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During the past five to ten years, a variety of tools has been developed in the disciplines
of both gene engineering, and molecular and structural biology. Some of these advances
have permitted scientists not only to identify and characterize genes, but also to target
these genes by disruption, thus eliminating their function in living animals, and to deter-
mine the biological responses to altered gene products. This has particular significance
in endocrine systems, in which feedback mechanisms between the hypothalamus, pitu-
itary, and end organs are critical in normal physiology. Interpretation of the physiological
significance, or the site of action of specific molecules in this context, has been difficult
prior to transgenic technology. Major advances have occurred specifically in the areas of
growth and development, and of reproduction.

Coupled with analysis of naturally occurring mutations in humans, the use of transgenic
animals and in vitro systems has recently allowed endocrinologists to understand the
importance of specific thyroid hormone receptor isoforms in vivo, the molecular basis for
generalized resistance to thyroid hormones via mutations in the nuclear receptor, and
mechanisms for suppressing gene transcription.  Previously designated “orphan recep-
tors,” such as steroidogenic factor-1, were demonstrated to have critical roles in devel-
opment and reproduction. Other nuclear receptors—including those for thyroid hormone,
estrogens, androgens, and progesterone—were shown to bind to coactivator and core-
pressor proteins that modified their transcriptional activity, and contributed to the cell-
specific effects of the hormones. Previous dogma on the independence of steroid and
peptide hormone mechanisms of action was shown to be simplistic. In fact, intracellular
signaling pathways initiated by peptides modify steroid receptors directly and modulate
their activity. These pathways also modify other transcription factors that, alone or in
partnership with other proteins, regulate cell-specific patterns of gene expression. The
application of transgenic and molecular techniques to the study of reproductive endocri-
nology illuminated the importance of estrogen in both males and females, the genetic
basis for androgen insensitivity, gender-specific roles of the gonadotropins in normal
reproduction, and the critical role played by activins, inhibins, and related growth factors.

In view of these tremendous advances, and the ability to draw clinical endocrine
correlates from these findings, Gene Engineering in Endocrinology was assembled to
include contributions from many leaders in these areas. The intent of our book is to place
this new information in physiological perspective and to review the most recent work, as
well as to indicate the areas of interest and questions that need still to be addressed in
future research. The chapters describe studies performed with many types of molecular
methods, and the use of animal and cellular model systems to explore the molecular basis
of growth, development, and reproduction. Gene manipulation and disruption or “knock-
out” results are discussed in the context of the impact of specific genes on these physi-
ological systems, and the developmental or physiological time period at which the
mutation becomes critical. The molecular studies are compared, when possible, with
naturally occurring human and animal gene mutations, in order to compare complete
elimination of gene function with an altered gene product.
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Gene Engineering in Endocrinology is aimed at a broad spectrum of readers, including
those who are currently interested and actively working in molecular endocrinology, and
clinical endocrinologists interested in relating molecular mechanisms to clinical
endocrinology.

Margaret A. Shupnik, PhD
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INTRODUCTION

Insulin is a peptide hormone that plays critical roles in the regulation of growth,
differentiation, and metabolism. The physiological importance of insulin is underscored
by the fact that the insulin receptor has been evolutionarily conserved and is found in
organisms ranging from Drosophila to humans. Furthermore, insulin-dependent diabetes
mellitus, a disease characterized by absolute insulin deficiency, was a uniformly fatal
condition before the advent of insulin therapy. Like other circulating polypeptide hor-
mones, insulin initiates its biological actions by binding to specific cell-surface receptors.
The molecular cloning of the insulin receptor led to the discovery that it belongs to a
large family of ligand-activated receptor tyrosine kinases (RTKs) that includes receptors
for many other growth factors (1–5). Many of the molecules involved with the transduc-
tion of signals from a multitude of RTKs also participate in insulin signaling. One of
the central puzzles in the field of signal transduction is understanding how signal
specificity is achieved after the interaction of the ligand with its receptor since so many
postreceptor events seem to be shared in common by a variety of different RTKs. In
this chapter, we briefly review the current understanding of how insulin receptor signal-
ing follows a general paradigm for RTK signal transduction. Particular emphasis is
given to signaling pathways related to glucose transport since this is among the most
important physiological actions of insulin and is a specialized metabolic function that
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distinguishes the insulin receptor from other RTKs. Finally, we discuss several potential
mechanisms for achieving signal specificity that are illustrated by recent studies relevant
to insulin signaling.

INSULIN SIGNALING FOLLOWS PARADIGM
FOR RTK SIGNAL TRANSDUCTION

As illustrated in Fig. 1, the propagation of information resulting from the binding
of insulin to its cell surface receptor follows a general paradigm for RTK signal
transduction that ultimately culminates in multiple biological effects, including increased
glucose transport, gene and enzyme regulation, and mitogenesis, that are important for
the regulation of metabalism and growth.

Ligand Binding and Receptor Dimerization
The first step in initiating signal transduction by an RTK involves the specific binding

of a ligand to the extracellular portion of its cognate cell-surface receptor. In the case
of monomeric receptors such as the epidermal growth factor (EGF) receptor, ligand
binding results in receptor dimerization, a necessary first step in signal transduction
(4,6,7). The insulin receptor has a heterotetrameric structure (actually, a dimer of αβ
heterodimers) consisting of two extracellular α-subunits and two transmembrane β-
subunits joined by disulfide bonds (8). Thus, even in the absence of ligand, the insulin
receptor exists in a dimeric form. The α-subunit of the insulin receptor contains fibronec-
tin III repeats and cysteine-rich domains that are also found in several other RTKs.
Insulin binds with high affinity to specific regions of the α-subunit (including the
cysteine-rich domain), resulting in a rapid conformational change in the receptor (9,10).
In the absence of ligand, the α-subunit of the insulin receptor appears to exert a tonic
inhibitory influence on insulin receptor function because insulin receptors that have
had the α-subunit removed by trypsin digestion or expression of the cytoplasmic domain
of the insulin receptor alone results in constitutive activation of receptor signaling
(11,12).

Receptor Autophosphorylation and Activation of Intrinsic Tyrosine Kinase
Ligand binding and receptor dimerization result in activation of the RTK. The kinase

region of all RTKs shares substantial homology in both the adenosine triphosphate
binding site and the catalytic domain (4). The kinase of one half of the receptor dimer
phosphorylates cytoplasmic tyrosine residues on the other half of the receptor dimer.
This mutual transphosphorylation event is known as receptor autophosphorylation and
results in a large increase in the catalytic activity of the receptor. The β-subunit of the
human insulin receptor contains tyrosine residues distal to the catalytic domain at
positions 1158, 1162, and 1163 (in the so-called activation loop) that undergo autophos-
phorylation and are important for enhancing the tyrosine kinase activity of the recep-
tor (13–15).

Tyrosine Phosphorylation of Cellular Substrates
and Recruitment of Distal Signaling Molecules

Activation of the RTK leads to tyrosine phosphorylation of cellular substrates that
propagate signaling. In addition, receptor autophosphorylation enables the RTK to



Fig. 1. Insulin signal transduction follows paradigm for RTK signaling.
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directly engage signaling molecules via interactions between phosphotyrosine motifs
on the receptor and src homology-2 (SH2) domains on downstream molecules. SH2
domains are protein domains of ~100 amino acids that share homology with a noncata-
lytic region of the src protooncogene product. Many molecules involved with RTK
signaling, including src, phosphatidylinositol 3-kinase (PI3K), growth factor receptor-
bound protein 2 (GRB-2), SH2-containing phosphatase-2 (SHP-2), GTPase-activating
protein (GAP), and phospholipase C-γ (PLC-γ), contain SH2 domains. Motifs defined
by the three amino acid residues on the C-terminal side of the phosphotyrosine residue
provide specificity for interaction with particular SH2 domains (16,17). In the case of
receptors for EGF and platelet-derived growth factor (PDGF), the particular phosphotyr-
osine sites that engage specific SH2 domains of various signaling molecules have been
well mapped (18,19).

Although the autophosphorylated insulin receptor β-subunit is capable of directly
interacting with molecules such as PI3K, SHP-2, and GAP (20–22), direct binding of
phosphotyrosine motifs on the insulin receptor with SH2 domain-containing molecules
does not appear to be the major pathway for insulin signal transduction. Instead, there
are substrates of the insulin receptor tyrosine kinase such as insulin receptor substrate-
1 (IRS-1), IRS-2, IRS-3, IRS-4, SHC, and GRB-2-associated binder-1 (GAB-1) that
provide an interface between the insulin receptor and downstream SH2 domain–
containing molecules (23–29). The IRS family of proteins contain a number of conserved
regions including a pleckstrin homology (PH) domain and a phosphotyrosine binding
domain that are important for the ability of the autophosphorylated insulin receptor to
interact with and phosphorylate IRS molecules (23,30,31). In addition, these insulin
receptor substrates contain multiple phosphotyrosine motifs that can bind to SH2
domains and may serve as docking molecules that mediate the formation of signaling
complexes consisting of several SH2 domain–containing proteins.

Signaling Proteins Containing SH2 and SH3 Domains
Many of the signaling molecules participating in RTK signal transduction pathways

contain SH2 and/or SH3 domains that mediate protein-protein interactions. As men-
tioned previously, SH2 domains interact specifically with phosphorylated tyrosine
motifs. SH3 domains bind with high affinity to particular proline-rich sequences (4).
Some SH2 domain-containing proteins (e.g., SHP-2, PLC-γ) are effector molecules
that possess intrinsic catalytic activity that is regulated or localized by interactions of
the SH2 domain of the effectors with phosphotyrosine motifs on other proteins (e.g.,
IRS-1). Other SH2/SH3 domain-containing proteins (e.g., GRB-2, Nck, and the p85
regulatory subunit of PI3K) are known as adaptor proteins because they have no intrinsic
catalytic activity and their function involves forming specific signaling complexes
mediated by the simultaneous interactions of multiple SH2/SH3 domains on the adaptor
protein with both upstream and downstream signaling molecules. Activation of Ras
and PI3K, two major effector pathways common to a number of growth factor receptors
including the insulin receptor, fit this latter pattern. For example, GRB-2 is normally
prebound to SOS (a guanine nucleotide exchange factor) via interactions of the two
SH3 domains of GRB-2 and proline-rich regions of SOS. When phosphotyrosine motifs
on IRS-1 and Shc interact with the SH2 domain of GRB-2, activation of the prebound
SOS promotes formation of the GTP-bound form of Ras, leading to activation of Ras.
Similarly, the p85 regulatory subunit of PI3K is normally preassociated with the p110
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catalytic subunit. Insulin stimulation results in the interaction of phosphotyrosine motifs
on IRS proteins with SH2 domains on p85, leading to activation of the prebound p110
catalytic subunit (for reviews see refs. 32 and 33).

Downstream Phosphorylation Cascades
Distal RTK signaling pathways are difficult to dissect cleanly because multiple

branching pathways begin to emerge from single effectors. Adding to the complexity,
multiple upstream inputs often converge on single branch points. Furthermore, negative
feedback mechanisms sometimes exist that lead to downstream signals affecting
upstream components. However, it is clear that various serine/threonine phosphorylation
cascades contribute to the propagation of signaling from the cell surface to the nucleus.
These phosphorylation cascades seem to be common to signaling for many growth
factors including insulin. For example, Ras directly activates Raf, a serine/threonine
kinase that phosphorylates and activates MEK, which in turn phosphorylates and acti-
vates mitogen-activated protein kinase (MAPK), leading to induction and activation of
early immediate genes such as the protooncogenes c-jun and c-fos. Insulin signaling
mediated by PI3K pathways also involves downstream serine/threonine kinase cascades.
For example, phospholipid products generated by PI3K activate PDK1, a serine/threo-
nine kinase that phosphorylates and activates Akt (another serine/threonine kinase),
which in turn phosphorylates and inactivates glycogen synthase kinase-3 (GSK-3)
(34–36). This process results in activation of glycogen synthase and the stimulation of
glycogen synthesis.

Protein Tyrosine Phosphatases
Since tyrosine phosphorylation is critical to initiating and propagating signaling by

RTKs, it is not surprising that dephosphorylation of tyrosine residues by protein tyrosine
phosphatases (PTPases) contributes to the regulation of signaling. The number and
diversity of PTPases rivals that of the RTKs (37,38). PTPases are generally subdivided
into a family of nontransmembrane proteins containing a single catalytic PTPase domain
and a family of transmembrane receptor-like PTPases that typically contain tandem
PTPase domains. The transmembrane PTPases (also known as receptor-like PTPases)
have been further categorized into eight groups based on shared structural features
of various extracellular domains (38). The large number of PTPases discovered and
characterized to date suggests that each PTPase plays a specific role in modulating
signaling by RTKs. PTPases such as SHP-2 contain SH2 domains that confer specificity
whereas the receptor-like PTPases have extracellular domains that presumably interact
with specific ligands. In addition, subcellular localization of particular PTPases may
contribute to their specificity. Although all of the determinants of PTPase specificity
are not understood, there is evidence that particular PTPases show selectivity for specific
RTKs (39).

In the case of signaling by the insulin receptor, the transmembrane PTPases, PTP-
α, PTP-ε, and LAR, have all been implicated as modulators of insulin action (40–42).
In particular, LAR has been shown to interact with and dephosphorylate the insulin
receptor in intact cells (43). In addition, the expression and level of activity of LAR
in insulin targets such as muscle and adipose tissue is increased in insulin-resistant
states such as obesity and diabetes (44,45). Among the nontransmembrane PTPases,
PTP1B and SHP-2 have both been shown to modulate insulin signaling. PTP1B dephos-
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phorylates the insulin receptor both in vitro and in intact cells (39,46,47). In addition,
PTP1B regulates both mitogenic and metabolic actions of insulin (41,48,49). In tissue
culture models, an increase in the level and activity of PTP1B has been associated
with insulin resistance induced by exposure to high glucose levels. In addition, the
level and activity of PTP1B in human skeletal muscle is positively correlated with in
vivo measures of insulin sensitivity (50–52). Binding of the SH2 domains of SHP-2
to phosphotyrosine motifs on either the insulin receptor or IRS-1 results in activation
of SHP-2 PTPase activity (53,54). Interestingly, a number of studies have shown that
SHP-2 participates in Ras- and MAPK-dependent pathways as a positive mediator of
mitogenic actions of insulin and other growth factors (55–58).

INSULIN SIGNALING PATHWAYS THAT
REGULATE GLUCOSE TRANSPORT

A primary metabolic function of insulin that distinguishes it from other growth
factors is the promotion of whole-body glucose utilization and disposal. The rate-
limiting step in glucose utilization under normal conditions is glucose transport into
cells. The insulin-responsive glucose transporter GLUT4 is expressed at high levels
almost exclusively in classical insulin targets such as muscle and adipose tissue (for
a review see ref. 59). Insulin stimulates increased glucose transport in these tissues by
causing the redistribution of GLUT4 from an intracellular pool to the cell surface,
where it acts as a facilitative transporter to enhance entry of glucose into the cell
(60–62). This redistribution of GLUT4 is due largely to insulin increasing the rate of
exocytosis of GLUT4 (insulin may also have a minor effect in decreasing endocytosis
of GLUT4) (63–65).

Although the tissue-specific distribution of GLUT4 and the effects of insulin on the
subcellular localization of GLUT4 have been known for some time, elucidation of
metabolic insulin signaling pathways has lagged behind other areas of insulin signal
transduction for several reasons. First, although muscle and adipose tissue normally
express high levels of GLUT4 and are extremely responsive to insulin stimulation, the
ability to apply modern molecular methods such as transfection of recombinant DNA
to these terminally differentiated tissues has been limited. Second, tissue culture models
of muscle and adipose cells that are easier to manipulate (e.g., 3T3-L1 adipocytes, L6
myocytes, or C2C12 cells) do not always faithfully reflect important characteristics of
bona fide insulin target cells. For example, the relative levels of expression of IRS-
1, -2, and -3 are quite different in primary adipose cells and 3T3-L1 adipocytes
(25,66,67). Third, the requisite cellular machinery for appropriate subcellular trafficking
of GLUT4 seems to be lacking in commonly used tissue culture cells such as NIH-
3T3 fibroblasts, Chinese hamster ovary cells, or COS cells, which do not normally
express GLUT4. Therefore, even when recombinant insulin receptors and GLUT4 are
stably expressed in these cells, they are much less responsive to insulin than muscle
or adipose cells (68).

The recent use of electroporation to transfect adipose cells in primary culture in
conjunction with quantitative methods for assessment of cell surface GLUT4 has led
to a clearer understanding of metabolic insulin signaling pathways (41,69–75). In
addition, transgenic mice that have had key signaling molecules either knocked out or
overexpressed have provided valuable insights (76–80). Finally, microinjection or viral
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transfection strategies in differentiated 3T3-L1 adipocytes along with semiquantitative
methods for assessing cell surface GLUT4 have also been informative (81–85). Figure
2 summarizes some of what is currently known about insulin signaling pathways related
to the translocation of GLUT4 in adipose cells.

Since insulin receptor autophosphorylation and enhancement of RTK activity are
among the earliest known events in insulin signaling, one might predict that RTK
activity is necessary for most, if not all, biological actions of insulin including metabolic
actions such as recruitment of GLUT4 to the cell surface. This idea was supported by
the identification of kinase-deficient insulin receptor mutants in some patients with
syndromes of extreme insulin resistance (86). Direct evidence that insulin RTK activity
is important for mediating the effect of insulin to stimulate translocation of GLUT4
in insulin target cells has been obtained using transfected rat adipose cells in primary
culture (Fig. 3) (70). Cells overexpressing wild-type insulin receptors showed a marked
increase in cell surface GLUT4 in the absence of insulin when compared with control
cells transfected with an empty expression vector. In contrast, cells overexpressing a
kinase-deficient mutant insulin receptor had an insulin dose-response curve similar to
that of the control cells. Taken together, these data suggest that intact RTK activity is
necessary to mediate signaling from the insulin receptor to translocation of GLUT4.
Furthermore, it is likely that unoccupied insulin receptors have a low level of intrinsic
tyrosine kinase activity whose signal is proportional to the amount of receptors
expressed. Additional evidence that the insulin RTK is important in metabolic signaling
comes from studies on PTPases such as LAR and PTP1B that are known to dephosphory-
late the insulin receptor. Both of these PTPases have been implicated in the negative
regulation of metabolic signaling by insulin (39,41,43,45–47,49). In particular, overex-
pression of PTP1B in rat adipose cells leads to a significant decrease in the level of
GLUT4 at the cell surface in both the absense and presence of insulin (41). The fact
that PTP1B decreases cell surface GLUT4 in the absence of insulin provides further
support for the idea that a small signal is generated by the intrinsic tyrosine kinase
activity of unoccupied receptors.

Downstream from the insulin RTK, a number of insulin receptor substrates play roles
in insulin-stimulated translocation of GLUT4. Overexpression of IRS-1 in transfected rat
adipose cells leads to an increase in cell-surface GLUT4 in the absence of insulin
similar to that seen with overexpression of the insulin receptor (71). Interestingly,
transfection of adipose cells with an antisense ribozyme against IRS-1 results in a
decrease in insulin sensitivity without a decrease in maximal responsiveness with respect
to translocation of GLUT4 (71). Thus, although IRS-1 is capable of mediating the
effect of insulin to stimulate translocation of GLUT4, other parallel pathways are
probably involved. Indeed, the fact that transgenic IRS-1 knockout mice are only mildly
insulin resistant provides unequivocal evidence that IRS-1 contributes to metabolic
actions of insulin but is not absolutely required for insulin-stimulated glucose uptake
(76,77). Overexpression of IRS-2 (74) and IRS-3 (143) in rat adipose cells also leads
to translocation of GLUT4 in the absence of insulin, suggesting that these substrates
may also contribute to metabolic actions of insulin. Of note, in adipose cells, the time
course for the association of IRS-3 with the p85 regulatory subunit of PI3K in response
to insulin stimulation is much more rapid than for IRS-1 (87). In addition, the magnitude
of the association between IRS-3 and p85 in response to insulin seems to be greater
than for IRS-1. Furthermore, in transgenic mice lacking IRS-1, IRS-3 is the insulin



Fig. 2. Insulin signaling pathways that contribute to translocation of GLUT4 in adipose cells. Interestingly, although activation of PI3K is
necessary for insulin-stimulated translocation of GLUT4, it does not appear to be sufficient because activation of PI3K by PDGF is without
effect on translocation of GLUT4 when PDGF receptors are expressed at physiological levels.
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Fig. 3. Insulin RTK activity is important for insulin-stimulated translocation of GLUT4. Rat adipose
cells were cotransfected with an epitope-tagged GLUT4 and wild-type human insulin receptors (▲),
tyrosine kinase–deficient mutant insulin receptors cells (■), or an empty expression vector (control)
(●). Cell-surface concentrations of epitope-tagged GLUT4 are shown as a function of insulin
concentration (expressed as a percentage of the maximally stimulated control cells) (70).

receptor substrate in adipose cells responsible for the majority of activation of PI3K
in response to insulin (87,88). Since PI3K is necessary for insulin-stimulated glucose
transport (see the next paragraph), these data suggest that IRS-3 may be a major insulin
receptor substrate mediating metabolic actions in vivo.

As already mentioned, two major insulin signaling pathways downstream from the
receptor substrates are the PI3K- and the Ras-dependent pathways. Overexpression of
constitutively active mutants of either PI3K or Ras in adipose cells leads to massive
recruitment of GLUT4 to the cell surface in the absence of insulin (72,89). However,
overexpression of recombinant proteins can sometimes lead to effects that do not occur
under physiological conditions. Interestingly, when dominant inhibitory mutants were
used to knock out either endogenous PI3K or Ras in adipose cells, overexpression of
the PI3K mutant resulted in a nearly complete inhibition of insulin-stimulated transloca-
tion of GLUT4 (Fig. 4) whereas overexpression of the Ras mutant did not cause a
significant change in the insulin dose-response curve (72). Thus, even though constitu-
tively active PI3K and Ras are both capable of stimulating the recruitment of GLUT4
to the cell surface, it appears that only PI3K plays a necessary physiological role in
this process. However, PI3K activity per se is not sufficient to cause translocation of
GLUT4 because stimulation of PI3K activity in adipose cells using other growth factors
such as PDGF does not result in translocation of GLUT4 (73,90).
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Fig. 4. PI3K is necessary for insulin-stimulated translocation of GLUT4. Rat adipose cells were
cotransfected with an epitope-tagged GLUT4 and either a dominant inhibitory mutant of the p85
regulatory subunit of PI3K (▲) or an empty expression vector (control) (●). Cell-surface concentra-
tions of epitope-tagged GLUT4 are shown as a function of insulin concentration (expressed as a
percentage of the maximally stimulated control cells) (72). Data represent insulin dose response for
an average of four experiments.

There are several effectors downstream of PI3K that may play a role in insulin-
stimulated translocation of GLUT4. Akt is a serine/threonine kinase that is activated
by insulin via lipid products of PI3K binding to the PH domain of Akt, and phosphoryla-
tion of critical serine and threonine residues on Akt by phosphoinositide-dependent
kinase-1, another kinase downstream of PI3K that is activated by lipid products of
PI3K (34,91,92). Like PI3K and Ras, overexpression of constitutively active mutants
of Akt in rat adipose cells or 3T3-L1 adipocytes leads to massive recruitment of GLUT4
to the cell surface (75,84). However, in contrast to PI3K, dominant inhibitory mutants
of Akt that are kinase deficient only partially inhibit insulin-stimulated translocation of
GLUT4 in adipose cells (Fig. 5). This suggests the possibility that multiple downstream
effectors of PI3K contribute to mediating the translocation of GLUT4. For example,
the atypical PKC isoform PKC-ζ is a good candidate for another downstream effector
of PI3K that may contribute to metabolic signaling by insulin. In 3T3-L1 adipocytes,
overexpression of a constitutively active PKC-ζ mutant increased glucose transport
whereas overexpression of a dominant inhibitory PKC-ζ mutant decreased insulin-
stimulated glucose transport (93).

In addition to the progress being made by tracing signaling pathways starting from
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Fig. 5. Physiological role for Akt in insulin-stimulated translocation of GLUT4. Rat adipose cells
were cotransfected with an epitope-tagged GLUT4 and wild-type Akt (●), a kinase inactive mutant
Akt (▲), or an empty expression vector (control) (�). Cell-surface concentrations of epitope-tagged
GLUT4 are shown as a function of insulin concentration (expressed as a percentage of the maximally
stimulated control cells) (75).

the insulin receptor, progress has also been made in understanding the molecular
mechanisms underlying the subcellular trafficking of GLUT4 from an intracellular
compartment to the cell surface in response to insulin. Mechanisms common to vesicular
trafficking during regulated exocytosis of synaptic vesicles in neurons also apply to
the subcellular localization of GLUT4. In general, vesicle docking and fusion to the
plasma membrane is mediated by specific interactions of soluble N-ethylmaleimide-
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sensitive factor attachment protein receptors (SNAREs) (94). v-SNARE proteins are
localized to the vesicle membrane and t-SNARE proteins are localized to the target
plasma membrane. There is good evidence that specific isoforms of v-SNARE and t-
SNARE molecules are involved with GLUT4 trafficking (for a review see ref. 95). For
example, VAMP2 (a v-SNARE) is localized to GLUT4-containing vesicles in adipose
cells and appears to participate in insulin-stimulated exocytosis of GLUT4 (96–98).
Syntaxin 4 (a t-SNARE) binds specifically to VAMP2 and is localized to the plasma
membrane in muscle and adipose cells. Furthermore, insulin-stimulated translocation
of GLUT4 in 3T3-L1 adipocytes can be blocked by using antibodies against Syntaxin
4 or overexpressing the cytoplasmic tail of Syntaxin 4 (98–100). Presumably, the
signaling pathways leading from the insulin receptor interface at some point with the
vesicular trafficking machinery for GLUT4. An important goal of current investigations
related to metabolic actions of insulin is to identify and characterize direct interactions
between signaling proteins and trafficking machinery.

MECHANISMS FOR ACHIEVING SPECIFICITY

Although insulin signaling follows a general paradigm for signaling by RTKs and
many downstream signaling components are shared in common with other RTK signal-
ing pathways, the biological actions resulting from insulin stimulation such as increased
glucose transport are quite specific and distinctive. At each step in the signal transduction
pathway, there are opportunities and potential mechanisms for incorporating signal
specificity. Here we briefly discuss selected examples that illustrate potential mecha-
nisms that may be used to achieve specificity in insulin signaling.

Specificity at the Receptor Level
The binding affinity between insulin and its receptor is quite high and provides an

obvious first determinant of signal specificity. However, insulin is also capable of
binding and activating other related receptors such as the insulin-like growth factor-1
(IGF-1) receptor. Similarly, IGF-1 is capable of binding and activating the insulin
receptor (101). Furthermore, because the insulin receptor and IGF-1 receptor are homolo-
gous, the formation of hybrid receptors with an insulin receptor αβ-subunit joined to
an IGF-1 αβ-subunit can occur. These hybrid receptors are capable of undergoing
transphosphorylation and may generate unique signals. Since the relative amounts of
insulin receptors and IGF-1 receptors differ in particular tissues, the numbers of pure
receptors and hybrid receptors may vary from tissue to tissue. Although the binding
affinities of insulin and IGF-1 for the heterologous receptor are approx 100-fold less
than for their own receptor, the integration of multiple signals at different amplitudes
may contribute to the determination of specific effects. For example, in vascular endothe-
lial cells that normally express 10 times as many IGF-1 receptors as insulin receptors,
stimulation with insulin at concentrations sufficient to saturate both IGF-1 and insulin
receptors results in the production of nitric oxide at a level twice that seen with
stimulation by IGF-1 at comparable concentrations (102). Additional evidence that the
binding interaction between ligand and receptor affects signaling specificity comes
from studies with point mutants of insulin molecules that have been designed to have
higher binding affinities for the insulin receptor than the native insulin molecule. For
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example, the Asp B10 insulin mutant has a much higher binding affinity than native
insulin for the insulin receptor and appears to favor mitogenic rather than metabolic
actions of insulin (103). Another feature of insulin binding to its receptor that may
affect signal specificity is the fact that insulin binding exhibits negative cooperativity
(104). That is, the binding affinity of insulin for its receptor decreases with increasing
insulin concentrations. Thus, the dynamics of intracellular signaling events in response
to a particular insulin secretory profile may encode some specificity. Finally, integration
of signals generated by cross talk between different types of receptors may contribute
to the specificity of insulin signaling. For example, in addition to the well-known cross
talk that occurs between insulin and IGF-1 at the receptor level, there is evidence for
cross talk between insulin and PDGF signaling with respect to interactions between
IRS-1 and PI3K (105). Furthermore, recent evidence suggests that activation of G-
protein-coupled receptors such as the angiotensin II receptor can influence insulin
signaling through interactions with IRS-1 and -2 (106–108).

Specificity at the Receptor Substrate Level
The existence of multiple substrates of the insulin receptor also provides opportunities

to incorporate specificity. Members of the IRS family of substrates contain multiple
phosphotyrosine docking sites for SH2 domain–containing proteins. The number of
these docking sites and the particular SH2 domains with which they interact vary among
the different IRS proteins. That is, the combination of downstream signaling molecules
engaged by an IRS protein as well as the relative affinities of particular downstream
effectors for each substrate are unique for each IRS protein. Thus, tissue-specific
differences in the relative expression levels of these IRS substrates may result in
formation of distinct signalling complexes in particular tissues and help explain why
some actions of insulin predominate in certain tissues (66,109). In addition, in some
downstream signaling molecules containing tandem SH2 domains (e.g., SHP-2 and the
p85 regulatory subunit of PI3K), the spatial relationship between these SH2 domains
provides an additional level of specificity. That is, the geometry of multiple phosphotyro-
sine motifs on a particular substrate is important for optimal binding and activation of
proteins with tandem SH2 domains (110,111). Similarly, the relationship of SH2 and
SH3 domains in various adaptor or effector molecules may impose physical constraints
on the formation of signaling complexes that are important for signal specificity.

In addition to members of the IRS family, there are other substrates of the insulin
receptor that are also expressed in a tissue-specific manner and may contribute to
specificity in insulin signaling. For example, there is a family of Mr 120,000 integral
membrane glycoproteins that are phosphorylated by the insulin receptor. pp120/HA4
was the first member of this family to be identified as a substrate for the insulin receptor
(112–116). Based on the sequence flanking the tyrosine phosphorylation site in pp120/
HA4, Najjar et al. (117) predicted that the protein would bind to the SH2 domain of
SH2-containing phosphotyrosine phosphatases. Subsequently, two other laboratories
identified two homologous glycoproteins (SHP substrate-1 [118] and signal-regulatory
protein [SIRP] [119]) that were phosphorylated by the insulin receptor and other tyrosine
kinases. Furthermore, the phosphorylated proteins did indeed bind to SHP-1 and SHP-
2, and served as substrates for these two phosphotyrosine phosphatases. Moreover,
SIRP was demonstrated to exert an inhibitory effect on signaling through RTKs.
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Subcellular Compartmentalization of Signaling Complexes
Signal specificity may also be determined by localization of signaling complexes to

particular subcellular compartments. For example, in adipose cells, there is evidence
that insulin stimulation results in the localization of IRS-1/PI3K complexes to GLUT4-
containing vesicles (120). The subcellular targeting of PI3K by insulin may help explain
why activation of PI3K by insulin results in translocation of GLUT4 but similar
activation of PI3K by PDGF does not (73,90). The fact that PDGF stimulation of
adipose cells overexpressing PDGF receptors results in translocation of GLUT4 is
consistent with the idea that overexpression of proteins may lead to aberrant localization
of signaling molecules in compartments where they would normally be excluded (73).

Another subcellular compartment that may contribute importantly to organizing
microdomains of signaling complexes are caveolae (small invaginations in the plasma
membrane that contain scaffold-like proteins such as caveolins) (121,122). Caveolae
are quite abundant in terminally differentiated cell types such as muscle, endothelial,
and adipose cells. Furthermore, growth factor receptors such as PDGF and EGF as
well as other signaling proteins such as Ras, MAPK, phosphoinositides, G-proteins,
calmodulin, and nitric oxide synthase have all been localized to caveolae (some of
these interact directly with caveolin) (123–126). Recently it was shown that all the
necessary factors for PDGF-stimulated MAP kinase activation (including the PDGF
receptor, Ras, Raf1, Mek1, and Erk2) are localized and functionally active in
caveolae (123). Interestingly, in 3T3-L1 cells, insulin stimulates the phosphorylation
of caveolin only when the cells are differentiated into adipocytes, but not in the fibroblast
form (127). Furthermore, in endothelial cells, the interaction of caveolin with nitric
oxide synthase is modulated by tyrosine phosphorylation (128,129). Therefore, it is
conceivable that some of the specificity in insulin signaling is determined by the
organization of signaling complexes in caveolae or other similar subcellular compart-
ments.

Tissue-Specific Expression of Key Effectors
Specific biological responses to insulin may also be determined, in part, by tissue-

specific expression of signaling and effector molecules that are necessary for particular
actions of insulin. For example, in the case of insulin-stimulated glucose transport,
GLUT4 is the major insulin-responsive glucose transporter that is recruited to the cell
surface in response to insulin. Since GLUT4 is predominantly expressed in skeletal
muscle and adipose tissue, the effect of insulin to increase glucose transport occurs
mostly in these tissues. However, transfecting other cell types (e.g., fibroblasts) with
GLUT4 and insulin receptors is not sufficient to make cells as responsive to insulin with
respect to glucose transport as classical insulin target cells. Thus, there are presumably
additional tissue-specific signaling elements important for insulin-stimulated glucose
transport besides the insulin receptor and GLUT4.

Another example of the importance of tissue-specific expression of key effectors is
demonstrated by the recent finding that caveolin is tyrosine phosphorylated in response
to insulin stimulation only in differentiated 3T3-L1 adipocytes, not in undifferentiated
3T3-L1 fibroblasts (127). The phosphorylation of caveolin can be mediated by the
kinase fyn, which is thought to be activated by the binding of phosphorylated c-cbl in
response to insulin stimulation. Interestingly, although the insulin receptor, c-cbl, fyn,
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and caveolin are all expressed in both 3T3-L1 fibroblasts and adipocytes, insulin
stimulation results in phosphorylation of c-cbl only in the differentiated 3T3-L1 adipo-
cyte (130). This implies that the kinase responsible for phosphorylation of c-cbl in
response to insulin (or some other upstream component) is expressed only in the
adipocyte, not the fibroblast form of 3T3-L1 cells, and may explain why caveolin is
phosphorylated in response to insulin only in adipocytes.

The existence of multiple isoforms of key signaling molecules may also be important
for signal specificity. For example, PI3K is essential for insulin-stimulated glucose
transport. However, multiple isoforms and splice variants of both the regulatory p85
and catalytic p110 subunits of PI3K that have differential responses to insulin have
been discovered (131–137). Each of these isoforms may generate a distinct pattern of
lipid products that have specific roles in signaling. The lipid products of PI3K are
known to bind to PH domains of downstream effectors, resulting in activation or
regulation of these PH domain–containing molecules. Recently, different lipid products
of PI3K were shown to have differential binding affinities for particular PH domains
from various signaling molecules (138). Thus, the combination of different isoforms
of regulatory and catalytic subunits of PI3K in conjunction with tissue-specific expres-
sion and localization to subcellular compartments may result in the generation of a
particular profile of lipid products that interact in specific ways with downstream
effectors that determines the biological response to insulin stimulation.

Feedback Regulation
The function of end products to dampen signals from one pathway while amplifying

signals from others is a common mechanism used in the regulation of enzymatic
pathways. It is possible that specificity in RTK signal transduction is also determined,
in part, by positive or negative feedback. In the case of insulin signaling, it was recently
shown that GSK-3 (a downstream metabolic effector of insulin inactivated by Akt)
can phosphorylate IRS-1 on serine/threonine residues and inhibit insulin RTK activity
(139). Similarly, PI3K (downstream from IRS-1) has serine/threonine kinase activity
in addition to its lipid kinase activity and phosphorylates IRS-1 on serine residues,
which may result in modulation of IRS-1 function (140). In addition, there is evidence
that PI3K has functional interactions both upstream and downstream from Ras, suggest-
ing another feedback loop that may be involved with insulin signaling (141,142).

Modulation of Signal Frequency and Amplitude
Cellular signals generated by changes in ion fluxes or membrane potential often

encode information in the modulation of the signal frequency and amplitude. It is
conceivable that the dynamics of signaling by RTKs also encode specific information
by modulation of the frequency and amplitude of various phosphorylation cascades.
For example, it was recently shown that the time course for association between PI3K
and IRS-3 in rat adipose cells in response to insulin stimulation is faster than for IRS-
1 (87). Furthermore, in the same study, the amount of PI3K associated with IRS-3 in
response to insulin stimulation was also greater than for IRS-1. This difference in the
time course and amplitude of PI3K activation may help distinguish signals that are
mediated by IRS-1 from those by IRS-3 and ultimately result in different biological
effects.
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SUMMARY

The molecular mechanisms of insulin action follow a general paradigm for RTK
signal transduction. As a result, significant progress has been made in recent years to
elucidate the insulin signaling pathways involved with the promotion of glucose uptake
and metabolism, one of the most distinctive and important biological actions of insulin. A
fundamental challenge for future investigations is to understand how specific biological
actions of insulin are determined using signaling molecules that are common to signaling
pathways used by many other growth factors and cytokines. Convergence and divergence
of multiple branching pathways, subcellular compartmentalization, tissue-specific
expression of key effectors, and modulation of signal frequency and amplitude are
among the potential mechanisms underlying specificity in insulin signaling.
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To date, no AF-1 specific coactivator has been isolated. This will clearly be of great
interest, because partial agonists of estrogen and progesterone are believed to exert
their actions through this domain. SRC-1 has been reported to interact with both the
AF-1 and AF-2 domains, and may contribute to the AF-1 effect in at least some cases
(94). Thus, there may be coactivator or modulator proteins that interact with AF-2,
AF-1, or both domains. A novel hinge domain–binding coactivator, L7/SPA, has been
isolated from HeLa cells, and increased the partial agonist activity of TAM-bound ER
and RU486-occupied PR (76).

In general, unliganded ER does not bind to corepressors such as silencing mediator
of retinoid and thyroid hormone receptors (SMRT) and nuclear receptor corepressor
(NCoR), which bind to the hinge region of nuclear receptors, such as the thyroid
hormone receptors and RARs, and prevent binding of the LBD regions to coactivators
(41). In these receptors, the corepressor proteins invoke a receptor conformation that
actively represses transcription, owing partially to histone acetylase activity of the
coactivator proteins. Specific conformations of ER, resulting from binding to receptor
antagonists, may result in corepressor recruitment to the liganded receptor complexes.
For example, in HepG2 liver cells, in which tamoxifen is a partial agonist, exogenous
SRC-1 enhanced E and TAM-stimulated transcription, whereas overexpression of the
corepressor SMRT strongly reduced basal and TAM-mediated transcription with no
effects on E activity (86). Similarly, PR bound to antiprogestins of the partial agonist
class binds more effectively to corepressors N-CoR and SMRT than does PR bound
to other ligands (76,95), and this association can be suppressed by treatment of cells
with cAMP (95). Unliganded PR may bind to corepressors, and additional corepressors
with more complicated or specific receptor requirements may exist. For example, human
ER LBD bound to antiestrogens such as tamoxifen, but not bound to E, associates with
at least one nuclear protein capable of acting as a corepressor (96). Such molecules
would not be isolated using only ligand-bound receptors as bait in typical two-hybrid
or other protein interaction assays. Additional studies will undoubtedly focus on the
types of accessory proteins bound to specific receptors with various ligands, as well
as modifications of those proteins by intracellular signaling cascades.

SUMMARY

Overall, several factors including the character of the ligand, the steroid receptor
isoform expressed in a specific cell type, and intracellular signaling pathways activated
in a given cell or tissue may all be important in determining the character of partial steroid
antagonists. At least some of these responses are directly related to the complement of
coactivators and corepressors associated with ligand-bound receptor within a given
context. As we have discussed, the levels of individual coactivators and corepressors
may be modulated physiologically, and it is likely that posttranslational modifications
will also occur in response to signaling cascades by growth factors and other bioactive
peptides. Individual ligand binding to specific receptor isoforms confers distinct confor-
mational changes and contours to the receptors, capable of interacting with the cellular
accessory proteins. Based on both the identity and levels of coactivators and corepres-
sors, the resulting receptor protein complex will have either a stimulatory or suppressive
conformation and a resulting effect on model gene transcription. An additional layer
of diversity will then be provided by the specific ERE or responsive promoter region
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in the cellular target genes, since the receptor conformation may be altered as it binds
to different DNA sequences, or contacts different proteins at nearby promoter regions.
These interactions can alter the essential character of a given ligand, from antagonist
to agonist or the reverse. Current and future studies will be focused on the essential
mechanisms underlying such diversity and specificity, and how these processes can be
regulated or manipulated for a given positive biological outcome.

REFERENCES

1. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor
superfamily: the second decade. Cell 1995; 83:835–839.

2. Green S, Chambon P. The oestrogen receptor: from perception to mechanism. In: Parker M, ed.
Nuclear Hormone Receptors. Academic, New York, pp. 15–18.

3. MacGregor JI, Jordan VC. Basic guide to the mechanisms of antiestrogen action. Pharm Rev 1998;
50:151–196.

4. Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D. Crystal structure of the ligand-binding
domain of the human receptor RXT-α. Nature 1995; 375:377–382.

5. Renaud J-P, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D. Crystal structure of
the RAR gamma ligand binding domain bound to all-trans retinoic acid. Nature 1995; 378:681–689.

6. Tanenbaum DM, Wang Y, Williams SP, Sigler PB. Crystallographic comparison of the estrogen and
progesterone receptor’s ligand binding domains. Proc Natl Acad Sci USA 1998; 95:5998–6003.

7. Tora L, White J, Brou C, Tasset D, Webster N, Scheer E, Chambon P. The human estrogen receptor
has two independent nonacidic transcriptional activation functions. Cell 1989; 59:477–487.

8. Berry M, Metzger D, Chambon P. Role of the two activating domains of the oestrogen receptor in the
cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen.
EMBO J 1990; 9:2811–2818.

9. Feng W, Ribiero RC, Wagner RL, Nguyen H, Apriletti JW, Fletterick RJ, et al. Hormone-dependent
coactivator binding to a hydrophobic cleft on nuclear receptors. Science 1998; 280:1747–1749.

10. Daneilian PS, White R, Hoare SA, Fawell SE, Parker MG. Identification of residues in the estrogen
receptor that confer differential sensitivity to estrogen and hydroxytamoxifen. Mol Endocrinol
1993; 7:232–240.

11. Beekman JM, Allan GF, Tsai SY, Tsai M-J, O’Malley BW. Transcriptional activation by the estrogen
receptor requires a conformational change in the ligand binding domain. Mol Endocrinol 1993; 7:1266–
1274.

12. Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, et al. Molecular basis of
agonism and antagonism in the oestrogen receptor. Nature 1997; 389:753–758.

13. Williams SP, Sigler PB. Atomic structure of progesterone complexed with its receptor. Nature
1998; 393:392–396.

14. Shiau AK, Barstad D, Loria PM, Cheng L, Kushmer PJ, Agard DA, Greene GL. The structural basis
of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell
1998; 95:927–937.

15. Montano MM, Müller V, Trobaugh A, Katzenellenbogen BS. The carboxy-terminal F domain of the
human estrogen receptor: role in the transcriptional activity of the receptor and the effectiveness of
antiestrogens as estrogen antagonists. Mol Endocrinol 1995; 9:814–825.

16. Koehorst SG, Cox JJ, Donker GH, daSilva SL, Burbach JPH, Thijssen JHH, Blankenstein MA.
Functional analysis of an alternatively spliced estrogen receptor lacking exon 4 isolated from MCF-
7 breast cancer cells and meningioma tissue. Moll Cell Endocrinol 1994; 101:237–245.

17. Koike S, Sakai M, Muramatsu M. Molecular cloning and characterization of rat estrogen receptor
cDNA. Nucleic Acids Res 1987; 15:2499–2513.

18. Shupnik MA, Gordon M, Chin WW. Tissue-specific regulation of the rat estrogen receptor mRNAs.
Mol Endocrinol 1989; 3:660–665.

19. Friend KE, Ang LW, Shupnik MA. Estrogen regulates the expression of several different estrogen
receptor mRNA isoforms in rat pituitary. Proc Natl Acad Sci USA 1995; 92:4367–4371.

20. Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J-Å. Cloning of a novel estrogen
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a pure antagonist of the transcriptional functions of estrogen receptors α and β. Endocrinology
1998; 139:111–118.

59. Tzukermann MT, Esty A, Santiso-Mere D, Danielian P, Parker MG, Stein RB, et al. Human estrogen
receptor transactivated capacity is determined by both cellular and promoter context and mediated by
two functionally distinct intramolecular regions. Mol Endocrinol 1994; 8:21–30.

60. Tremblay GB, Tremblay A, Labrie F, Giguere V. Dominant activity of activation function 1 (AF-1)
and differential stoichiometric requirements for AF-1 and -2 in the estrogen receptor alpha-beta
heterodimeric complex. Mol Cell Biol 1999; 19:1919–1927.

61. Dauvois S, White R, Parker MG. The antiestrogen ICI 182780 disrupts estrogen receptor nucleocy-
toplasmic shuttling. J Cell Sci 1993; 106:1377–1388.

62. McInerney EM, Weis KE, Sun J, Mosselman S, Katzenellenbogen BS. Transcription activation by
the human estrogen receptor subtype β (ERβ) studied with ERβ and ERα receptor chimeras. Endocrinol-
ogy 1998; 139:4513–4522.

63. Webb P, Lopez GN, Uht RM, Kushner P. Tamoxifen activation of the estrogen receptor/AP-1 pathway:
potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol 1995; 9:443–
456.

64. Paech K, Webb P, Kuiper GGJM, Nilsson S, Gustafsson J-Å, Kushner PJ, Scanlan TS. Differential
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