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Rules of Disorder

The theory of probability is a formal branch of mathematics with elegant
theorems, complicated proofs, and its own book of jargon. Despite these poten-
tial obstacles, people use probability informally nearly every day. When we play
games, decide what to wear by glancing at the morning sky, or pick the route
we will take to get across town during rush hour, we often rely on crude per-
ceptions of probability to make decisions in the face of uncertainty. Even the
most math-phobic individuals occasionally use elementary aspects of probabil-
ity theory to guide their actions. Unfortunately, such primitive applications of
probability are often misguided and can lead to illogical decisions. Our intuition
is not a viable substitute for the more formal theory of probability.
Examples of this are evident when we play games of chance. People differ

substantially in skill, leading some players to win (and others to lose) far more
frequently than they should by chance alone. Most often, what we think of as
skill in such games is simply a measure of how accurately a player’s actions are
consistent with an understanding of probability theory—unless, of course, their
success relies on cheating. By analogy, when chance events play an important
role in the design, function, or behavior of organisms, our skill in interpreting
patterns in nature depends on our understanding of the theory of probability.
In this chapter, we briefly develop a set of definitions, rules, and techniques

that provides a theoretical framework for thinking about chance events. For the
sake of brevity, we focus on the aspects of probability theory that are most
critical to the issues raised in the rest of this book. For more in-depth coverage
of probability we recommend Feller (1960), Isaac (1995), or Ross (1997).

2.1 Events, Experiments, and Outcomes

Every field of science and mathematics has its own vocabulary, and probabil-
ity is no exception. Unfortunately, probability theory has the added feature of
assigning technical definitions to words we commonly use to mean other things
in everyday life. To avoid confusion, it is crucial that we speak the same lan-
guage, and, to that end, some definitions are necessary.
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Fig. 2.1 The sarcastic fringehead. The upper panel shows the fish in
repose. In the lower panel, two fringeheads engage in a ritual bout of
mouth wrestling

In probability theory, the focus of our attention is an event. A more formal
definition is given below, but put simply, an event is something that happens
with some degree of uncertainty. Typically, books on probability theory use as
examples events such as getting a one on the roll of a die, flipping a coin five
times in a row without getting any heads, or sharing the same birthday with
someone else at a party. These types of events are useful because they represent
activities you can easily duplicate or imagine. As we have suggested, however,
the uses of probability theory are far broader than playing games or matching
birth dates; a large number of environmental and biological issues critically
depend on the occurrence of uncertain events. Let’s start with two biological
examples where chance plays an important role.

2.1.1 Sarcastic Fish

One of the most ferocious fish found along the Pacific Coast of North America
is the sarcastic fringehead (fig. 2.1). Although it rarely exceeds a foot in length,
the fringehead has an enormous mouth, a pugnacious temperament, and the
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wary respect of fishermen, who have been known to do “amusing little dances
while 6 in. long fish clamp sharp teeth around their thumbs” (Love 1991).
Fringeheads typically live in holes or crevices in the rocky substratum. They

aggressively defend these shelters by lunging at anything that approaches, snap-
ping open their capacious mouths. When the intruder is another fringehead
looking for a new shelter, the two individuals often enter into a ritual match
of “mouth wrestling” with their sharp teeth interlocked (Stokes 1998). As with
many ritualized fights in animals, these matches are a relatively benign mecha-
nism for establishing dominance, and the larger of the two individuals inevitably
wins the battle and takes over the shelter. But sarcastic fringeheads seem to be
poor judges of size. Due perhaps to poor eyesight, an inflated perception of their
own bulk, or both, the fish appear incapable of accurately evaluating the size of
another individual until they begin to wrestle.
Now suppose you are a fringehead guarding your shelter. Along comes

another fringehead and that old, instinctive urge to dominate rises up within you.
You lunge out and commence to wrestle. With your mouths pressed together it
is quickly clear that you are substantially larger than your opponent (just as you
thought!), and the intruder scurries away. Your shelter is safe. Later, a second
fringehead arrives. Again, you rush to defend your shelter, but this time your
luck runs out. You aren’t quite the fish you thought you were, your mouth is
smaller than his, and you end up homeless.
The stage is now set for a few basic definitions. In the vocabulary of prob-

ability theory, these wrestling matches are experiments.1 Experiments are sim-
ply processes that produce some observation or measurement. Since you cannot
predict the result of the wrestling experiments with complete certainty before
you leave your shelter, we call these wrestling matches random experiments.
Every time you repeat the experiment of defending your home, there is a single
outcome (that is, one of the several possible results). The set of all possible out-
comes for an experiment is called the sample space for that experiment. In the
case of fringehead wrestling, there are only two possible elementary outcomes,
success (s) or failure (f ), and these together form the sample space.
Let’s now turn our attention to another example of chance in the interaction

among organisms.

2.1.2 Bipolar Smut

If you asked the average person on the street what he knew about smut
and sex, he would probably feign ignorance and scurry away in search of a

1 Note that the use of the word “experiment” in probability does not imply hypothesis
testing as it might in inferential statistics or most fields of science.
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policeman. If by chance you happened to ask a mycologist, however, you would
evoke a very different response. We found this out when we naively inquired
of a friend of ours if she knew anything interesting about reproduction in lower
plants, and received in return an energetic lecture on the wonders of sex in the
smuts.
Smuts, it turns out, are parasitic fungi in the order Ustilaginales. They com-

monly infect vascular plants, including a variety of economically important
grains, and as a result have been studied in depth. Reproduction in smuts is
bizarre by vertebrate standards. To be precise, smuts do not have separate sexes,
but they nonetheless reproduce sexually.
This poses some potential problems. One of the advantages of separate sexes

is that gametes from one individual cannot fuse with another gamete from the
same individual. This eliminates the most extreme form of inbreeding—mating
with yourself. In the smuts, individuals produce haploid spores,2 each of which
fuses with another spore to create a new generation of smut. But instead of
having male and female individuals that produce gametes of distinctly different
sizes (as you find in most animals and plants), smuts typically produce spores
that are morphologically indistinguishable from one another.
Lacking discrete sexes, how do smuts avoid inbreeding? As with many other

fungi, the smuts promote mating with other individuals (outcrossing) through
the use of compatibility genes. In a simple case, a single gene locus has two
or more alleles that determine whether spores are compatible for fusing. If the
allele present at the compatibility locus differs between two spores, they can
fuse; if the alleles are the same, they cannot.
For example, let’s identify the different alleles at the compatibility locus by

letters (e.g., a, b, c, etc.). Because spores are haploid, each has a single com-
patibility allele. If one spore has allele a and another spore has allele b (or
c, or d, or anything but a), they can fuse. Smuts with this mating system are
termed bipolar because two alleles determine mating compatibility. Other fungi
(the tetrapolar fungi) take their sex to an even higher level by having a mating
system with two separate compatibility loci. Here, spores must differ at both
loci before they can fuse.
Note that in the bipolar mating system all adult smuts must be heterozygous

at the compatibility locus. The only way they could be homozygous is if both
of the spores that fused to form the adult had the same allele, and if they had
the same allele, they could not fuse.

2 In sexually reproducing organisms, each adult has two sets of chromosomes, one from
each parent, and the organisms are therefore in a diploid state. In the process of manufacturing
gametes by meiosis, the number of chromosomes is cut in half, and these special reproductive
cells (spores in this case) are in a haploid state.
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Now, imagine two smuts on wheat (or rye). Smut 1 has compatibility alleles
a and b. The other (smut 2) has compatibility alleles c and d. You could not
find a more perfectly matched couple! Let’s use these fertile fungi to perform
an experiment.
It’s mating time, and each of the smuts produces a multitude of spores, which

you carefully collect in a bag. After mixing the spores thoroughly to random-
ize which spores are in contact, you empty the bag onto a microscope slide.
There are thousands of pairs of contiguous spores, and as you watch, some fuse
successfully and begin to grow. Others remain unfused, never to know the life
of a smut. What can we predict as to which spores will fuse and which will not?
We begin by noting that each pair of spores can be viewed as another example

of a random experiment. The outcomes of the experiment are successful fusion
or the failure to fuse, and success and failure depend on chance. But in this case,
we have additional information that can be applied to the problem. We already
know that the results of these fusion experiments depend on the underlying
genetics. Therefore, let’s examine the outcomes in terms of the genotypes of the
spores at the compatibility locus.
For any given spore in the experiment described above, there are four possible

results corresponding to the four compatibility alleles found in the parents (a, b,
c, and d). Since there are four possible results for each spore in the pair, there
is a combined total of sixteen possible outcomes (see box 2.1).

Box 2.1. Why sixteen and not eight?

If there are four possibilities for the first spore and another four for the second
spore, why do we multiply instead of add to get the total number of possibili-
ties? The answer can be seen by stepping through the problem. Assume the
first spore has allele a. How many possibilities are there for the second spore?
The answer is four, since the second spore could have any of the four alleles.
Similarly, if the first spore has allele b, there are still four possible values for the
second spore. Each possibility for spore 1 has four possibilities for spore 2.
Therefore, there are four sets of four, which is sixteen total outcomes. Notice
that some of the sixteen possible outcomes are functional duplicates because
the order of the alleles doesn’t matter to the genotype of the offspring (e.g., a
fusing with b and b fusing with a). Sometimes, order does matter, and we will
deal with the consequences of duplicate outcomes a little later.

Furthermore, the outcomes of this smut fusion experiment are more complex
than those in our fringehead wrestling experiment. Recall that when fringeheads
wrestle, the outcome is elementary (also known as simple or indecomposable):
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either success or failure. In contrast, each genetic outcome of the smut experi-
ment has two parts, each part corresponding to the allele from a potential parent.
If we view the results of randomly picking a single spore as yielding an ele-
mentary outcome (= the spore’s allele), the outcome of a fusion experiment is
complex; it includes two elementary outcomes.
Complex outcomes can be represented by an ordered set. In this case, our

outcome is an ordered pair of elementary outcomes (x, y), where x is the allele
of one spore and y is the allele of the other spore. This fusion experiment is
analogous to grabbing two socks blindly from a drawer. Spores with different
incompatibility alleles are like socks with different colors. Using this sock anal-
ogy, successful sex in smuts is like picking two socks from the drawer that do
not match.
Using these definitions and examples, we can now define an event more for-

mally. An event is a set of outcomes from an experiment that satisfies some
specified criterion. We use these two terms (event, set of outcomes) interchange-
ably. The most basic events associated with an experiment are those that cor-
respond to a single outcome3—for example, winning a mouth wrestle, which
we call event Win; or getting a pair of spores, both with allele a, which we
call event AA. Each of these basic events includes only one of the following
possible outcomes:

Win= (s)

AA= (a, a).

Events can also include several outcomes. For example, suppose you do not
care which alleles a pair of spores has as long as they match. Given the mat-
ing strategy of smuts, the event Match could also be described as “a sexually
incompatible pair of spores.” The set associated with Match includes four of
the possible sixteen outcomes of our experiment:

Match = {
(a, a), (b, b), (c, c), (d, d)

}
. (2.1)

In this fashion, we can define a wide variety of events related to the same fusion
experiment.

2.1.3 Discrete versus Continuous

So far, the sample spaces we have discussed include a small number of pos-
sible outcomes. These are examples of discrete sample spaces. Discrete sample

3 To help keep things as clear as possible, we’ll use the convention of writing the names of
events beginning with a capital letter and the names of outcomes in all lower-case letters.
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spaces have a countable number of outcomes, by which we mean that we can
assign an integer to each possible outcome. Any sample space with a finite num-
ber of outcomes is discrete, but some discrete sample spaces include an infinite
number of outcomes. For example, we could ask how many wrestling matches
a fringehead will enter before it loses for the first time. If we assume the fringe-
head is immortal and that there is an inexhaustible supply of challengers coming
by, it is possible (although highly unlikely) that the fringehead could continue
winning forever. The sample space for possible outcomes in this experiment is
thus infinite, but countable.
Other experiments have an infinite number of possible outcomes that are

uncountable. This commonly occurs in experiments where, by necessity, each
outcome is measured using real numbers rather than integers. For example, the
time it takes a predator to capture its prey can be measured to the fraction
of a second, the average annual rainfall in Cincinnati can be calculated to a
minute portion of an inch, and a compass heading can be determined to a
minuscule part of a radian. In such situations, there are theoretically an infinite
number of possible outcomes within any measurement interval, no matter how
small the interval. Such experiments produce a continuous sample space with an
uncountably infinite number of possible outcomes. We will return to continuous
sample spaces in chapter 4.

2.1.4 Drawing Pictures

To analyze chance events, it is often useful to view the sample space (the set
of all possible outcomes) in a diagram. Traditionally, the entire sample space is
represented by a box. In a discrete sample space, each possible outcome is then
represented by a point within the box. For our sarcastic fringehead wrestling
experiment, for instance, there would be only two dots in the box (one for a
success, s, and one for a failure, f ; fig. 2.2A). For our experiment in smut
reproduction, the box has sixteen dots corresponding to the sixteen ordered pairs
of alleles (fig. 2.2B).
Once the possible outcomes are drawn in the box, events can be represented

as “disks,” where each disk is a closed curve that includes the set of points,
if any, that satisfy the criteria of the event. This type of diagram is called a
Venn diagram, after its originator John Venn.4 A Venn diagram for our smut
experiment is shown in figure 2.2B. Here, the disk labeled Match depicts the
event of a pair of spores that have matched compatibility alleles.

4 Venn in doubt, draw a diagram. Upon graduating from college, John Venn became a priest
for five years, after which he returned to Cambridge University as a lecturer in Moral Science.
Venn later grew tired of logic and devoted his time to writing history books and designing
new machines. His most intriguing invention was a device to bowl cricket balls. The machine
was so good it clean bowled one of the top stars of the Australian cricket team four times.
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Fig. 2.2 Examples of Venn diagrams. Panel A depicts the complete sample
space for a fringehead wrestling match. In this simple experiment, there are
only two possible outcomes. Panel B shows the sixteen possible outcomes of
the mating between smut 1 and 2. The event labeled “Match” includes the
outcomes in which compatibility alleles are the same.

2.2 Probability

So far, we have thrown out a slew of definitions and drawn some potentially
useful diagrams, but we have yet to touch on the central concept of our dis-
cussion, that of probability. In other words, we have characterized the possible
outcomes of an experiment, but we currently have no means of estimating or
predicting how frequently different outcomes might occur. In this section, we
will develop the notion of the probability of an event.
For a particular manifestation of a random experiment, each outcome in the

sample space has some possibility of occurring, but only one outcome can actu-
ally occur. The probability of a specific outcome is defined as the fraction of a
large number of experiments that will yield this particular outcome.

Definition 1 Provided the number of experiments is very large:

P(x) = number of occurrences of outcome x

total number of repeated random experiments
.

This probability (denoted P(x) for outcome x) must lie between 0 (the out-
come never occurs) and 1 (the outcome always occurs).
In practice, we never know the precise probability of any uncertain event, but

there are two general ways by which we can estimate its value: we can make
an empirical estimate using repeated random experiments, or we can make a
theoretical estimate using an idealized model of the random process.
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Our experiment with smut sex provides an example. If the spores of smut 1
(with compatability alleles a and b) are mixed with spores of smut 2 (alleles c
and d) and we repeatedly draw out pairs of spores at random, we find that each
pairing occurs with equal frequency. Thus, each of the sixteen outcomes shown
in figure 2.2B has a probability of 1/16.
A philosophical note is in order here. Given our definition, it is meaningless

to talk about the probability of an experiment that cannot be repeated. If you
carry out an experiment, an outcome results. But unless you can repeat the
experiment, the number of occurrences of that outcome (= 1) must equal the
number of trials (= 1). Thus, by our definition, the probability of an unrepeated
experiment is exactly 1, in this context an uninformative number.
In contrast, as the number of repeated experiments grows, the frequency of

occurrence becomes a better and better estimate of the actual probability of a
given outcome for any single experiment. Formally, this rule is called the Law
of Large Numbers. Fortunately, it expresses how most people intuitively think
of the probability of a chance event.

2.3 Rules and Tools

Although estimating probabilities through the use of repeated random experi-
ments is a common tool, there are many situations where this approach may be
inaccurate, unacceptably expensive, unethical, or even impossible. For example,
the number of experiments needed to get an accurate estimate of the proba-
bility may be inconveniently large, especially if you are trying to estimate the
probability of rare events. In other cases, experimentation may be impractical
since the event you are interested in may be something you are actively try-
ing to avoid (e.g., an oil spill). You would not want to cause such events just
to estimate their probability of occurrence. Finally, some questions may require
experiments that society deems unethical. Examples include human trials of new
drugs or surgical procedures where the expected risks are potentially large. To
handle these cases, we need to develop models of probabilistic events. These
models will be simplified abstractions of the real world, but they may help us
to evaluate stochastic phenomena that we cannot study experimentally. Let’s
begin by considering how the probability of events builds on the probability of
outcomes from an experiment.

2.3.1 Events are the Sum of Their Parts

Recall that an event is a set of outcomes that meets some criteria. If any
outcome in the set occurs, the event occurs. As a result, the probability that an
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event will occur can be derived from the sum of the probabilities of all outcomes
in its set:

Rule 1 P(event A) = ∑
P(outcomes in A).

(Translation: If each of several different outcomes satisfies the criterion for
an event, as in the event of getting a pair of smut spores with matching
compatibility alleles, the probability of the event is simply the sum of the
probabilities of the individual outcomes.)

To give some tangibility to this rule, let’s return to the Venn diagram for our
experiment in smut reproduction (fig. 2.2B). Here each of the points in the disk
labeled Match satisfies the criterion for the event in which a pair of spores has
matching alleles. Getting two a alleles or two b alleles or two c alleles or two
d alleles are all satisfactory. Since each of these is a distinct outcome, we can
simply add their respective probabilities (1/16) to obtain the overall probability
of getting matching alleles: 4 × 1/16 = 1/4. In other words, the probability
of the compound event Match is the sum of the probabilities of the individual
outcomes enclosed by the disk in the Venn diagram. In fact, the probability
of any event (no matter how complicated it may be) can be estimated if you
can (1) identify the individual outcomes in the event and (2) if you know the
probability of each of these outcomes.
Unfortunately, it is not always easy to both identify the individual outcomes

in an event and know the probability of each outcome. As a result, we need to
develop tools that allow us to estimate probabilities of sets we cannot measure
directly.
Before leaving the subject of additive probabilities, we consider one corol-

lary of rule 1:

Rule 2
∑

all i

P (xi) = 1.

(Translation: The sum of the probabilities of all outcomes from an experiment
equals one.)

This feature should be intuitive. As long as our sample space includes all
possible outcomes, their probabilities must sum to one. In each experiment,
something will happen. As we will see, rule 2 is used extensively for calculating
the probability of complex events.

2.3.2 The Union of Sets

As we have seen in the case of matching alleles, complex events can be
formed from combinations of individual outcomes. Similarly, we can build even
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more complex events by combining events. Let’s explore two examples that will
be useful later.
Recall that when a pair of smut spores share the same compatibility allele,

fusion cannot occur. As a result, the action of compatibility genes is to reduce
inbreeding. Reduce, yes, but it does not totally preclude the fusion between two
spores produced by the same parent. Since all smuts are heterozygous at the
compatibility locus, all smuts produce two spore genotypes, and two spores of
different types can successfully fuse even though they have the same parent.
Thus, inbreeding. Now, suppose that you are interested in the event of getting
an inbred offspring from one or the other of the parents in our smut mating
experiment. How would you describe this event?
To answer this question, we focus on simpler (although still complex) events.

There are two parents in our experiment, smut 1 (with compatibility alleles a
and b) and smut 2 (with c and d). Let’s let I1 denote the event of getting an
inbred offspring from smut 1. There are two outcomes in this event [(a, b) and
(b, a)]. Similarly, I2 is the event of getting an inbred offspring from smut 2
[(c, d), (d, c)], and our overall event (let’s call it I for inbred offspring in gen-
eral) includes all of the outcomes in either I1 or I2. I is therefore a combination
of two simpler sets of outcomes. We call this combination a union. The union
of two sets is typically denoted by the union operator, ∪. Therefore, I = I1∪I2.
This union is shown as a Venn diagram in figure 2.3.

Fig. 2.3 A Venn diagram of the sample space
for the smut sex experiment. The events
labeled “I1” and “I2” include the outcomes
corresponding to the inbred offspring of
smuts 1 and 2, respectively. The event labeled
“I” is the union of these two events. Note that
events I1 and I2 do not share any outcomes.

For reasons that will become clear in a moment, a second example of the
union of sets will be useful. Consider S1, the event of getting an offspring
of smut 1. S1 is different from I1 because in this case we do not care about
the progeny’s genotype. As long as one of its parents is smut 1, an offspring
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Fig. 2.4 A Venn diagram of the event S1,
the union between event A (outcomes
containing allele a) and event B (outcomes
containing allele b). Note that two outcomes
are shared between events A and B.

qualifies. One simple way to describe this event follows from the realization
that offspring of smut 1 must have either allele a or allele b (or both). Since
smut 2 had neither of these two alleles, any new smut in our experiment with
allele a (event A) and/or b (event B) must be an offspring of smut 1. Therefore,
we can generate the event S1 as the union between two events: S1 = A ∪ B. If
you examine the Venn diagram in figure 2.4, you can see that six outcomes are
found in each of these events. (Remember, aa and bb fusions do not produce
offspring.) Unlike the previous example, these component events A and B do
not have completely distinct outcomes. Their disks overlap because they share
two offspring genotypes, (a, b) and (b, a). This overlap will have important
consequences, which we discuss below.

2.3.3 The Probability of a Union

Now, our interest in this exercise is to estimate the probability of the complex
events described by the union of simpler events. Consider first P(I), the prob-
ability of obtaining an inbred smut. Recall from rule 1 that the probability of
an event is the sum of the probabilities of its individual outcomes. By analogy,
perhaps we can use the sum of the probabilities of the two events, I1 and I2, to
estimate the probability of I. Can we really add the probabilities of events the
way we can add the probabilities of individual outcomes?
Our logic in formulating rule 1 was that because the outcomes in an event

are distinct, the probability that the event occurs is the sum of the probabilities
of the individual outcomes. If you examine the events I1 and I2 (fig. 2.3), you
will find that they indeed do not overlap. Therefore, by the same logic as in
rule 1, we can use the sum of the probabilities of I1 (= 1/8) and I2 (= 1/8) to
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calculate the probability of I :

P(I) = P(I1)+ P(I2) =
1

8
+ 1

8
= 1

4
. (2.2)

So far, so good, but what happens when the events in a union do overlap? Here
we can use our second example to see if the simple summation of probabilities
still holds. As we noted above, the event of getting an offspring from smut 1 is
the union of events A and B. But these events overlap (fig. 2.4). If we simply
summed the probabilities of A and B, two outcomes in S1 [(a, b), (b, a)] would
get counted twice, once in A and once in B. By counting these outcomes twice,
we would be overestimating the number of outcomes that qualify for event S1.
When this inflated number is inserted into our definition of probability, we would
as a result overestimate the probability of S1. Therefore, to calculate accurately
the probability of S1, we need to account for how shared outcomes affect the
probability of the union of two or more sets. To do this, we use the concept of
the intersection.

2.3.4 Probability and the Intersection of Sets

Outcomes that are shared by two sets are called the intersection between the
sets. We denote the intersection by the operator, ∩. The intersection between
the sets A and B includes two outcomes (see fig. 2.5):

A ∩ B = {
(a, b), (b, a)

}
.

Fig. 2.5 A Venn diagram showing the
intersection between event A (outcomes
containing allele a) and event B (outcomes
containing allele b). The interaction contains
only those outcomes shared between events
A and B.

More to the point, the intersection includes the same two outcomes that get
counted twice if we add the probabilities of events A and B to arrive at the
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probability of S1. The probability of S1 should clearly include the probability
of each of these two outcomes, but the probability of these shared outcomes
should be included only once. As a result, we can estimate P(S1) from the sum
of P(A) and P(B) by adjusting for the double counting of all outcomes shared
by A and B (that is, by subtracting P(A ∩ B)). Thus,

Rule 3 if S1 = A ∪ B, then P(S1) = P(A)+ P(B)− P(A ∩ B).

(Translation: If two events share outcomes, then the sum of the probabilities of
the two events always exceeds the probability of the union of those two events.
The difference is the probability of the shared outcomes, which erroneously
gets counted twice.)

Note that this rule applies equally well to our initial example of inbred smuts.
In this case, there is no overlap between I1 and I2, P(I1 ∩ I2) = 0, and P(I) =
P(I1)+ P(I2) as advertised.

2.3.5 The Complement of a Set

Our laboratory experiments with reproduction in smuts greatly simplifies the
real-world phenomenon by focusing on only two individuals. In an actual field
setting, spores from one adult smut could potentially contact spores from a large
number of other individuals. Furthermore, we have assumed here that there are
only four alleles at the compatibility locus, but in actual populations the number
of alleles may exceed a hundred. Both of these factors (more potential parents
and more alleles) make it far more complicated to estimate probabilities in real
populations.
For example, suppose you were a smut trying to estimate the probability that

a particular individual spore you have produced could fuse with other spores
encountered in the field. Let’s assume that within the local smuts there are a
hundred alleles at the compatibility locus, only one of which is contained in this
particular spore. One approach to estimating your chance of producing offspring
would be to sample the relative frequency of each of the other ninety-nine
alleles in the population. Each of these alleles is compatible with the individual
spore in question, and if you knew the probability of encounter for each of these
genotypes, you could estimate the overall probability that this individual spore
will successfully fuse. This approach is indeed possible, but it is very laborious.
A far simpler approach would be to focus on the single allele with which your

spores could not fuse. Since the sum of the probabilities of all outcomes of an
experiment must equal 1 (see rule 2), we can estimate the probability of an event
by going in the back door, so to speak. If you could estimate the probability
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Fig. 2.6 A Venn diagram showing the
relationship between event C and its
complement, Cc. All outcomes not in an
event are in its complement.

of incompatibility, you could subtract it from 1 to estimate the probability of
fusion. By turning the question on its head, a far simpler answer emerges.
This process leads us to define yet one more term. In probability theory, the

complement of X is all outcomes in the sample space that are not in the set
X. The complement is symbolized as Xc. In the example just discussed, we are
interested primarily in the set C, the alleles with which our individual spore
is compatible. But we carry out our calculation using Cc (the complement of
C), the alleles with which our spore is incompatible (see the Venn diagram in
fig. 2.6). The classic example of an event that is much easier to address as
a complement is the question of estimating the probability that at least two
individuals in a crowd share the same birthday. This probability is difficult to
calculate directly, but quite simple to estimate using the complementary event. In
other words, it is far easier to address the problem by estimating the probability
that no two individuals share a birthday than it is to estimate the probability
that at least two do share a birthday. We will leave the proof of this assertion
as an exercise for you (see question 6 at the end of the chapter).
We note for future use the following fact:5

Rule 4 P(X)+ P(Xc) = 1.

This follows from rule 2. Because all events are either in X or Xc, the sum of
P(X) and P(Xc) must be 1.

5 A fact well known to country music fans. As Clay Walker laments to his departed sweet-
heart, “The only time I ever miss you, honey/ is when I’m alone and when I’m with some-
body.”
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2.3.6 Additional Information and Conditional Probabilities

Let’s now return to the event of getting an inbred offspring from smut 1
(I1). Remember that this event includes two outcomes: I1 = {(a, b), (b, a)}.
Suppose there is one spore type whose genotype you can accurately identify.
For example, suppose there is a rare mutation that, if present, causes spores with
compatibility allele a to have a different color. As you scan a group of spores,
you can thus identify with certainty the genotype of an occasional spore.
Suppose you randomly pick a pair of spores from those produced by

smuts 1 and 2. You notice that one of the two spores has the color muta-
tion. As a result, you know this spore has allele a. How does this addi-
tional information affect our estimate of the probability that this pair of fused
spores will produce an inbred offspring of smut 1? It is clear that P(I1)

must change based upon the additional information we now have, because
only seven of the sixteen outcomes in our sample space are now possible—
(a, a), (a, b), (b, a), (a, c), (c, a), (a, d), (d, a). At least one of the two alleles
in each of these fusions is a.
We call the probability of an event based on the known occurrence of a sep-

arate event a conditional probability. It is denoted P(X | Y ), which is read “the
probability of event X given that event Y occurs.” Note that the conditional
probability P(X | Y ) does not require that event Y happen first. For example,
our task here is to find P(I1 | Color), the probability that a random pair of
spores produces an inbred offspring of parent 1 given that (because of its color)
at least one of the spores is known to have allele a. The number of inbred
offspring produced (and therefore the process by which we calculate the prob-
ability of their production) is the same whether we observe the color of spores
after or before they fuse. As long as we know for sure that event Y occurs, its
temporal relationship to event X is irrelevant.
Let’s examine a Venn diagram for our smut experiment (fig. 2.7) to see if we

can figure out how the probability of I1 will change given that we know that
Color occurs. As we have seen, the event Color includes only seven outcomes
from our original sample space of sixteen. In other words, if we see a spore
with the color mutation, there is no chance for any of the nine outcomes that
are not in Color to occur. In essence, the knowledge that the event Color has
occurred shrinks our sample space.
We can use this information to calculate the modified probability of I1 by

using our existing techniques applied to this modified sample space. Our new,
reduced sample space has only seven outcomes, and the event I1 includes two
of them [(a, b), (b, a)]. Thus, by our definition of probability, P = 2/7. In the
long run it will be useful to express this conclusion in a more general fashion.
According to rule 1, we should be able to estimate the probability of the event
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Fig. 2.7 An example of conditional
probability. The event “Color” includes all
outcomes that contain allele a. If we know
that this event occurs (that is, we can see that
a spore chosen at random is a different color
than usual), this information affects the
probability that event I1 (an inbred offspring
from smut 1) occurs.

I1 by summing the probabilities of the two conditioned outcomes in I1. This
is indeed true, but we have a problem if our probabilities for the outcomes are
based on our original sample space. In this case, each outcome has P = 1/16,
and if we summed the probabilities of the seven possible outcomes in Color,
they would not equal 1. In fact, they would sum to P(Color). This suggests
a solution. If we divide each outcome’s probability by the total probability in
our new sample space, P(Color), the probabilities in the new sample space
sum to 1.
Now all we need is an expression that defines those outcomes in our new

sample space Color that also satisfy the event I1, and our task will be complete.
Solving this problem is easy, since the set of outcomes that satisfies both I1 and
Color is, by definition, the intersection of the two events. Thus, if we divide the
probability of this intersection by P(Color) to adjust the probabilities, we arrive
at a formula for the probability of producing an inbred offspring of smut 1 given
that we know one spore has allele a:

P(I1 | Color)=
P(I1 ∩ Color)
P (Color)

= 2/16

7/16
= 2

7
. (2.3)

Or, in the general terms of any two events X and Y ,

Rule 5 P(X | Y ) = P(X ∩ Y )

P (Y )
.

(Translation: The probability that an event occurs, given that a second event
occurs, is simply the probability that both events occur [that is, the probability
of their intersection] divided by the probability of the event known to have
occurred.)
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One bonus from our effort with conditional probabilities is that we also gain a
new formula to calculate the probability of the intersection between two events.
If you rearrange the equation in rule 5, you get

P(X ∩ Y ) = P(X | Y ) · P(Y ). (2.4)

This formula provides an intuitively pleasing definition for the probability of the
intersection of two events. Event Y occurs with probability P(Y ). Given that
Y occurs, event X occurs with probability P(X | Y ). Therefore, the probability
that both X and Y occur (that is, P(X ∩ Y )) is the product of these two terms.
Now, in arriving at this conclusion, we have arbitrarily assumed that event Y

is known to occur, but we could just as easily have assumed that X occurred.
Thus, we can alternatively obtain the probability of the intersection of the two
events using the probability that X occurs and the probability of Y given X.
Therefore, it must also be true that

P(X ∩ Y ) = P(Y | X) · P(X). (2.5)

This equivalent form provides an important step to another useful rule in
probability.

2.3.7 Bayes’ Formula

Normally when we deal with equations, we try to simplify them as much as
possible. This usually makes it easier to interpret what they mean. Sometimes,
however, we can learn something by rearranging the equation into a more com-
plex form. Let’s return to our definition of a conditional probability (rule 5)
for an important example. The probability that an event X occurs given that a
second event Y occurs is equal to

P(X | Y ) = P(X ∩ Y )

P (Y )
. (2.6)

Let’s expand this simple formula and see where it gets us. As we just discovered,
the probability of the intersection between two events (the numerator here) can
be written as P(X ∩ Y ) = P(Y | X) · P(X ). To expand the denominator, we
can use a trick based on the fact that the combination of an event (e.g., X ) and
its complement (Xc) includes all possible outcomes (rule 4). Therefore, we can
write

P(Y ) = P(Y ∩X )+ P(Y ∩Xc). (2.7)
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In other words, all outcomes in Y must either be in X or its complement. If we
further expand this formula for P(Y ) using eq. (2.4), we obtain

P(Y ) = P(Y | X) · P(X)+ P(Y | Xc) · P(Xc). (2.8)

Now we are ready to thoroughly complicate rule 5. Substituting eq. (2.5) for the
numerator and eq. (2.8) for the denominator into the formula for a conditional
probability in eq. (2.6), we obtain

P(X | Y ) = P(Y | X ) · P(X )

P (Y | X) · P(X)+ P(Y | Xc) · P(Xc)
. (2.9)

This result may not seem like much of an accomplishment given the simple
formula with which we started, but in fact this formula proves to be a very
powerful tool.
This equation was originally proposed by Thomas Bayes, another English

theologian and part-time mathematician. It is known as Bayes’ formula. Notice
that the equality shown here contains on its left side the probability for X

conditioned on the occurrence of Y . In contrast, on the right-hand side, the
conditional probabilities are all for Y conditioned on the occurrence of either
X or Xc. In other words, the probability of one event conditioned on a second
can be used to calculate the probability of the second event conditioned on the
first. Therein lies the utility of Bayes’ formula.

2.3.8 AIDS and Bayes’ Formula

Your head is probably spinning from all these conditions, so let’s consider
an example to show how useful Bayes’ formula can be. Isaac (1995) provides
an excellent analysis of issues related to testing for HIV that shows how useful
Bayes’ formula can be.
For several years, blood and saliva tests have existed that can very accu-

rately assess whether an individual has been infected with the AIDS virus, HIV.
Although these tests are quite accurate, they occasionally make mistakes. There
are two types of mistakes: false positives (where the individual tests positive but
has never been exposed to the AIDS virus) and false negatives (where infec-
tion has occurred, but the test does not detect it). Experimental estimates of the
likelihood of these events suggest that the existing tests for HIV are extremely
accurate. If an individual is infected with HIV (= event Inf ), existing tests will
be positive (= event Pos) roughly 99.5% of the time. In other words,

P(Pos | Inf ) = 0.995. (2.10)
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From this conditional probability, we can immediately calculate the probability
of one type of mistake, a false negative. If a positive blood test for an infected
individual occurs 99.5% of the time, this means that 0.5% of blood tests from
infected individuals are negative (= event Neg). In other words,

P(FalseNegative) = P(Neg | Inf ) = 1− P(Pos | Inf ) = 0.005. (2.11)

Using a similar procedure, we can estimate the probability of a false positive.
In this case, we start with P(Neg | NInf ), the probability that we get a
negative test result from a person who is not infected. In practice, estimating
P(Neg | NInf ) is difficult because we need individuals who we know with
certainty have not been infected (which requires a separate, unequivocal means
of testing for HIV). Reasonable estimates of P(Neg | NInf ) using control
groups with no likely risk of exposure to HIV suggest that this probability is
roughly 0.995. As a result, the probability of a false positive is

P(FalsePositive) = P(Pos | NInf ) = 1− P(Neg | NInf ) = 0.005. (2.12)

Therefore, the probabilities of test errors (either positive or negative) are
extremely small for an individual test.
Now suppose that a misguided law is passed requiring all individuals to take a

blood test for HIV infection, the intent being to quarantine infected individuals.
If we select a random individual whose test is positive, what is the probability
that this random individual is actually infected with HIV? If we translate this
question into a conditional probability, we are asking what is

P(Inf | Pos)?

Notice that this conditional probability differs fundamentally from the condi-
tional probabilities in our estimates of false positives and false negatives. Here
we are trying to estimate the probability of actual infection conditioned on a test
result. In eqs. (2.11) and (2.12), the reverse is true—we estimated the probability
of a test result conditioned on a state of infection. This is a perfect opportunity
to use Bayes’ formula, which allows us to use probabilities conditioned on one
event to estimate probabilities conditioned on another.
To simplify the interpretation, let’s insert the events of this problem into

Bayes’ formula, eq. (2.9):

P(Inf | Pos) = P(Pos | Inf ) · P(Inf )

P (Pos | Inf ) · P(Inf )+ P(Pos | NInf ) · P(NInf )
.

(2.13)

We have already estimated the conditional probabilities on the right side. All we
need are estimates for P(Inf ), the fraction of the population that is infected.
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The Centers for Disease Control estimated that there were 293,433 individu-
als reporting infection by HIV or AIDS in the United States in 1996. Given
a population of approximately 270 million, this yields a rough estimate of
P(Inf ) = 0.001. Although this number surely underestimates the total num-
ber of infected individuals, it gives us a ballpark estimate of the probability of
infection:

P(Inf ) = 0.001, therefore P(NInf ) = 0.999. (2.14)

Substituting these values into eq. (2.13), we obtain

P(Inf | Pos) = (0.995)(0.001)

(0.995)(0.001)+ (0.005)0.999
= 0.16. (2.15)

This is an unexpected and disturbing result. Despite the fact that the blood test
has only a minuscule chance of false positives (0.5%), a positive blood test
implies only a 16% chance that an individual is actually infected. How can this
be? Looking at Bayes’ formula provides a clear explanation for this seeming
paradox. Although individual tests have a low chance of error, most individuals
who are tested are not infected with HIV. Therefore, we are multiplying a small
probability of false positives by a large number of uninfected individuals. Even a
minute probability of false positives for individual tests can in this circumstance
produce many more false positives than true positives. As long as the disease is
rare, even a very accurate test of infection will not be able to accurately identify
infected individuals in a random test.

2.3.9 The Independence of Sets

In deriving Bayes’ formula, we made repeated use of the information pro-
vided by conditional probabilities. That is, knowing that Y occurs gives us new
insight into the probability that X occurs. There are cases, however, where the
conditional probability of event X given event Y is the same as the uncondi-
tional probability of X. In other words, the added information of knowing that
event Y occurs tells us nothing about the probability of event X occurring. Thus,
if P(X | Y ) = P(X), the two events X and Y are said to be independent events.
Independence of events turns out to be a very useful feature. Consider rule 5.
If we use our definition of independence, we can substitute for the conditional
probability on the left-hand side of the equation, P(X | Y ), to get

P(X) = P(X ∩ Y )

P (Y )
, if X and Y are independent. (2.16)
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If we then multiply both sides of this equation by P(Y ), we obtain the famous
product rule of independent events:

Rule 6 If X and Y are independent events, P (X ∩ Y ) = P(X) · P(Y ).

(Translation: If two events do not influence each other’s probability of occur-
ring, the probability that both events will occur is simply the product of the
probabilities that they individually occur.)

It turns out that this product rule can be extended to any number of indepen-
dent events. If there are n independent events, the probability that all n events
occur (i.e., the intersection of the n events) is the product of the n probabilities
of the individual events.
As an example of the utility of the product rule, let’s return once again to

our sarcastic fringehead experiment. In this particular example, our fringehead
won his first match and lost the second. But suppose we are interested in a
more general question, the probability that the fringehead wins (and thereby
retains his shelter) for the first time on the ith experiment. Let event Li =
(retains shelter on match i). There are only two outcomes for each individual
bout, success and failure, s and f . To keep track of the particular bout in which
an outcome occurred, we use subscripts. Thus, s15 denotes a success in the
fifteenth wrestling match.
Let’s suppose that the probability of winning a match is p, and of losing

is q = 1 − p. Assume also that the probability of winning is not affected by
what happens during a previous wrestling match (i.e., bouts are independent—
fringeheads do not become better wrestlers with more practice). Unless the
fringehead retains its shelter in the first wrestling match, each Li will be a series
of (i − 1) f ’s followed by a single s. For instance, if our fish first wins in the
fifth match,

L5 = (f1, f2, f3, f4, s5). (2.17)

Therefore, Li is the same as

f1 ∩ f2 ∩ · · · fi−1 ∩ si . (2.18)

Since the events associated with each match are independent, we can calculate
the probability of this intersection using the product rule. The probability of s
is p, and the probability of f is q. Therefore,

P(Li) = q · q · q · . . . · p where there are (i − 1)q’s. (2.19)
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Thus,

P(Li) = qi−1p. (2.20)

For example, if p = 0.25, the probability that our fish will first win on match i

is shown in figure 2.8. There is only about an 8% chance that the first win will
be in the fifth bout.

Fig. 2.8 The probability that
a fringehead will first win on
its ith match. Here we have
assumed that in each bout the
fish has a 25% chance of
winning. This figure is a
graphical representation of
eq. (2.20).

2.4 Probability Distributions

In the last section we explored a variety of methods to calculate the prob-
ability for a particular outcome, and in the last example (how many bouts a
fringehead will lose before winning) we even managed to derive an equation
that describes the probability for each possible outcome. In other words, with
a bit of diligent bookkeeping we can keep track of the frequency of occurrence
of each and every outcome in the entire sample space, thereby associating each
outcome with a probability. We can then lump outcomes into events and appro-
priately calculate the probability of each event.
This brings us to an important juncture in our exploration. Imagine writing

down all the possible events in an experiment in one column of a table, and
generating a companion column with each event’s corresponding probability.
This ensemble of paired outcomes and probabilities is called the probability
distribution of the experiment.
Probability distributions will be of central importance throughout the rest of

this book, and it will be best to take some time here to make sure that the
concept is abundantly clear. Consider the same two smuts we have dealt with
before, one with compatibility alleles a and b, the other with alleles c and d.
Each produces an abundance of spores, and the spores are mixed randomly, and
a single pair is chosen. What is the probability distribution for this reproductive
experiment?
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Table 2.1 The Probability Distribution for Spores Produced by
the Mating of Two Smuts

Outcome Probability Outcome Probability

a, a 1/16 c, a 1/16
a, b 1/16 c, b 1/16
a, c 1/16 c, c 1/16
a, d 1/16 c, d 1/16
b, a 1/16 d, a 1/16
b, b 1/16 d, b 1/16
b, c 1/16 d, c 1/16
b, d 1/16 d, d 1/16

Note: One smut has compatibility alleles a and b, the other has alleles
c and d .

Table 2.2 The Probability Distribution for the Spores of the Two
Smuts of Table 2.1

Event Probability Event Probability

a, a 1/16 b, c 1/8
a, b 1/8 b, d 1/8
a, c 1/8 c, c 1/16
a, d 1/8 c, d 1/8
b, b 1/16 d, d 1/16

Note: In this case, the order of alleles is not taken into account.

First, we list the sample space for the simplest outcomes and their associated
probabilities in table 2.1. In this case, each outcome has equal probability. But,
as we have noted before, several of these simple outcomes are functionally
equivalent [(a, b) and (b, a), for instance]. Thus, if we define an event as having
a distinct allelic type independent of order, we have the list in table 2.2. The
probability of an event in which alleles match is half that of events in which
alleles are different.
We could simplify matters even more by again redefining what we mean by an

event in the pairing of spores. Suppose that instead of tabulating the genotypes
of paired spores we keep track of whether they fuse or not. In this case, the two
possible events are Fusion and Nonfusion, and the corresponding probability
distribution is as follows:

Event Probability

Fusion 0.75
Nonfusion 0.25
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Fig. 2.9 Probability distributions for the mating between smuts 1 and 2. In panel A,
events are defined in terms of the genotype of the paired spores. In panel B, events
are defined with regard solely to whether the paired spores fuse. The same experiment
can lead to different probability distributions depending on how events are defined.

Twelve of the sixteen possible ordered pairs are capable of fusion, so (given
random pairing) fusion occurs three quarters of the time. The remaining pairs
(those with matching compatibility alleles) do not fuse.
Tables of events and probabilities can be cumbersome when dealing with all

but the smallest sample spaces. As a practical alternative, it is often handy to plot
probability distributions graphically. This is traditionally done as a histogram.
For example, the probability distribution of unordered allelic types is shown in
figure 2.9A, and that for fusion/nonfusion in figure 2.9B. Alternatively, the prob-
ability distribution can be graphed as a scatter plot, as suggested by figure 2.8.
These simple probability distributions may seem obvious, and you are perhaps

wondering why we are belaboring their existence. We have taken extra care in
presenting the concept of probability distributions because these distributions are
so fundamentally important. This importance lies in the fact that the probability
distribution contains all the information that can be known about a given random
experiment. Once you have established the criteria that define an event, have
listed the sample space of possible outcomes, and have associated each event
with a probability, you have in hand all the information that it is possible to
obtain about the stochastic process in question.
This is not to say that this information cannot be processed further. For exam-

ple, we will see in a moment how the probability distribution of simple events
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can be used to calculate the probability distribution of more complex events. In
essence, this is what we did in working from the distribution of ordered allele
pairs to the simple distribution of spore fusions. Knowledge of the probabil-
ity distribution can also be used to calculate useful indices such as the average
value of an experiment’s outcomes and the typical variability of these outcomes.
These uses of probability distributions will be covered in detail in chapters 3
and 4.
Note that it isn’t necessary to present a probability distribution as a table.

In many cases, a distribution can be described in more compact form by an
equation. For example, eq. (2.20) describes the probability of event L (a fringe-
head winning) occurring first on trial i. Because this equation is in essence a
shorthand notation for a list of L, P(L), it describes the probability distribution
for L.

2.5 Summary

In this chapter we have developed a set of tools to help deal with estimat-
ing the probability of relatively complex events. We can use Venn diagrams
to answer complex problems with a somewhat brute-force, graphical approach:
draw a diagram with all possible outcomes and then choose those outcomes that
are included in your event. Alternatively, by decomposing the problem into a
set of simpler events, we can break what seems like a difficult question into a
series of manageable tasks. Our arsenal of tools now allows us to examine the
probability of (1) outcomes that are shared by different events (=intersections),
(2) outcomes that occur in any of two or more events (=unions), (3) out-
comes that are not part of a particular event (=complements), and (4) outcomes
whose chance of occurrence depends on the occurrence of other outcomes
(=conditional probabilities). The combination of these tools (and some diligent
bookkeeping) allows us to associate every event with its probability, and thereby
to specify the probability distribution for an experiment. Through the use of
the probability distribution we will be able to explore a number of biological
phenomena in which chance plays a crucial role.

2.6 Problems

1. Hand gestures play an important role in many cultures. For example, a
raised index finger with all other fingers folded is a common gesture among
sports fans in the U.S., signifying “We’re no. 1!” Inappropriate use of this
gesture may be annoying to those around one but is unlikely to cause serious
problems. In contrast, in the United States a raised middle finger with all other
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fingers folded is used to signify extreme displeasure, and use of this gesture
in the wrong situation or wrong company can lead to unfortunate results.
Let us assume that every culture possesses exactly one such dangerous hand
gesture, selected randomly sometime in the distant past. Now the problem.
You have just parachuted into the jungles of New Guinea, and when rescued
by the natives you wish to greet them with a friendly wave of your hand. At
random, you raise anywhere between zero and five fingers (keeping the rest
folded) and extend your hand toward your rescuers. What is the probability
that you have just commited a grave social faux pas and are thereby in danger
of being shot?
2. You and your spouse intend to have four children. Your mother-in-law

contends that because there is equal probability of having a boy or a girl in
each birth, it is most probable that you will have an equal number of boys
and girls among your four kids. Is she correct? Why or why not?
3. Gambler 1 wins if he scores at least one “1” (an ace) in six throws of a

single die. Gambler 2 wins if he gets at least two aces in twelve throws of a
single die. Which gambler is more likely to win? It may motivate you as you
work through the math to know that this problem was first posed by Samuel
Pepys and solved by Sir Isaac Newton in 1693 (Feller 1960).
4. Four deer are captured from a population of N deer, marked, and

released back into the population. After a time lapse sufficient to ensure that
the marked deer are randomly distributed among the population, five deer are
captured at random from the population. What is the probability that exactly
one of these recaptured deer is marked if

• N = 8 • N = 15 • N = 25
• N = 10 • N = 20 • N = 30

Graph your results of probability versus population size. Can you provide
an intuitive explanation for the shape of this curve?
5. A box of one hundred screws contains ten screws that are defective. You

pick ten screws at random from the box. What is the probability that all ten
screws you have chosen are good? What is the probability that exactly one is
defective?
6. How many people do you have to assemble in a room (people picked at

random from the general population) before there is at least an even chance
(P = 0.5) that at least two have the same birthdate (e.g., February 4 or
September 9)? Assume that the year has 365 days; that is, don’t worry about
leap year. Hint: Check your answer by using the same method to calculate
the probability that two people will have the same birthday if there are 366
people in the room.
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7. You are a contestant on a popular game show that allows you to choose
from among three doors, each of which hides a prize. Behind one of the doors
is the vacation of your dreams. Behind each of the other two doors is a block
of moldy cheese. You make your selection and tell the host. In response,
the host (who knows what is behind each door) opens one of the two doors
you did not choose, revealing some odorous cheese. She then gives you a
chance to change your mind and select the unopened door you did not choose
originally. Would it be an advantage to switch? In other words, what is your
probability of winning the vacation if you keep your original choice? What
is your probability of winning if you switch? (Note: This puzzle stumped a
number of mathematicians when it was posed in a newspaper in 1991; see
Tierney 1991; Hoffman 1998.)
8. Suppose the game show in question 7 had four doors instead of three.

If all rules of the game are otherwise the same, should you switch doors?
9. You live in a town of n+1 people, and are interested in the dynamics of

rumors. You start a rumor by telling it to one other person, who then picks a
person at random from the town and passes the rumor on. This second person
likewise picks a recipient at random, and so forth. What is the probability that
the rumor is told k times before it comes full circle and is repeated to you?
What is the probability that the rumor is told k times before it is repeated
to anyone? Work the problem again, but assume that each time the rumor
is passed on, it is told to a group of N randomly chosen individuals. (This
problem was borrowed from Feller 1960.)
10. Who’s the father? A mare is placed in a corral with two stallions.

One of the stallions is a champion thoroughbred racehorse worth millions of
dollars. The other stallion looks similar but did not have such a distinguished
racing career. The mare becomes pregnant and produces a colt. If the colt
was fathered by the thoroughbred, he is worth a lot of money.

a. From the information given so far, what is the probability that the
colt was fathered by the thoroughbred?
b. Suppose the thoroughbred has a relatively rare genetic marker on

his Y chromosome that only occurs in 2% of horses. You know nothing
about the genetics of the second stallion. You test the colt and find he also
carries the rare marker. What is the probability the colt is the son of the
thoroughbred given that he has the genetic marker?
c. Suppose the mare recently spent time roaming free on the range.

During this time she was exposed to 998 other stallions who also could be
the father of the colt. Now what is the probability that the colt is the son
of the thoroughbred, given that he has the genetic marker?
d. What are the implications of this exercise to human legal trials where

genetic markers are used to identify potential suspects?


