
12
Motivation for Becoming Predictable

How often have you heard the expression, �We never have the time to do it
right but always have the time to do it over�? This theme is unfortunately
common for many companies developing software. While this mode of
operation may have been acceptable in the past, the global economy of the
new millenium is forcing companies to become more efficient. Those organi-
zations unable or unwilling to learn how to do it right the first time are going
to be left in the dust.

Software development in the twenty-first century is changing dramati-
cally. New paradigms such as �Extreme Programming� [1] and developing
software on �Internet time� [2] are putting increasing pressure on organiza-
tions to develop better software more quickly with fewer resources.

Do more with less. Software development organizations are developing
more products that are more complex and more difficult to create. To staff
up for new projects, organizations are competing, fiercely at times, for a lim-
ited pool of experienced people. The tight labor market for software develop-
ers and QA professionals is expected to continue well into the first decade of
the twenty-first century, since the demand for qualified people is expected to
far exceed available resources [3, 4]. Doing more with less means that there
are fewer people available for testing. So the testing that is done must be that
much more effective.

Do it faster. As a result of the global economy, many organizations
are now facing competition from new players in other parts of the world.
These new players are developing products faster and at lower cost. Further,

181



the ability to develop products on Internet time is affecting all businesses,
not just those that are developing software for the Web. Product
development, testing, and release cycles that once took years are being com-
pressed to months and sometimes weeks. So, not only do organizations
have to do more with less, they also have to do it faster. Doing it faster means
that the verification and validation activities have to be completed in less
time.

Do it with higher quality. Customers are becoming more demanding
and more selective in deciding which software products to buy. Unreliable
products with exotic features are less attractive than products that contain the
features customers actually need and are very reliable. Compressed schedules
and understaffed projects, coupled with the need to release very reliable
products, result in extraordinary pressures on people within development
organizations.

Organizations need a way to cope with these conflicting demands.
Doing more with less, doing it faster, and doing it with higher quality all
mean that there is little room for error. More than ever before, organizations
must learn how to get it right the first time. A predictable development
process is crucial to getting it right the first time.

The goal of predictable software development is simply to delight your
customers by consistently delivering what you promised when you promised
it.

Now let us look at why this is so important.

12.1 Introduction to Predictable Software Development

For every software project, management wants to know three things: (1)
when will coding be done; (2) when will testing be done; and (3) when will
the product be released?

These are legitimate questions for management to ask. Unfortunately,
when an organization is unpredictable, it is very difficult to provide accurate
answers to these questions. Why? Well, knowing with certainty when a prod-
uct will be released requires, among other things:

• A clear definition of what �done� means with respect to coding and
testing;

• A process for writing and reviewing requirements (so that developers
know what features to code and testers know what features to test);

182 Software Verification and Validation for Practitioners and Managers



• A process for designing software;

• A process for planning, estimating, and scheduling software devel-
opment activities;

• A process for planning, estimating, and scheduling software verifica-
tion and validation activities;

• A process for controlling changes to requirements, designs, code,
and tests;

• A staff that has been trained in critical skills such as accurate estimat-
ing and scheduling, requirements writing, project management,
inspections, verification and validation, and testing;

• A commitment from management to follow the process agreed to
for the project.

New projects often begin with great optimism�a naive expectation
that somehow this project is going to be different, that it will be successful.
For some reason, management expects that the outcome for new projects will
be different, even though the organization continues to use the same unpre-
dictable processes that resulted in failure on earlier projects.

After the initial euphoria ends, the hard reality sets in. The project team
quickly recognizes that the same unpredictable processes used on the last
unsuccessful project are being applied yet again to the new project. Lessons
learned from the previous failure have not resulted in any changes to the
process, because there was no management commitment to improve. Man-
agers and executives need to understand that having a predictable software
development process is vitally important to the long-term success of their
business.

Many software development organizations lack discipline. These
organizations either do not have or have but do not follow a written software
development process. As a result, they are not able to accurately predict when
key events (such as code complete, test complete, and product release) will
occur. What many companies fail to recognize is that various parts of the
organization need to know when things will happen so that:

• Marketing can plan product-rollout events;

• Customer service can alert customers to new software updates;

• Training can prepare updated course materials and schedule new
training sessions;

Motivation for Becoming Predictable 183



• Technical writers can prepare updates to online help and have
printed manuals ready for product launch;

• Managers can plan resource assignments for the next project.

As a result of the inability to predict when things will happen, many
software development organizations suffer from a lack of credibility. No one
believes dates from the development group, because it has never met a date.
As a result, management frequently sets (or allows to be set) unrealistic
release dates for products and makes (or allows to be made) unreasonable
commitments to customers.

As you might expect, the unrealistic dates set by management are rarely
met. This creates a lose-lose situation�your customers lose, since their plans
may be predicated on your unrealistic schedules and unreasonable commit-
ments, and your employees lose, since no one wants to be associated with a
project that fails.

On projects with unrealistic schedules, the schedule can only be
reduced so much (the time required to get the minimum feature set coded
and tested). Developers, being eternal optimists, fail to anticipate problems,
and coding frequently takes longer than expected. QA engineers fail to accu-
rately estimate how many tests are needed and how long it will take to write
and execute them. This problem occurs because most people have never been
trained in how to develop accurate estimates and build realistic schedules.
When development time expands, time for software V&V activities is
reduced (usually owing to a commitment made to a key customer to ship on
a certain date). When V&V tasks are cut from projects, the organization will
find fewer bugs and customers will find more bugs. This makes the QA staff
frustrated and customers unhappy. It also means that the organization will
need to do unplanned bug-fix releases.

Simply stated, the more predictable an organization is, the more likely
the software V&V activities discussed in Parts I�III of this book will be per-
formed. When those activities are performed, they will significantly increase
the ability of the organization to find and fix bugs before the software is
shipped to customers, thereby decreasing the need for unplanned, expensive
bug-fix releases.

Lack of predictability impacts your bottom line. Unplanned bug-
fix releases represent a significant cost to the organization, as shown in
Figure 12.1. Management determines how to use scarce and expensive
resources. You can decide to use these resources to deliver bug-fix releases,

184 Software Verification and Validation for Practitioners and Managers



which typically don�t generate any revenue, or to work on new features and
new products, which do generate revenue. The choice is yours to make.

Lack of predictability negatively impacts customers. In unpredictable
organizations, customers are unsure of when new products and updates to
existing products will be released. This makes it hard for customers to plan to
migrate to new software releases. Further, since unpredictable organizations
are unable to develop accurate schedules, they tend to release software with
far too many bugs, adding to customer dissatisfaction.

Lack of predictability negatively impacts employees. No one wants to be
associated with projects that fail. In unpredictable organizations, failed proj-
ects are the norm. And experience has shown that there is a very strong corre-
lation between customer satisfaction and employee satisfaction.

Predictable software development can be achieved when management
takes the lead to change the behavior of the organization. Management needs
to be focused on the elements identified in Figure 12.2.

To become predictable, organizations need to learn how to balance
quality, features, and schedule. While tradeoffs are made all the time, organi-
zations need to understand and assess the implications of these tradeoffs.
Further, organizations need to learn how to balance the needs of people,

Motivation for Becoming Predictable 185

$$ $$

How do you want to use your scarce, expensive engineering resources?

Develop new products Rework existing products

Generates revenue Doesn�t generate revenue

OR

Figure 12.1 The real cost of unplanned bug-fix releases.



process, and product. Tradeoffs here affect productivity as well as customer
and employee satisfaction.

Also required is the ability to manage commitments and to manage
risks. Managing commitments (internal and especially external) is essential so
that the organization can consistently exceed commitments. Many complex
software projects are fraught with risks. Risks on many software projects may
be tacitly understood, but all too often they are not actively managed. Effec-
tive risk-management skills can make the difference between success and
failure.

12.2 Characteristics of Unpredictable Organizations

How can you tell if your organization is unpredictable? Listed below are
some characteristics of unpredictable organizations.

• The organization frequently over-commits and under-delivers.

• Project schedules are consistently not met.

• Customer perception of product quality is low.

• It is difficult to plan for new product releases and product rollout.

• It is difficult to plan the resources required for future products.

186 Software Verification and Validation for Practitioners and Managers

Features Schedule Process Product

Quality People

Commitment management

Risk management

Predictable
software

development

Figure 12.2 Elements of predictable software development.



• Customer satisfaction is low and probably not being measured
regularly.

• Employee satisfaction and employee morale are low.

• Many unplanned bug-fix releases are needed.

• Revenue projections are frequently not met.

From working with dozens of companies, I have identified several root
causes of unpredictable behavior. These include:

• Unrealistic schedules. Unrealistic schedules can result from several
causes, including lack of training in estimating and scheduling,
allowing other organizations to set development and validation
schedules, and not keeping or using information from past projects
to help develop more accurate estimates.

• Poor project management. Software project management is a difficult
and unrewarding job. Project managers frequently become scape-
goats for failed projects. Good project managers are rare and worth
their weight in gold. Without a doubt, one of the most frequent rea-
sons that projects fail is due to poor project management. In many
cases, the root cause of this problem is not the project manager, but
rather, how management measures the project manager�s perform-
ance. Usually, project managers are measured on their ability to get
products released. Therefore, they will do whatever it takes to get the
product released, including cutting features and reducing quality.

• Crisis mentality. For many organizations, working in �firefighting�
mode is the norm. These organizations move from one crisis to the
next. It is a mystery how anything gets done. What we should have
learned by now is that working from crisis to crisis is not the most
effective way to use scarce, expensive resources. This mode of work-
ing frequently leads to burnout and frustration.

• Rewarding of wrong behaviors. In many organizations, management�s
goals and objectives are not aligned with the individual performance
goals and objectives of the staff. For example, in organizations where
management complains about poor product quality, you would
likely not find any mention of the word �quality� in the perform-
ance plans for the staff. Rather than encouraging the behavior that is
desired, management knowingly or unknowingly does the opposite.
For example, management inadvertently encourages firefighting

Motivation for Becoming Predictable 187



behavior by rewarding �heroes� who resolve the crisis-du-jour. In
fact, in organizations that work in crisis mode most of the time, in
many instances it is the so-called �heroes� who frequently cause the
crises in the first place.

• Lack of measurement. Many organizations are unable to measure the
amount of effort required to develop, document, and test a software
release. Some organizations are unable to answer basic questions,
such as how big is the product (using any particular size metric);
how long did it take to develop and release; and how many bugs
were found?

12.3 Characteristics of Predictable Organizations

Predictable organizations exhibit the following characteristics:

• Under-commit and over-deliver;

• Master skills for estimating tasks and building realistic schedules;

• Use project postmortem information to refine estimating and sched-
uling skills;

• Make effective use of scarce, expensive resources;

• Rarely operate in firefighting mode;

• Require few unplanned bug-fix releases;

• Follow a documented software development process;

• Actively manage risks and commitments;

• Measure quality and customer satisfaction regularly;

• Measure employee satisfaction regularly;

• Recognize the connection between customer satisfaction and employee
satisfaction.

These characteristics will be discussed further in subsequent chapters.

12.4 Management Can Change the Organization

Being a parent who has helped raise two children, I learned the value of posi-
tive reinforcement�rewarding and recognizing good behavior and

188 Software Verification and Validation for Practitioners and Managers



providing negative incentives for bad behavior. I adapted these principles to
managing technical people and found that they worked just as well with
adults as they did with children.

Management has the ability to change the organization. Management
controls the organization�s human resources, determines how resources are
allocated to projects, and most importantly, determines how people are
evaluated and measured. What management often fails to recognize, how-
ever, is that to change the culture, you need to change the way people behave.
In most organizations, the way people behave is directly related to how they
are measured.

This is particularly true for software engineering organizations, where
technical challenge and peer recognition are very important. The notion
that management can change the culture of an organization by changing the
way people are measured is not new. It has been acknowledged for many
years [5, 6]. Unfortunately, in many organizations, management hasn�t rec-
ognized it.

The following are some specific actions management can take to help
create an organization that behaves in a more predictable manner.

• Measure individual performance based on objectives that are directly
related to overall corporate goals. Most organizations have general cor-
porate goals such as increasing market share and improving quality
and customer satisfaction. Frequently, management fails to define
specific goals and objectives for individuals that are based on the cor-
porate goals. Setting individual goals and objectives is vitally impor-
tant, since we know from experience that people will be
conscientious about those things that they are being measured on.

A client having quality problems asked me to come up with recom-
mendations for improvements. I asked to see the performance plans
for the software engineering staff. Not one person had �improve
code quality� or � reduce defects� as an objective. My recommenda-
tion was to incorporate such objectives into the performance plans.
The client did this and over time the quality problem disappeared.

• Learn to develop accurate, realistic schedules, and then meet them. The
literature is full of horror stories about project failures, cost overruns,
and missed schedules [7]. The ability of an organization to define an
accurate and realistic schedule is critical. Yet few organizations know
how to do this. Why? Well, there are probably many reasons, but
what I have observed is that most people have never been trained,

Motivation for Becoming Predictable 189



while in school or on the job, in how to accurately estimate a task,
build an accurate schedule, and then meet that schedule. Even in
those organizations that conduct project postmortems, there is little
or no improvement in the organization�s ability to develop accurate
schedules that can be met. Skills required to develop accurate esti-
mates and build realistic schedules are discussed in Chapter 14.

• Follow a documented software development process. One of the reasons
that organizations are unpredictable is that either they don�t have a
documented software development process or they don�t follow the
process they do have. We know from experience that to successfully
develop complex products you need to rely on a proven process.
This is as true for software as it is for any complex product. For soft-
ware, the process must address both development activities and veri-
fication and validation activities, as described in Chapter 3 and
Appendixes G and H.

Without a documented process, people will spend a significant
amount of time arguing about what to do. It will be harder to
develop accurate estimates and schedules. Groups like software QA
and documentation that need to have specific information will not
know if or when that information will be available. Further com-
pounding the problem is the claim from some software engineers
that having to follow a process will diminish their ability to be crea-
tive. Nothing could be further from the truth. Ask hardware engi-
neers if following a process diminishes their ability to innovate. It
doesn�t. I�ve found that software engineers who resist following a
process do so out of fear that they will actually be held accountable
for some task (such as writing a design specification) when they
would rather spend all of their time writing code. This topic will be
further discussed in Chapter 15.

• Hold people accountable. Accountability is a concept that is totally
foreign to many in the software industry. However, it is essential for
those organizations that want to become predictable. Everyone in
the organization, from the CEO on down, needs to be held account-
able for doing his or her job. On a project team, people need to be
held accountable for meeting their schedule, assuming of course that
the people doing the work set their schedules. Development should
be held accountable for delivering what was promised, not just to
the external customers but to internal customers (such as software
QA and technical documentation) as well. Software QA should be

190 Software Verification and Validation for Practitioners and Managers



held accountable for writing and executing tests based on the SRS
and for performing the testing as defined in the schedule.

Management needs to give people the responsibility for defining
what they will do and when they will do it by. Once this happens,
people need to expect to be held accountable for delivering what
they promised. When people miss their commitments, managers
need to understand the reason and determine how to get things back
on track by working collaboratively and cooperatively with everyone
involved.

Note that accountability extends to managers as well. Oftentimes
management is responsible for providing resources, buying equip-
ment and tools, and taking care of other things that project teams
need to meet their commitments. This topic will be further dis-
cussed in Chapter 16.

• Proactively manage risk. Most software development projects are
fraught with risk, yet few project managers proactively manage risk.
On projects where risk management is ignored, I frequently see sev-
eral �replanning� activities. Replanning is often just a euphemism
for dealing with something that wasn�t expected but could possibly
have been avoided. Many times, replanning activities can be pre-
vented if proactive risk management is used from the outset. Proac-
tively managing risk not only helps ensure that development and
software QA will meet their schedule, it increases the likelihood that
the project will be successful. Risk management is further discussed
in Chapter 16.

• Manage internal and external commitments. In many organizations,
salespeople frequently make unrealistic commitments to customers
in order to sell product. This often results in undue pressure on proj-
ect teams to deliver. When they can�t deliver (because the commit-
ments were unrealistic), customers become unhappy. Meanwhile,
the salesperson has received their commission check and is off with
other customers making more unrealistic commitments.

The underlying problem here is an organizational one. There is a
disconnect between sales and development. And it all goes back to
how salespeople are measured. In many organizations, salespeople
are measured on the dollar amount of sales they book, not on meet-
ing commitments to customers. In fact, some customers have finally
smartened up and have signed agreements that have penalty clauses
in them based on agreed-to delivery dates and feature sets.

Motivation for Becoming Predictable 191



Surprisingly, even with these financial incentives in place, manage-
ment still has failed to hold salespeople accountable.

Management needs to manage commitments made to external and
internal customers. One way to do this is to set expectations lower.
By doing this, the organization has a much better chance of meeting
or exceeding expectations. All too often, organizations set expecta-
tions unrealistically high and frequently fail to meet them. As a cus-
tomer, we are generally very satisfied when we receive exactly what
we expect. If we receive more, we are very happy. If we receive less,
we are usually not happy. Therefore, management should encourage
the organization to undercommit and overdeliver.

In addition, people who make commitments to customers need to
be held accountable for meeting those commitments. The same is
true for commitments made to internal customers. Managing com-
mitments is discussed in more detail in Chapter 16.

• Measure what happens. It goes without saying that in order to
become more predictable, organizations need to measure what hap-
pens. A few simple measures that are tied to the overall corporate
goals should be sufficient. For example, What is the average amount
of schedule slippage on projects? How many known defects are
products being shipped with? How many unplanned bug-fix releases
were there last year? Measurement is discussed in Chapters 7, 10, 13,
and 14.

Management must recognize that they have the ability to change the
behavior of their organizations. By learning how to do this, management can
significantly improve the organization�s predictability.

12.5 Summary

As observed by Jones [8], �One of the most important topics in the entire
software quality domain is the relationship between software quality and
software project management. Indeed, Deming, Juran, and Crosby have
asserted that the main source of quality problems can be assigned to manage-
ment rather than to technical workers.�

Management must provide leadership to help organizations behave in a
more predictable manner. Management must understand that they can
change how people behave by changing how people are measured. If you

192 Software Verification and Validation for Practitioners and Managers



want to improve schedule accuracy, measure people on their ability to
develop accurate schedules and then meet them. If you want to improve
product quality, measure people on product quality. If you want to improve
customer satisfaction, reward people based on achieving improvements in
customer satisfaction.

Don�t believe that this works? Jay Bertelli, CEO of Mercury Computer
in Chelmsford, Massachusetts, challenged his management team in January
1999 to double the company�s stock price by the end of the year. As an
incentive to meet this goal, each executive was promised a new Porsche. By
the end of 1999, the company�s stock price had tripled. Bertelli had 20 Por-
sches delivered to the company�s headquarters�one for each executive and
two loaners for top performers among the staff [9].

References

[1] Beck, K., �Embracing Change with Extreme Programming,� IEEE Computer, October
1999, pp. 70�78.

[2] Cusumano, M. A., �Software Development on Internet Time,� IEEE Computer, Octo-
ber 1999, pp. 60�70.

[3] Schafer, M., �Hiring for Keeps (Or at Least for a While),� Software Magazine,
April/May 2000.

[4] Wilkinson, S., �Hired Guns�Beating the IT Staffing Shortage with Contract Work-
ers,� Datamation, May 1999.

[5] Weinberg, G. M., The Psychology of Computer Programming, silver anniversary ed., New
York: Dorset House, 1998.

[6] Lister, T., and T. DeMarco, Peopleware: Productive Projects and Teams, 2nd ed., New
York: Dorset House, 1999.

[7] Yourdon, E., Death March: The Complete Software Developer�s Guide to Surviving �Mis-
sion Impossible� Projects, Upper Saddle River, NJ: Prentice-Hall, 1999.

[8] Jones, C., Software Quality: Analysis and Guidelines for Success, Boston, MA: Interna-
tional Thomson Computer Press, 1997.

[9] Boston Globe, Business Section, April 27, 2000, page C4.

Motivation for Becoming Predictable 193


	12 Motivation for Becoming Predictable 181
	12.1 Introduction to Predictable Software Development 182
	12.2 Characteristics of Unpredictable Organizations 186
	12.3 Characteristics of Predictable Organizations 188
	12.4 Management Can Change the Organization 188
	12.5 Summary 192


