i.e., the type and size of family
units—sib-ships, nuclear and extended families, distant relatives,
and so on). By necessity, these subdivisions are not exact because
of the nature of data collected from families. And as would be expect-
ed, there are modern methods that simultaneously evaluate linkage
and association, combine information from samples of related and
unrelated individuals, and utilize multiple types of relatives.

This chapter is organized as follows. First, linkage methods are
reviewed. Then, association study methods are summarized. And
finally, the strengths and weaknesses of both approaches (pitfalls
unique and common to both) are discussed.

2. Linkage Methods

Newton Morton is generally credited with initiating modern gene-
mapping methodology with the publication of the classic paper in
which he first introduced the lod-score method (1). The lod-score
method allowed an estimate of the position of a disease gene on a
map of markers by examining the likelihood of linkage given a spe-
cific genetic model and a specific recombination fraction. In later
modifications, it was possible to incorporate incomplete disease
allele penetrance and/or the absence of some key individuals in the
analyzed pedigrees. Lod (log of the odds) scores consist of the base
10 logarithm of the likelihood ratio of two hypotheses. The first
hypothesis postulates that a hypothetical gene is linked to a genetic
marker at a given distance determined by the recombination frac-
tion. The second hypothesis postulates no linkage (i.e., the recom-
bination fraction is assumed to be 0.5). The base 10 logarithm of the
ratio of the likelihoods of these two hypotheses is defined as the lod
score. A separate lod is calculated for a range of recombination frac-
tions. The test for linkage is conducted by examining the maximum
value of the lod score for this range of recombination fractions.
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The first lod-score test took the form of a sequential probability
ratio test (1). This test was ideally suited for a Mendelian, single-
gene mode of inheritance. In the early seventies, the method was
extended with the introduction of the Elston-Steward (2) algorithm
that allowed for complex inheritance (e.g., reduced penetrance) in
large extended pedigrees. This algorithm was incorporated into the
computer program LIPED (3). The development of LIPED and the
advent of faster computers transformed linkage analyses from a
time-consuming sophisticated “ordeal” into a common research
tool. A major limitation of LIPED was its capacity to deal with only
one marker at a time. Thus, a new set of programs (4) was developed
that allowed linkage analyses of multiple markers simultaneously.

At the present time, most linkage analyses utilize multipoint strat-
egies. It is well-known that these methods increase power when
analyzing both Mendelian (4) and non-Mendelian (so-called com-
plex traits) (5). A number of additional methods have been devel-
oped that facilitate the analysis of the multipoint data that are
generated by studies performed at today’s accepted marker density
(10–25 cm marker spacing) (6). These methods include the exact
enumeration of multi-locus genotype probabilities in small pedi-
grees (7); estimation of such probabilities for pedigrees of any size
and of some complexity (8–10); and approximation of such prob-
abilities for pedigrees of arbitrary size (11).

Yet, the lod-score method is preferred for Mendelian traits with
(approximately) known inheritance parameters. However, the power
of lod-score methods is reduced (sometimes dramatically) when the
mode of inheritance (12–14), penetrance (15), and disease allele fre-
quency (16–17) are not known and therefore possibly misspecified.
Although this is a potential shortcoming of this method, it has been
shown that when lod-score methods are applied many times with
different modes of inheritance (e.g., dominant and recessive), a cor-
rect approximation of the mode results in lod scores that are gener-
ally superior to those obtained through other types of analyses (15).

Moreover, researchers have developed statistical methods that
appear to be robust to misspecification of selected parameters. For
example, a likelihood-based efficient score statistic (18) permits
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testing the null hypothesis of no trait locus in a given chromosomal
region. This statistic is asymptotically equivalent to the lod score, and
it generalizes to a class of statistics developed for a non-parametric
approach that examines only affected members of a pedigree
(7,19–21). One advantage of this approach is that in the absence of
complete information about the genetic model parameters, this sta-
tistic is easier to compute than the exact lod score. It does not require
likelihood maximization with respect to the unknown parameters.

Although parametric linkage approaches are continually devel-
oped and remain heavily used in the field, the main disadvantage of
these methods is that genetic model parameters (i.e., disease allele
frequency, mode of inheritance, and penetrance) must be specified.
By definition, this is not possible for complex (non-Mendelian)
traits. To overcome this dilemma, non-parametric linkage methods
have been developed.

Non-parametric linkage methods allow for the study of linkage
between a marker (or a set of markers) and a disease without the
need to specify the genetic model parameters for the trait under
investigation. In classical statistics, non-parametric methods refer
to methods in which observed values are replaced by their ranks. In
human linkage analysis, non-parametric methods refer to methods
in which parameters of disease inheritance are replaced by param-
eters of inheritance of markers hypothesized to be close to disease
loci. An entire constellation of computer software has been devel-
oped since the 1990s (for review, see http:\\linkage.rockefeller.edu).
This development capitalized on and was stimulated by progress in
methods for likelihood calculations (7,9,22,23). Considering that
the development of non-parametric methods started significantly
later than that of parametric methods, most of them have developed
the capacity to analyze both single and multipoint linkage data. For
example, methods implemented in programs such as ASPEX (24),
GENEHUNTER (7,25), and ALLEGRO (26) can utilize informa-
tion from all markers on a chromosome and render any point along
the chromosome as informative as possible.

It is important to remember, however, that the distinction between
parametric and non-parametric methods is not sharp. In fact, it has
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been shown that the affected sib-pair paradigm, a clearly non-
parametric method in which the only connection to the disease is
through the ascertainment scheme (i.e., families are studied in which
there are at least two affected siblings) and which bases all calcula-
tions on the sharing of markers between these two affected siblings
(i.e., no assumptions about parameters such as mode of inheritance
or disease penetrance are necessary), is equivalent to the lod-score
method when the latter is carried out under assumptions of reces-
sive inheritance with full penetrance and all parental phenotypes
are taken to be unknown (27,28). This implicit similarity is appar-
ent in the use of the ANALYZE program, which emulates affected
sib-pair analysis through lod-score analysis.

Whether parametric or non-parametric, linkage approaches uti-
lize family data (its various configurations—siblings, nuclear fami-
lies, or extended families) with the purpose of estimating the
relevant parameters such as recombination fractions (map distances)
in intervals between gene loci given certain sets of allele frequen-
cies. These estimations are accomplished by maximum likelihood
methods with recursive, family-based calculations of likelihood.

The most common procedures for numerical likelihood evalua-
tion are the Elston-Steward (2) and second the Lander-Green (1987)
(29) algorithms. The Elston-Steward algorithm (and its extensions)
is based on pedigree traversing (“peeling”) algorithms. With this
approach, pedigrees are split into portions that are handled recur-
sively, resulting in the evaluation of the full pedigree likelihood.
Procedures of this type have been implemented in such programs as
LIPED, LINKAGE, MENDEL, and VITESSE. The Lander-Green
algorithm carries out peeling over loci; this algorithm is imple-
mented in MAPMAKER, CRI-MAP, and GENEHUNTER. Thus,
the methods have reciprocal profiles—the first method allows for
the analysis of large pedigrees, but the number of gene loci that can
be analyzed simultaneously is currently limited (the computational
burden increases linearly with family size but exponentially with
the number of loci), whereas the second method allows for the
analysis of a relatively large number of loci in small pedigrees (the
computational burden increases linearly with the number of loci and



28 Grigorenko and Pauls

exponentially with pedigree size). In addition, the development of
the Markov chain Monte-Carlo methods of estimation of likelihoods
(9,30) has allowed the analysis of large families and large numbers
of markers (disease genes).

The common assumption for all these methodologies is that there
are genes of major effect that “cause” the disease in question.
Although this assumption has been modified to some degree in some
of the software packages (e.g., the assumptions of heterogeneity
within families (for example, as implemented in HOMOLOG and
HOMOGM) and varying penetrance), it has limited investigators in
the range of genetic systems that can be examined. For the most
part, all analytic models are restrained to isolated chromosomes,
treating multiple disease loci as if they were independent of each
other.

This limitation has been recently addressed by a number of
researchers interested in understanding the genetic etiology of com-
plex traits. As noted here, by definition, complex traits are non-
Mendelian, and thus are most likely influenced by multiple genetic
and non-genetic factors. It is hypothesized that susceptibility to dis-
ease results from gene-gene and gene-environment interactions.
In fact, the majority of medically and developmentally interesting
traits are complex traits that are best conceptualized as quantitative
rather than categorical. Methods developed to facilitate the identi-
fication of genomic locations of loci contributing to quantitative
traits attempt to estimate the variance components associated with
individual loci. Usually, such estimations are carried out using the
concept of measured-locus heritability. There has been some debate
in the literature as to whether there is a universally unbiased esti-
mate of heritability and whether this estimate can be obtained (31–33).
At the present time, there are no universally accepted measured-locus
heritability estimates. The choice of an ideal estimator is a function
of the sample size and magnitude of the locus-specific contribution to
the overall phenotypic variance. Fortunately, the observed biases result-
ing from the use of different estimators are small, and, thus, this short-
coming should not be viewed as endangering overall outcomes of
quantitative trait-linkage analyses.



Psychiatric Genetics: Analytical Methods 29

There are two major classes of methods used for the identifica-
tion of quantitative trait loci (QTLs), although arguably, the divid-
ing line is artificial. The first class of methods is based on the
regression of trait differences between sib-pairs on the number of
alleles shared identical by descent (IBD) at a locus being tested (34).
As noted, this approach is confined to sib-pairs and is not applicable
to data collected from larger pedigrees.

The second class of approaches is based on classical variance-
component analysis. This technique simply separates the total vari-
ance into components because of genetic and environmental effects
(35). The first application of this approach to linkages analysis was
developed by Hopper and Matthews (1982) (36). The focus of the
method is in modeling an additional variance component for a
hypothesized QTL near a marker site and establishing linkage to the
marker in the presence of a statistically significant nonzero value
for the QTL component (a relative size of the component is inter-
preted as an indicator of the magnitude of the effect of a detected
locus).

Early implementations of the variance-component methodology
were based on analysis of only one or two markers at a time
(37–39). Then the methodology was extended to multipoint applica-
tions (11) and further strengthened by the added power of an exact
multipoint approach (40). A number of simulation studies have dem-
onstrated that the variance-components approach appears to be more
powerful than the Haseman-Elston regression approach (11,41–44).

Demonstrating linkage between a disease gene and a marker is
only the first (and, sometimes the smallest) step in the process of
cloning the gene of interest. Traditionally, after establishing link-
age, further recombination mapping techniques have been applied
to narrow the region of interest. However, recombination mapping
has not yielded significant success for complex traits in refining the
region once it has been reduced to one or two megabases, since it is
improbable that recombinants will be observed in extant family
material (45). To address this challenge, researchers have devel-
oped a number of other methods. One successful approach is based
on the observation that ancestral recombinants can produce a
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predictable pattern of linkage disequilibrium between the disease
gene and a set of markers spanning the critical region (46–48).

3. Association Methods

Whereas linkage analysis focuses merely on the position of a
tested marker, association methodology tests whether a particular
allele of a marker, a specific genotype, or a haplotype is enriched in
(or statistically associated with) affected individuals compared with
unaffected controls. In other words, genetic association studies
evaluate the relationship between genetic variants and trait differ-
ences in a general population.

Association is observed either because the genetic variant being
examined is a functional variant of a gene or the marker is in link-
age disequilibrium with a susceptibility gene. When two markers
are in linkage disequilibrium (LD), alleles at one locus will show a
strong statistical association with alleles at a nearby locus, whereas
alleles at distant loci will show no association. If one of these loci is
a susceptibility gene, an association between an allele at the first
locus and the disease being investigated will be observed. This cir-
cumstance forms the basis of LD mapping. The intuitive basis of
this method is that specific alleles at loci that were immediately
adjacent to the disease locus when it arose (through mutation) will
tend to remain on the same chromosome as the disease locus
(because of the paucity of recombination events), and thus will be
transmitted together with the disease locus from generation to
generation.

The genetic association study design has a controversial history
in genetic research. Nevertheless, its popularity has grown remark-
ably during the last few years. The major reason for this growth is
the increased number of genetic polymorphisms available to investi-
gators. Ten years ago, the paucity of markers available to researchers
made association studies tenuous at best. However, technological
advances over the last 2–3 yr have resulted in the identification of
nearly 2,000,000 DNA polymorphisms (49–50) and LD mapping
studies are now becoming more feasible. Furthermore, with the
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development of more efficient high-throughput genotyping meth-
ods, a growing understanding of the underlying structure of the
complex phenotypes and the continued development of statis-
tical methods, association approaches have become even more
attractive.

The analysis of LD has been widely used for fine-genome map-
ping and has proven to be fruitful (see ref. 51 for theoretical sup-
port for the empirical success). These successful applications have
included (but have not been limited to) simple disequilibrium
mapping, examination of the pattern of pairwise disequilibrium
between the disease gene and each of a set of markers (48,52),
likelihood-based analyses (46,53,54), and haplotype fine mapping
(55).

The goal of all these methods is to identify the precise disease-
causing DNA variant(s) in a region that is known to be linked and
associated with a disease. Within a targeted region, two association
strategies are common: a positional candidate approach and a posi-
tional cloning approach. Within the positional candidate approach,
specific genes or variants are examined on the basis of proposed
relationships with the phenotype. Within the positional cloning
approach, markers are selected for evaluation purely on the basis of
their proximity to one another on a chromosome. These two types
of positional searches are usually preceded by replicated linkage
data, which typically narrow a region of interest to 1–10 cm. Both
positional strategies have been successfully employed in the
searches for genes in fully penetrant gene disorders such as cystic
fibrosis and Huntington’s disease (48,56,57). However, the appli-
cation of these strategies has been less useful in complex disorders.
A possible reason for this lack of success is that complex disorders
are likely to be caused by multiple genes of moderate/small effects,
making identification of the underlying genes more difficult. One
of the pitfalls of the research on complex disorders using the LD
method is our limited understanding of the extent to which LD
occurs across the genome (58). Specifically, there may be a region
in which only one functional variant may be relevant to the disor-
der, but LD could be present across multiple markers in the region,
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making the task of “closing in on” the variant of interest much more
challenging (59).

Two design strategies are employed in most association linkage-
disequilibrium studies: population case-control designs and family-
based association designs.

3.1. Case-Control Studies

The case-control design is the most frequently used design of
association studies. The advantage of this design lies in the fact that
cases are readily obtained, and can be efficiently genotyped and
compared with control populations. The disadvantage of this
approach is the difficulty in identifying an appropriate group of
matched control cases. It is essential to establish an appropriate con-
trol sample, because any systematic allele frequency differences
between cases and controls can appear as disease associations—
although these may actually result from a number of other factors
including but not limited to evolutionary history, group (e.g.,
ethnicity and gender) differences, and cultural traditions (e.g., mat-
ing customs).

The case-control design has been widely used, and its weaknesses
are well-known. Specifically:

1. Association studies are often characterized by high rates of Type I
(false-positive) errors—a statistically significant association
between a phenotype and a polymorphism resulting from random-
ness in ascertainment of the case and control individuals. The dan-
ger of Type I error is increased in situations of multiple tests and
relatively small sample sizes of case and control individuals. One
reason for a Type I error is population stratification—a characteris-
tic of a population in which cases and controls differ, not only with
respect to the phenotype of interest and its genetic etiology, but also
with respect to their overall population genetic ancestry (i.e., their
general range and frequency of polymorphisms). The result of
population stratification is that many irrelevant markers appear to
be disease-associated.

2. In the presence of genetic heterogeneity, in which there may be
many distinct and potentially interacting environmental and genetic
risk factors, it is likely that no single tested genetic marker will pre-
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dict  disease accurately enough to be statistically apparent within
the cost-effective limitations of a single study. Thus, at the present
time, sample sizes may be too small to detect real associations.

3. Since association studies usually test many polymorphisms, the
majority of them utilize conservative multi-test corrections (e.g.,
Bonferroni correction for N tests with a target per-test statistical
threshold of p-value). However, there is no clear understanding of
the magnitude of the Type II error (missed signal error) imposed
by such corrections. These corrections may be especially detrimen-
tal for alleles with small main but large interactive effects.

4. Another source of false-positive findings is “cryptic relatedness”
(60)—an association between affected individuals sharing a genetic
disorder. In the presence of cryptic relatedness, test statistics for
case-control studies are likely to be inflated, relative to expecta-
tions, under the assumption of an independent sample and no
genetic association with the disease.

5. Since LD appears to be variable over the genome, the current sta-
tistical procedures may not be sensitive enough to allow for the ade-
quate evaluation of statistical significance of specific regions of
interest.

Although the limitations of association studies are well-
recognized, the association design represents an essential step in the
identification and description of disease-mediating genetic variants.
In the last several years, a number of proposals in the literature have
been made, which should help to overcome some of the limitations
of case-control studies. These are summarized here.

Cardon and Bell (59) suggest that the most appropriate way to
ascertain a control sample is through a prospective cohort study.
This approach requires the ascertainment of a large population
sample of individuals, selected before the onset of disease, who are
then followed prospectively until onset of the disease of interest.
After the disease has manifested in some individuals, a group of
affected individuals would be chosen and matched to a group of
unaffected individuals who are part of the same original population
sample. Although this approach may be feasible for disorders with
relatively early onset, it would be prohibitively expensive for dis-
eases of late onset.
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Another possible way to approach the problem of stratification
would be the recruitment of several control populations reflecting
the various substructures that may exist in the case population. For
example, one control population could be matched with the case
population for age (to account for cohort-specific mating, migra-
tion, and other effects), whereas another control population could
be matched with the case population for geographic location. The
results of such multiple matching would be the comparison of the
case population with a panel of subpopulations representative of the
observed stratification.

Another very important consideration in designing an associa-
tion study is that of power. Simply stated, for association studies to
succeed, the samples should be large. This point has recently been
vividly demonstrated in studies on the role of polymorphisms
around the angiotensin l-converting enzyme (ACE) locus and its
contribution to the risk of cardiovascular disease. One of the early
publications on the role of this gene was conducted on samples of
hundreds of men who had survived myocardial infarction and
matched controls (61); it was reported that the ACE locus played a
role in the risk of particular subgroups to cardiovascular disease. A
series of replications, carried out with even smaller sample sizes,
produced variable results (62). The hypothesis was then tested on
samples involving thousands of individuals, and was not verified
(63). Thus, for association studies aimed at identifying genes of
moderate effects, samples should be comprised of thousands or even
tens of thousands of individuals (also see ref. 64, for research on
diabetes). There are very few association studies in which sample
sizes approach the ones cited here. If samples of this magnitude
were studied, it is likely that the number of unreplicated results
would probably decrease (59).

One important advantage of case-control association studies is
that DNA samples from cases and controls can be pooled and geno-
types can be grouped together to determine differences in allele fre-
quency across groups of affected and unaffected individuals. This
technological advancement, recently applied in a number of
contexts (65–67), must be extremely precise—the difference in
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allele frequencies can be quite small and an experimental error of
1–2% can be high enough to jeopardize the outcome. When it is
accurate, this technology allows rapid processing of samples from
many individuals. However, its application is limited because it does
not lend itself to direct haplotype assessment.

Although much work has been devoted to the development of
research designs and analytic strategies to minimize Type I errors,
it should be noted that the best way to confirm results is through
independent replication. For example, Emahazion et al. (68) argue
that Type I errors should be accepted as inevitable. These research-
ers suggest that association studies should be viewed as a way to
screen large numbers of genes or markers, and that statistical thresh-
olds should be chosen that would help identify genes of moderate-
to-large effects. They further propose that there should be
widespread efforts to replicate these findings. In addition, in an
attempt to minimize the false-positive load, the association studies
should be designed to minimize the clinical and population hetero-
geneity and to maximize the utilization of markers with known func-
tional importance.

Although it is inevitable that there will be false-positive results,
efforts should be made to attempt to minimize them. One recent
approach has been suggested by Devlin and Roeder (60). These
investigators have described a population-based association method
using what they describe as a “genomic control” (GC). This method
should help to minimize Type I errors that are caused by inappropri-
ate matching of cases and controls. This method is designed to
address two major problems that are characteristic of association
studies—population stratification and cryptic relatedness. The
method requires the additional genotyping of markers that are
unlikely to affect liability (null loci). Chi-square statistics are calcu-
lated for both null and candidate loci. Utilizing the information on
the variability and magnitude of the test statistics observed at the
null loci, which are inflated by the impact of population stratifica-
tion and cryptic relatedness, a multiplier is derived to adjust the criti-
cal values for significance tests for candidate loci, permitting
analysis of stratified case-control data without an increase rate of
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false-positives. If population stratification and cryptic relatedness
are not detected from null loci, then the GC method is identical to a
standard test of independence for a case-control design.

As previously mentioned, there are limitations to the case-
control design. Yet it is clear that this paradigm can be a powerful
tool to demarcate the genetic region of a disease-predisposing gene.
As Jorde et al. (69) have argued, the application of association meth-
odologies is especially useful in the case of markers that are tightly
linked to a disease gene, when other mapping techniques become
difficult. Yet given the variability of LD across the genome, once
recombination distances between marker and disease genes become
very small, accurate estimates of map position may become very
difficult or impossible (70).

In summary, case-control studies should be considered to be one
of several tools that may be useful in identifying susceptibility loci.
It is unlikely that they will allow the identification of all genes of
interest without other tools. Yet they may be very helpful in combi-
nation with other approaches, and they could be particularly helpful
in situations in which the disorder under investigation has relatively
late onset, making it difficult to obtain the family materials that are
essential for other strategies.

For investigators who are considering case-control design, cer-
tain recommendations should be considered. First, the study should
be designed to minimize population substructure. Second, when
highly stratified populations are chose, every effort should be made
to describe the substructures as much as possible and account for
them in the ensuing statistical analysis. Third, if there is any doubt
as to whether the sample being investigated is stratified, investiga-
tors should select null loci with common alleles and genotype them
so that the GC approach can be utilized.

3.2. Family-Based Studies

An alternative approach for association studies that uses nuclear-
family data to estimate control-marker allele frequencies was intro-
duced by Rubinstein and colleagues (71), Field and colleagues (72),



Psychiatric Genetics: Analytical Methods 37

and Falk and Rubinstein (73). The main objective for the develop-
ment of this approach was to address the problem of population
stratification caused by the ethnic mismatching between patients and
randomly ascertained controls.

This approach is sometimes referred to as AFBAC (affected fam-
ily-based controls), and is based on the assumption that the parental
marker alleles that are not transmitted to an affected child can be
used as control alleles. This matched design for patient (parental
transmitted) and “control” (parental non-transmitted) marker alle-
les avoids ethnic confounding in the case of a stratified population
(74–75). Thomson (76) demonstrated that for any single-locus
model of disease susceptibility and for any nuclear family-based
ascertainment scheme, the family-based association tests are an
appropriate method for mapping disease genes.

If the “control population” is constructed from the non-transmitted
parental alleles, a statistic known as “haplotype relative risk”
(HRR—the family-based equivalent of the odds ratio or relative risk
for rare diseases in a case-control study) can be computed if it can
be assumed that there is random mating and that the population is in
Hardy-Weinberg equilibrium (71,73,75,77–83).

Ott (78) discussed the statistical properties of the HRR in relation
to the null hypothesis being tested. When random mating is
assumed, the HRR statistic is equal to 1.0 when (1) there is no asso-
ciation between the marker and disease loci at the population level,
(2) the marker and disease loci are unlinked, or (3) both (1) and (2)
are true. However, when HRR = 1, the application of the conven-
tional chi-square test is valid only under the assumption of random
mating and when both (1) and (3) are true. If mating is nonrandom,
the valid test for the condition (2) is the McNemar test, a statistic
used in the evaluation of the “the transmission/disequilibrium test”
(TDT) discussed here.

There has been considerable debate in the literature as to whether
tests by HRR, contingency table, or McNemar statistics are tests of
linkage or association (84–86). Thomson (76) has argued that none
of these tests are association or linkage tests, according to the tradi-
tional definitions of these terms. He stated that these family-based
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analyses allow detection of associations of marker genes in the pres-
ence of linkage to a disease gene, and therefore necessitate both
association and linkage. A number of researchers (69,87) have noted
that the requirement of association at the population level is usually
a much more stringent condition than a requirement of linkage.
Moreover, when there is no recombination in a randomly mating
population, the quantities evaluated by HRR and contingency-table
statistics can be compared to those obtained in case-control associa-
tion studies. Terwilliger and Ott (79) demonstrated that when ran-
dom-mating assumptions can be made, the contingency-table
statistic is slightly more powerful than the HRR or McNemar tests.
Only with large population stratification effects is the power of the
McNemar test larger than that of the contingency-table test (76).

The family-based association paradigm has been extended to
allow the incorporation of additional family members. For example,
Field (88) and Thomson et al. (89) extended this approach to nuclear
pedigrees ascertained for the presence of at least two affected sib-
lings. In this design, the alleles that are not transmitted to either sib
in the affected sib-pair are used as “control” alleles. Using the
AFBAC approach for families with two affected siblings, Thomson
and colleagues (89) showed a significant association between the class
1 allele of the 5' flanking polymorphism of the insulin gene and insulin-
dependent diabetes (IDDM). Notably, affected-sib-pair-haplotype-
sharing data showed no evidence of linkage to this marker (90).

Another application of this general approach is the transmission
disequilibrium test (TDT) (81–82). The development of the TDT
was motivated by the need to have a test of linkage in the presence
of LD. However, it has been primarily used as a test of LD (91–92).
The TDT has gained tremendous popularity because of its low com-
putational demand and the fact that it is applicable to the most com-
mon study design used in complex diseases—that of affected and
discordant sibling pairs (93–98). Further developments in TDT
approaches resulted in inclusion of a number of additional statisti-
cal tests allowing investigation of maternal vs paternal marker asso-
ciation effects; marker associations that are genotype-dependent,
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and maternal/fetal interaction effects, both allele- and genotype-
specific (76).

Seltman, Roeder, and Devlin (99) have developed a strategy
known as “evolutionary tree-TDT” (ET-TDT) by combining the
theory of TDT with that of measured haplotype analysis (MHA)
(100). MHA utilizes the evolutionary relationships among
haplotypes to produce a limited set of hypotheses with regard to a
subset of haplotypes. Thus, ED-TDT screens available haplotypes,
clusters them, and points to the ancestral ones, which are especially
useful for the determination of which polymorphisms within the
haplotype are related to disorder liability. Finally, another very
recent extension of the TDT for discrete traits includes the genome-
wide analyses of SNPs (101).

Researchers (102) have compared the efficiency of the GC
approach and the TDT method in the presence and absence of pop-
ulation stratification. When population substructure is absent,
GC is found to be more efficient than TDT. In the presence of strati-
fication, the GC method is an effective way to control for false-
positives. Yet another advantage of GC is its applicability to the
data obtained from small isolated populations, in which cryptic
relatedness is often present (kinship is often established even
between apparent non-relatives).

One disadvantage of the TDT is its reliance on heterozygous par-
ents. Because not all parents will meet this criterion, many may have
to be eliminated from the analyses, and this can result in a substan-
tial loss of statistical power. In addition, these family-based
approaches (including the TDT) require parental data that may not
always be available, especially for disorders with late onset. Thus,
although they are more robust in the presence of population stratifi-
cation, the family-based methodologies are often less practical. Fur-
thermore, in the presence of high homozygosity in families of
affected individuals, these approaches could require sample sizes
even larger than those for case-control studies to achieve adequate
power.

Another disadvantage of the family-based approaches in general
is that transmissions are sometimes difficult to resolve when parents
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and offspring are all heterozygous for the same bi-allelic marker.
To address this problem and increase definitive transmissions, sev-
eral authors have proposed the use of haplotypes (103-108). With
the exception of cases in which the markers being tested are func-
tional variants of the susceptibility gene, transmissions from par-
ents to offspring are more informative for haplotypes than single
markers. However, it should be noted that using haplotypes
increases the degrees of freedom of the test and thus reduces the
power of the test.

In addition to the HRR and TDT, researchers have developed a
number of statistical techniques to test for a marker/disease associa-
tion by using nuclear-family data. In all of these approaches, con-
tingency table analyses are used to examine the distribution of
specific parental alleles among affected individuals.

Assuming random mating and no marker association with dis-
ease, a contingency table of parental transmitted vs non-transmitted
alleles can be compared by means of the chi-square statistic
(72,79,81,88,89). However, when there is evidence for non-random
mating, the McNemar test can be applied to test deviations from the
expected 50% transmission ratios of marker alleles from heterozy-
gous parents (74,75,79,81,82,88,109–111).

Ott (78) and Knapp et al. (77) have demonstrated that the utiliza-
tion of nuclear family-based data in the framework of association
studies confounds tests of association and linkage. Family-based
association studies will detect marker/disease associations only if
the marker and disease genes are in LD. A number of comprehen-
sive statistical packages have been developed that combine para-
metric and non-parametric linkage and disequilibrium analyses
(112). For example, Göring and Terwilliger (16-17) estimate a test
statistic that consists of three components: (1) linkage within sib-
ships, (2) linkage between sib-ships, and (3) association between
pedigrees. Unfortunately, at the present time, most of these meth-
ods are limited to studies in which the phenotypes are categorical.

As is the case for other analytic methods, the development of the
association methodology for quantitative traits has lagged behind
(32,113). Yet several developments should prove helpful in the
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study of complex quantitative phenotypes. Allison (114) proposed
a method for detecting linkage disequilibrium in proband/parent
pairs for quantitative traits, and Rabinowitz (115) has extended this
method to incorporate data from families. Subsequently, Fulker and
colleagues (116) described a variance component model for the
analyses of quantitative data generated from sib-pairs (in the absence
of parental data). This method provides tests of linkage and associa-
tion separately. Cardon (117) extended the model developed by
Fulker et al. by describing a regression model for the analysis of LD
in quantitative traits. One advantage of this extension is its relative
ease and speed of application. And finally, Abecasis, Cardon, and
Cookson (118) have extended Fulker’s method to allow for sib-ships
of any size, with or without parental data. With this approach, asso-
ciation is partitioned into two categories: between and within family
components. One advantage of this method is that using families
with multiple siblings can increase power. This extension is quite
useful from a practical point of view. It is to be expected that in any
study there will be families of variable sib-ship sizes and occasional
missing parents. This method allows the use of all data collected.

In sum, association studies (whether case-control material or fam-
ily-based) have both strengths and weaknesses. The eventual suc-
cess of such studies is dependent on a more complete understanding
of the distribution of LD across the genome, among other things.
Given the information that has become available from the Human
Genome Project, it is clear that more challenges remain in our
attempts to identify genes of import for complex psychiatric traits.
It is quite possible that new discoveries may challenge or strengthen
some assumptions regarding association methodology. Neverthe-
less, association studies can be a valuable tool in identifying sus-
ceptibility genes, and can also help us to understand how the genome
is organized and how it functions. However, as with any approach,
this method must be applied with care. Investigators must be aware
of the potential weaknesses in the results obtained and interpret their
data accordingly. Caution and careful interpretation should be the
mantra of all scientists, and this is especially true for researchers
who study the genetics of complex psychiatric disorders.
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3.3. Association Approaches Using Single-Nucleotide
Polymorphisms (SNPs)

As noted, in order for association studies to be successful, a large
number of closely linked markers spanning the regions of interest
must be genotyped in order to demonstrate LD with the susceptibil-
ity gene. And this must be done inexpensively. Single-nucleotide
polymorphisms (SNPs) (119–120) are a recently discovered class
of polymorphisms that have been suggested as the markers of choice
for such endeavors. SNPs are the most frequent type of variation in
the human genome; the SNP refers to a position at which two alter-
native bases occur at appreciable frequency (>1%) in the human
population. SNPs can be powerful tools for a variety of medical
genetic studies (although individual SNPs, which have only two
alleles, are less informative than currently used genetic markers
(SSLPs—simple sequence-length polymorphisms), which are
mostly multi-allelic), since they are much more abundant and the
automatization of their processing can be done more easily than that
of SSLPs (121).

SNP-based studies can be completed on either case-control or
family data. The typical design of such a study relies on genotyping
of a number of SNPs from candidate genes or regions (particularly
those with hypothesized functional importance) in relatively large
samples of affected and control participants gathered from families
or specific populations. By genotyping many SNPs in a small
region (or gene), it is likely that LD will be observed. It has been
suggested that this approach should have the potential to identify
common alleles that confer a twofold increased risk of disease.
However, a number of investigators have suggested that this may be
an optimistic prediction (122–127). The major concerns are:
whether such common pathogenic variants exist for diseases of
interest, and if so, whether sufficiently dense and powerful scans
could be conducted given the diverse nature of human populations
and the variability in the nature and extent of linkage disequilibrium
across the genome (68).

As mentioned here, a generally accepted strategy in the mapping
of a disease gene is to initially apply linkage analysis for an approx-
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imate estimate of the location of the trait gene and to subsequently
make use of linkage disequilibrium (association) for a more accu-
rate localization. This general strategy is based on the assumption
that disequilibrium extends over much shorter distances from a dis-
ease gene than linkage. The efficacy of this strategy has recently
been challenged by the suggestion that, with a large number of SNPs
available, it would be possible to localize disease genes with the
disequilibrium mapping approach alone (e.g., by means of case-
control studies). This assumption has not yet been empirically sup-
ported—no studies have used SNP LD strategy to map a disease
gene. However, a number of theoretical investigations have explored
efficiency, cost-effectiveness, and methods for this strategy.

One of the lines of such theoretical investigations involves the
question of how many such markers exist on a genome-wide basis.
This question can be reformulated in terms of the extent of LD in
the genome—how rapidly does disequilibrium decay with the dis-
tance from the disease gene growing longer? An early estimate (128)
was that, in large outbred populations, disequilibrium should be
detectable within 100 kb of a disease locus. A later study that was
based on a review of the published literature presented a more posi-
tive approach, suggesting that the distance is 300–500 kb (129). A
recent computer simulation predicted an extremely short range of
useful disequilibrium—3 kb (124). Such dramatic differences can
be directly translated into associated costs—according to the first
two estimates the required number of SNPs would be 30,000–
100,000, and results from the third study suggest that 500,000 of
SNPs would be needed.

One possible solution to the problem of not knowing the number
of markers necessary to map a gene may be to select affected indi-
viduals from populations in which the extent of disequilibrium is
greater than average. The literature contains some evidence sug-
gesting that isolated populations are more advantageous for asso-
ciation mapping (130–131). However, this assumption has been
challenged. Several examples have been published in which it
appears that the extent of LD is either the same or only slightly
higher in small, isolated populations as compared to large, outbred
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populations (132–133). Although many factors may contribute to
variability of the extent of LD in isolated populations (e.g., their
histories, size, and current status), Ott (134) suggests that they
appear to be of great inportance in association studies, especially
when candidate genes are available.

3.4. Pitfalls of Current Gene-Mapping Methodologies

Whether conducting linkage or association studies, a number of
factors make modern methodologies vulnerable to error.

3.4.1. Genotyping Errors

With the increased availability of markers (both SNPs and more
conventional markers), the impact of genotyping error on the out-
comes of different analytic methods is significant. Several authors
have proposed methods to identify pedigrees and/or individuals with
marker errors (135–140). Usually, an error is identified if it leads to
a Mendelian inconsistency. However, Gordon et al. (141–142) have
shown that under these conditions error detection rates are quite
low, ranging between 25% and 30% (the detection rate is lowest
when the two marker alleles have equal frequencies) when the true
error rate is actually 3–4× higher. Clearly, better error detection is
needed. On the other hand, a more economic approach may be to
incorporate the allowance for errors into the analysis (143) as origi-
nally proposed by Keats et al. (144).

3.4.2. Map Misspecification

One of the major difficulties in the field at present is the degree of
uncertainty in estimates of between-marker distances. Moreover,
even when the distance is known, its estimate usually comes from a
single source, and thus is usually a sex-averaged estimate. It is well-
known that recombination rates differ in males and females (145)
and they vary across different regions of the genome (146). Obvi-
ously, map misspecification can lead to lod score bias. Several stud-
ies have investigated the impact of map misspecification on linkage
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and LD analyses (147–149). Most recently, Daw, Thompson, and
Weijsman (150) have investigated map-misspecification bias (the
discrepancy between the true lod score and the score estimated
under incorrect map) in multipoint linkage analysis. These investi-
gators reported that, in the presence of true linkage, any map
misspecification causes a negative bias in lod scores, resulting in a
loss of power to detect linkage. In the absence of linkage, map
misspecification can cause positive or negative bias. Specifically,
the utilization of the sex-average map results in a positive bias; so
does overestimation of the distance. Underestimation of the distance
results in a negative bias.

3.4.3. Allele-Frequency Misspecification

Genetic linkage and association analyses are highly sensitive to
estimates of allele frequencies. Specifically, underestimation of
allele frequencies can lead to false linkages, whereas overestima-
tion can lead to reduced power (13,151–152). Allele frequency
misspecification is especially dramatic for association and linkage
studies performed on conglomerates of families (or case/control
participants) of different ethnic origins. Several approaches have
been proposed to address this problem. Specifically, when the ana-
lyzed sample is comprised of participants/families of different ori-
gins, one solution is to utilize published allele frequencies for each
source population (i.e., populations whose representatives are
present in the stratified sample), and, assuming that these published
frequencies contain some error, “shrink” subpopulation estimates
toward some common values (153–154). Lange’s approach utilizes
the empirical Bayes estimator for allele distributions and estimates
the degree of allele frequency heterogeneity for a locus of interest,
shrinking subpopulation-specific allele frequencies toward their
pooled estimates as a function of the estimated subpopulation het-
erogeneity. Lockwood et al. (155) have extended Lange’s approach
by incorporating prior information about allele frequencies and
interpopulation divergence into empirical Bayes analysis. This
approach is implemented in the program ALLDIST.
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3.5. Proportion of SNPs to Other Markers
in Genome Screens

Chapman and Wijsman (156) have carried out a simulations
analysis comparing diallelic markers and multiallelic markers in
terms of sample sizes required for detection of LD (with the utiliza-
tion of a single-marker locus in a case-control study for rare mono-
phyletic diseases with Mendelian inheritance). These authors have
demonstrated that multiallelic markers are more powerful for the
detection of LD compared to diallelic markers, and that the ratio of
the number of diallelic to the number of multiallelic markers, needed
for equivalent power increases with mutation age and complexity in
the mode of inheritance. In short, it takes many more diallelic markers
than multiallelic markers to detect LD in a reasonable sample size.

3.6. Multiple Comparisons

The issue of multiple comparisons has long been the focus of
attention of statisticians and epidemiologists, and there has been
considerable debate about which corrections are appropriate. At one
extreme is the position that the concern over multiple comparisons
should not be an issue at all, and therefore does not require consid-
eration (157). At the other extreme is the position that correction for
multiple comparisons should be performed in all analyses, whether
or not there were multiple comparisons in the reported analyses
(158–159). And, of course, there are many positions between the
two extremes.

This issue is important because of the rapidly approaching period
when thousands of markers (SNPs and others) will be typed on the
same sample. Thus, although it will be possible to significantly
increase the number of markers typed, there are only a finite num-
ber of cases available for research. And as Lander (122) has pointed
out, significantly increasing the number of comparisons requires a
significant increase in the sample size studied. Although the magni-
tude of the increase in sample size is being debated (160), it is clear
that more cases will be needed as the number of markers being
genotyped increases.
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3.7. Significance Level

Because a large number of markers are tested in genome-wide
screens, Lander and Kruglyak (158) suggested that the point-wise
(marker-specific) significance should be set at 0.000023 to correct
for multiple comparisons. This p-value corresponds to a lod score
of 3.6. The threshold results from the assumption that there is no
disease gene when calculating the expected rate of false-positives.
Thus, this approach has been challenged as being over-conservative,
since it has been argued that researchers do not undertake linkage
analyses unless there is strong evidence that genetic factors are
important in the expression of the disorder being studied.

Several investigators have proposed methods for more accurately
determining significance levels. Lucek and colleagues (161) intro-
duced a methodology to investigate the inheritance of all markers
jointly over the whole genome. The methodology unfolds as fol-
lows. For each parent in a set of affected sib-pair families, it is
determined whether the parents pass on the same or a different
allele to the two offspring. Under Mendelian inheritance, without
influence of any disease loci, these two events have equal proba-
bilities. However, under the assumption that the disease marker is
located close to a disease locus underlying the trait in the two
siblings, allele sharing is expected to occur with a probability higher
than 1/2. The goal of the methodology is to compare two sets of data,
the observed allele-sharing data and randomly generated data that
are known not to contain disease loci. The comparison is carried out
by means of nonlinear discriminant analysis. The resulting weights
are then used to construct a measure identifying the set of marker
loci that jointly show deviations from random allele sharing.

Hoh and Ott (162) have developed a so-called scan statistic that
is designed to combine information on multiple contiguous genetic
markers used in a genome screen for susceptibility loci for various
types of patients (e.g., sib-pairs, nuclear families, or case and con-
trol participants). This statistic can be calculated for a given length,
and its significance can be assessed by a Monte Carlo permutation
test. Multiple significance values are computed for statistics of given
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lengths and then compared so that the smallest observed p-value is
treated as the statistic of interest (for which the overall level can be
determined). Illustrating this statistic, Hoh and Ott analyzed a 324-
marker dataset obtained through a 10-cm-wide genome screen of
autism affected-affected and affected-unaffected sibpairs. The ini-
tial single-marker screen did not result in any significant p-values.
Thus, having used a set of statistics of a number of lengths (10, 20,
30, ..., 100 cm), the smallest observed value was obtained for the
screen statistics calculated at 60 cm (p = .015). The overall signifi-
cance level for the statistic of this length was .038. The scan statistic
provides additional support for linkage above and beyond what is
conveyed by the maximum lod score; it is especially useful when a
susceptibility locus appears to be associated with multiple-marker
loci (a situation frequently observed in genome-wide searchers).
The scan statistic appears to be a useful tool in a number of designs,
but its application may vary depending on the population investi-
gated and/or the analysis utilized (e.g., it can be carried out with
larger genomic regions in the context of linkage analyses and
smaller genomic regions in the context of association analyses). The
statistic appears to have more power as a method to detect linkage;
however, once linkage has been established, it does not appear to be
as useful for narrowing a candidate region.

4. Back to the Beginning

As stated at the outset, the development of appropriate method-
ologies for the genetic analysis of complex neuropsychiatric dis-
orders has been, and will continue to be, challenging. This challenge
arises because over the last decade the technology for gene map-
ping has developed exponentially, and the volumes of genomic data
now available have required the development of new and innova-
tive computing capabilities. There is considerable ongoing devel-
opment in this area at the present time. Thus, it is very likely that the
methods reviewed in this chapter will become outdated very
quickly. A review of the major genetic journals—the American
Journal of Human Genetics, Neuropsychiatric Genetics, and
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Genetic Epidemiology, among others—reveals that there is at least
one significant methodological advance each month. It is anticipated
that there will now be an exponential increase in the analytic tools
necessary to understand the genotypic and phenotypic data that will
be generated.
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