
Preface

Research in placement algorithms for VLSI circuits has enjoyed a renaissance in
recent years. Today, there are a number of high quality academic placers that have
been developed in universities. The amount of research on this topic clearly reflects
the importance of the placement as the single most critical component for achiev-
ing timing/design closure in a modern physical synthesis tool. Placement algorithm
itself has been researched for more than three decades. Yet, the problem is still very
challenging for multiple reasons. First, the exponential increase of the circuit den-
sity according to Moore’s Law has led to designs with tens of millions of placeable
objects today. Although such complex designs are composed hierarchically based
on the logic or function hierarchy, multiple studies (e.g. [3]) show that placement
based on the logic hierarchy may lead to considerably inferior results. The preferred
methodology is to place the entire design flat (with millions or tens of millions of
placeable objects) to derive a good physical hierarchy and then use it to guide the
subsequent physical synthesis process. Therefore, the modern placers have to handle
extremely large problem sizes. Second, today’s System-on-Chip (SoC) designs intro-
duce complex constraints, such as routability and timing constraints, as well as the
support of mixed size macros, area I/Os, multi-Vt and multi-Vdd islands for power
optimization. Moreover, recent work on placement optimality studies ([1,2]) suggest
that there exists significant room for improvement even for wire length optimization
alone (details will be discussed in Chap. 2). All these reasons stimulated renewed
interests in research in circuit placement problems, both in academia and industry, in
the past a few years.

To help further stimulate advances in placement research, ISPD (International
Symposium on Physical Design [7]) hosted two placement contests using new, large-
scale benchmark suites based on real industrial designs ( [5, 6], see Chap.1 for more
detailed discussion). The common goals of the two ISPD placement contests were:

• To provide new modern placement benchmarks to stimulate new development in
placement research
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• To provide a common basis for quantitative measurements of contemporary
placement algorithms, and help the academic community to publicize their place-
ment tools and results

• To provide an educational forum on a variety of state-of-art placement algorithms
for future placement researchers

These two placement contests were huge success with participation from a
number of academic placers and provided a common platform to evaluate various
placement algorithms on the same set of realistic benchmarks. This book is the prod-
uct of these academic efforts on placement contests and it can be considered as the
year 2006 snapshot of state-of-the-art modern placement techniques employed in the
field. The book provides in-depth description of the best practices of placement algo-
rithms used in the research community today. Each book chapter provides detailed
description of the underlying algorithm and implementation features of a place-
ment tool that participated in the two contests, including the experimental results
on ISPD placement benchmark circuits and the optimality analysis on PEKO-MS
benchmarks.

This book is organized in four parts:

• Part I introduces placement benchmark suites. In Chap. 1, new industry design-
driven ISPD 2005/2006 benchmark circuits are presented with contest results.
Chapter 2 describes the details of PEKO-MS benchmarks that can be used for
placement optimality analysis.

• Part II describes flat placement techniques, which formulate and solve the entire
placement problem directly (although the numerical solvers used in these placers
may use multilevel methods). Chapter 3 describes the most recent analytical
placer DPlace that is an anchor cell-based quadratic placement engine. The
Kraftwerk placement algorithm, the winner of ISPD 2006 placement contest,
is presented in Chap. 4.

• Part III presents top-down partitioning-based placement techniques. It includes
Capo, a congestion driven placer (Chap. 5) and the Dragon placer that combines
simulated annealing optimization with a partitioning algorithm (Chap. 6).

• Part IV is about multilevel placement methods that have attracted significant
attentions recently. It covers APlace (Chap. 7), which was the winner of the
2005 placement contest, the runtime efficient force-directed placer, FastPlace
(Chap. 8), the mFAR fixed-point addition based placer (Chap.9), and the multi-
level non-linear optimization placer mPL (Chap. 10) that produced the highest
quality solutions in the 2006 placement contest. Also, NTUplace3 (Chap. 11), a
new analytical placer for large scale mixed-size designs, is presented here.

The idea of this book emerged in April 2006, right after the ISPD 2006 place-
ment contest, as a way of capturing a technology snapshot of dominant placement
algorithms. We sent out invitations to all placement contest participants, and every
team agreed to contribute to this book. By February 2007, all chapter manuscripts
were submitted. In fact, some of them included the latest progress they made after
the 2006 placement contest. Therefore, the results reported in some of the chapters
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are different (better) from the original placement contest results, which we provided
at the end of Chap. 1 for reference.

The editors are well aware of the limitations of placement objectives used in the
two contests. The 2005 contest uses wire length minimization as its sole objective
function, while the 2006 contest uses a combination of wire length minimization, cell
density control and runtime as its objective function (see Chap. 1 for more details).
Real placement problems need to consider a number of other objectives, such as tim-
ing, power, and thermal optimization, as well as interaction with various physical
synthesis operations, such as buffer insertion and gate sizing. A direct comparison
of different placers under all these objectives and constraints may not be possible or
meaningful, as each design has its own emphasis, and the final result is not deter-
mined by the placement algorithm alone. Many other steps, such as timing analysis,
global and detailed routing, and various physical optimization operations can affect
the final result. Therefore, we think that it is appropriate to use rather simple metrics
in the two placement contests to measure the capability of the core wire length opti-
mization engines employed in the different placers. As pointed in [4], a placer with
good wire length minimization engine can be extended to handle other design objec-
tives through weighted wire length minimization using various weighting functions.

This book is intended for graduate students, researchers, and CAD tool develop-
ers in the physical synthesis and physical design area. Each chapter is mostly self-
contained and can be read independently. We hope that the readers can benefit from
this collection of modern placement algorithms and potentially contribute to the field
with new perspective. Please note this book is not intended to provide a comprehen-
sive review of all available placement techniques, but to highlight the most successful
techniques and practices used in modern placers. We refer the reader to [4] for a more
comprehensive survey for the existing placement techniques.

We would like to thank the ISPD organizing committee for sponsoring the two
placement contests, and IBM Corporation for providing the benchmark examples.
We are indebted to the time and efforts of all the chapter authors who made this book
possible. Finally, we would like to thank David Papa at the University of Michigan
for thorough reviews of all chapters.

Gi-Joon Nam
IBM Research
Austin, Texas

Jason Cong
University of California
Los Angeles, California

March 2007
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2.1 Introduction

Placement is a critical step in VLSI design. Interconnect delay dominates system
performance, and placement determines the interconnect more than any other step
in physical design. The complexity of modern designs, however, makes estimation
of suboptimality difficult [14, 16, 28]. Studies on simplified, synthetic benchmarks
with known optimal-wire length placements (PEKO [7]) initially suggested that many
leading tools may produce solutions with excess wire length from 60% up to 150%
or more. These results have generated wide interest in both industry [13] and acad-
emia [19, 22, 28]. Recent progress in placement [1, 5, 6, 17] has reduced the wire
length gap on PEKO to about 12–40%.

The PEKO benchmarks, however, have well-known limitations. Although their
cell counts, net counts, and net-degree statistics match corresponding quantities in
standard industrial benchmarks [2], the PEKO circuits are simplified in three key
ways, in order to guarantee known optimal solutions. First, all cells are squares of the
same size. Second, the known optimal placements for the PEKO circuits are packed
layouts with zero white space. Third, all nets in an optimal PEKO placement are
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local – the netlist of a PEKO circuit is defined over cells arranged in a regular array,
with adjacent cells grouped into local nets of minimum HPWL.

Subsequent studies [9, 16] derived useful lower bounds on the HPWL subopti-
mality of placements of circuits with more realistic netlists. The PEKU circuits [9]
add nonlocal nets to packed, uniform-grid PEKO layouts but sacrifice any assurance
of optimality. Zero-change netlist transformations [16] preserve both module shapes
and core utilization, but they quantify the sensitivity of a placement tool to netlist
changes, not the suboptimality of a given placement on a given netlist. It is not known
how close the lower bounds on suboptimality are to the true suboptimality gaps for
either the PEKU circuits or the zero-change netlists.

The benchmarks described in this chapter directly address several of the short-
comings in existing suboptimality benchmarks. Two new sets of placement exam-
ples are constructed, one targeting the role of nonlocal nets in suboptimality, and
another targeting the role of white space and large variations in module sizes. The
first set, PEKO-MC, is a set of standard-cell circuits with nonlocal nets in known
optimal placements. A given netlist is modified so as to render a given placement
for it optimal for the new netlist. Cell dimensions and locations are not changed,
net-degree statistics are matched exactly, and over 60% of the original netlist is
left unchanged. The second set, PEKO-MS, incorporates a parametrized percentage
of white space into a mixed-size placement which precisely matches given macro
dimensions and locations as well as the net-degree distributions of the ISPD 2005
benchmark suite [21]. HPWL for the placements generated for the PEKO-MS circuits
are proven to be less than 3% above optimal for most cases and within 8% of optimal
on all cases.

The concept of a monotone path for a circuit signal has been used in performance-
driven logic synthesis [23, 26], coupled timing-driven placement and logic synthe-
sis [27], performance-driven multilevel partitioning [15], and the analysis of wire
length models in timing-driven placement [24]. The concept is also employed in two
of the three netlist transformations used by Kahng and Reda [16]. To our knowl-
edge, however, the work described here is the first to employ monotone chains in the
construction of netlists with known optimal-wire length placements.

Typically, mixed size placement proceeds in three stages: global placement (GP),
legalization, and detailed placement (DP). The goal of GP is to position each cell
within some relatively small neighborhood of its final position, while eventually
obtaining a sufficiently uniform distribution of cell area over the entire chip. Typ-
ically, large sets of cells are moved simultaneously under some relaxed or incremen-
tal formulation of area density control – scalable algorithms do not strictly enforce
pairwise nonoverlap constraints during this stage. The goal of legalization is, given
a sufficiently good GP Pg, determine positions of all cells so that (1) no two cells
overlap and (2) a given objective, e.g., approximate total wire length or total dis-
placement from Pg, is minimized. During DP, all constraints are strictly enforced.
Typically, DP proceeds by a sequence of refinements made one at a time on small,
contiguous subregions [4, 12] or on individual rows [18].

In practice, GP is terminated when iterations are observed to make little or no
reduction in the objective and the module-area distribution is sufficiently uniform.
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How much of the optimality gap left by contemporary methods should be attributed
to deficiencies in global-placement algorithms, and how much to legalization and
DP? On a real circuit, there is no way of knowing how far a cell is from its nearest
optimal location, at any stage. On circuits with known optimal or near-optimal place-
ments, however, it is possible to evaluate precisely the quality of any of the three
engines in isolation from its counterparts. Thus, the benchmark circuits described
here provide a more precise means of quantifying the relative effectiveness of the
methods used in the three stages. Results estimating the separate suboptimality con-
tributions of GP and legalization and DP are described in Sect. 2.4.

2.2 Peko-MC Benchmark Construction

Each PEKO-MC example has an optimal-wirelength placement in which over 50%
of the nets are non-local. Module shapes, core utilization, and net-degree statistics
match corresponding quantities in a given benchmark exactly. The PEKO-MC con-
struction is described in this section.

2.2.1 Monotone Chains

The definition of a monotone chain in a netlist uses simple ideas from both graphs
and hypergraphs. First, consider a path P in a graph G whose vertices lie in the
plane. Let P consist of n consecutive edges (e1, . . . , en) connecting n + 1 vertices
(v0, . . . , vn), vertex vi with coordinates (xi , yi ) and edge ei connecting vertices vi−1
and vi . Then P is monotone if and only if, for every i ∈ {1, . . . , n}, |xn − xi | ≤
|xn − xi−1| and |yn − yi | ≤ |yn − yi−1|. Hence, a path in a graph embedded in the
plane is monotone if and only if the Manhattan distance between its two terminal
vertices equals the sum of the Manhattan lengths of its edges.

In a hypergraph, a hyperpath is a finite sequence of hyperedges in which each
hyperedge intersects with its predecessor and successor. We say that a hypergraph
lies in the plane or, equivalently, is placed in the plane, if the nodes (modules) of the
hypergraph (netlist) have been assigned specific locations in the plane. In this case,
the total length of a hyperpath is the sum of the HPWLs of its hyperedges (HPWL
denotes minimum bounding-box half-perimeter). An edge e = (v, w) is called the
equivalent edge of a hyperedge h of a hypergraph in the plane, if (1) its vertices v and
w are in h and (2) e’s minimum-HPWL bounding box is the same as h’s minimum-
HPWL bounding box. A hyperedge in the plane may have zero, one, or two equivalent
edge(s).

A path P is called the equivalent path of a hyperpath H in a hypergraph in the
plane, if there is a one-to-one correspondence between the edges of P and the hyper-
edges of H , such that every edge of P is the equivalent edge of its corresponding
hyperedge in H . A monotone chain is a hyperpath which has an equivalent path that
is monotone.

Assuming that no two vertices can occupy the same location, neighboring hyper-
edges in a monotone chain have exactly one vertex in common. These common ver-
tices form the equivalent monotone path. The two terminal vertices of a monotone
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chain are the terminal vertices of its equivalent path. Hence, the length of a monotone
chain equals the HPWL of the edge defined by the chain’s two terminals.

Observation 2.2.1 If the terminal vertices of a monotone chain P =(h1, h2, . . . , hn)

of a hypergraph G are fixed in the plane, there is no other planar embedding of
hypergraph G which reduces the length of P.

Given a placement of the hypergraph in the plane, a local net is a hyperedge
the HPWL of which is the minimum possible, subject to some spacing constraints
between vertices. From Observation 2.2.1, it is evident that a placement has opti-
mal HPWL if all its nonlocal nets can be partitioned into netwise-disjoint monotone
chains with fixed endpoints.

2.2.2 The Peko-MC Algorithm

Starting from the placement of the real benchmark, sets of nets are identified that can
be grouped together into netwise-disjoint monotone chains between well-separated
fixed terminals. Initially, these chains are not complete and have gaps called interven-
ing regions. These are later filled by other nets that are modified from the original
netlist. Local nets in the given placement are not modified. The main steps of the
PEKO-MC algorithm are sketched below.

Placement generation. The PEKO-MC generator requires a placement of the orig-
inal netlist. This placement is held fixed, while the netlist is changed so that the
given placement attains the optimal HPWL for the modified netlist. Starting from a
random placement is possible, but experiments show that starting from a placement
computed by a tool increases the final similarity of the original and the derived cir-
cuits, because a real placement has many more locally optimal nets than a random
placement.

Net categorization. The nets of the original hypergraph are divided into three
different categories depending on the placement of their pins:

(1) Locally optimal-HPWL nets
(2) Nets that do not have equivalent edges
(3) Nets with equivalent edges

Nets of Type (2) cannot be members of monotone chains and are therefore modified.
Nets of Type (3) are labeled according to the directions of the monotone chains of
which they can be members: from lower left toward upper right, or from lower right
to upper left. Some of these nets can be members of chains in either direction.

Chain generation. As illustrated in Figure 2.1, sets of nets that can be members
of the same chain are identified along with sets of intervening regions that must later
be filled by nets in order to complete the monotone chains. All nets of Type (3) are
assigned to chains during this step.

Chain removal. In our experiments, the number of intervening regions between
pairs of nets created during chain generation is higher than the number of nets of Type
(2). Hence, to preserve netlist statistics, some of the chains generated are removed in
order to reduce the number of such intervening regions and increase the number of
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(c)(b)(a)

R

Net A Net BNet A

R R’

Net BNet A

Empty Region

Fig. 2.1. Example of chain generation. (a) Net A, containing two cells, has already been added
to the chain. A search for a new net takes place in region R. (b) Net B is selected to be added
to the chain. (c) An intervening region is inserted between nets A and B that will be covered
later by a new net. A new search is initiated for nets in region R’.

available nets. Chains with the highest ratios of intervening regions to contained nets
are removed until the number of available nets equals or exceeds the number of gaps
between terminals in chains.

Gap covering. In the final step, empty regions between nets in chains are filled
by new nets. Each new net replaces some available net in the original netlist. The
new net includes the two pins defining the equivalent edge of the bounding box of
its intervening region R as well as additional pins selected from within R in order
to match the degree of the replaced net. The cells whose degree in the current netlist
are smallest compared to their original degree are given priority. In this way, the cell-
degree distribution of the new netlist closely follows the corresponding distribution
of the original circuit. Most intervening regions are covered by one net, but a few
are covered by two nets, when the number of available nets exceeds the number of
empty regions.

Experiments reported in Sect. 2.4 suggest that, on the 2004 FastPlace-IBM
standard-cell circuits with 20% white space, nonlocal nets probably do not represent
a significant source of suboptimality for these tools. In order to amplify the subopti-
mality observed on mixed-size cases as much as possible, the PEKO-MS benchmarks
described next include only local nets by default.

2.3 Peko-MS Benchmark Construction

We refer to our placement suboptimality benchmarks with parametrized white space
as PEKO-MS. As shown in Figure 2.2, the PEKO-MS generator produces a benchmark
closely approximating the following four targets (1) net-degree histogram N#, (2)
given placement Pmac of all macros, (3) number of standard cells Nsc, and (4) white
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Set grid-resolution limit NG .

input

N# target net-degree histogram
Pmac macro placement in core region R
Nsc target number of standard cells
φws target white-space fraction

φmac :=
(∑

vi ∈Pmac
a(vi )

)
/a(R).

φws := min{φws, 1 − φmac − Nsc/NG }.
φsc := 1 − φmac − φws.
NG := Nsc/φsc.
if (NG > NG ) then

NG := NG ; φsc := Nsc/NG ; φws := 1 − φmac − φsc.
end if
Snap Pmac into G, truncating macros as necessary;

mark grid cells assigned to macros.
Nws := φws · NG .
repeat

Randomly select unvisited non-macro grid cell c.
if (the spatial neighbors of c remain spatially

connected in G when c is removed) then
Mark c as white space and decrement Nws.

end if
until (Nws == 0 or

every non-macro grid cell has been examined)
if (Nws > 0) report failure and exit end if
Mark all unmarked grid cells as standard cells;

V := {macros} ∪ {standard cells}.
Following Figure 2.3, generate a minimal netlist

“backbone” EB , a connected set of local nets
consistent with N# which covers V .

while (N# still has nonzero entries and
available locations for local nets still exist)

Randomly select an available location p for a local net
if (no new local net can be generated at p) then

remove p from list of available local-net locations.
else

generate a local net of maximum possible degree k
still represented in N#. Decrement N# [k].

end if
end while
output the placement suboptimality benchmark netlist

Fig. 2.2. The Peko-MS benchmark generator.
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space fraction φws. The i th component of vector N# is the target number of nets of
cardinality i . A macro is any module, fixed or movable, with height greater than the
standard-cell row height. The generator places Nsc standard cells between macros and
defines nets locally such that the total HPWL of the given placement is no more than
a small, explicitly computed factor (1.00–1.08) above optimal for the final bench-
mark. Connectivity of the constructed netlist is ensured by inserting white space in
such a way that all remaining cells and macros form a spatially connected set in the
placement region.

As described in Figure 2.2 and later, the PEKO-MS generator proceeds in four
stages:

1. Input target statistics; definition of uniform grid G; definition of mapping fG
which snaps a given macro placement Pmac into G.

2. Designation of white-space grid-cells, leaving cells, and macros spatially con-
nected.

3. Construction of the netlist backbone (Figure 2.3), a minimal connected set of
local, near-optimal-HPWL nets connecting all cells and macros.

4. Construction of additional, optimal-HPWL local nets to match target netlist sta-
tistics as closely as possible.

An optional additional stage for the addition of optimal-HPWL nonlocal nets is
described in Sect. 2.4.

Every legal mixed-size placement induces a complicated partition R = Rmac ∪
Rsc ∪Rws of its placement region R into three disconnected subregions: Rmac occu-
pied by macros, Rsc by standard cells, and Rws left as white space. The PEKO-MS
generator preserves a given macro placement Pmac precisely with respect to a fixed
core region R. Let a(S) denote the area of subregion S. Region R is neither shrunk
nor expanded relative to the macros – both a(R) and a(Rmac) are held fixed. Instead,
standard cells are uniformly shrunk or inflated to attain a higher or lower white-
space targets, respectively. With this fixed-outline and fixed-macro-layout strategy,
φmac ≡ a(Rmac)/a(R) is fixed, and it is evident that white space cannot be increased
beyond the space left to it by the macros and standard cells:

φws ≤ 1 − φmac − φmin
sc

where φmin
sc denotes the minimum fraction of R which can be left for standard cells.

The exact value of φmin
sc is determined by storage and run-time considerations, as

described next.
A tight lower bound on the optimal HPWL of each PEKO-MS benchmark is

obtained by mapping the given macro layout Pmac into a uniform rectangular inte-
ger grid G of square cells over which all nets are defined. The mapping is denoted
by fG : Pmac → Rect(2G), where Rect(2G) denotes the set of all contiguous rectan-
gular subsets of grid cells in G. Each macro is identified by the mapping fG with
a distinct rectangular subset of grid cells in G. A nonoverlapping macro placement
ensures that the grid-cell subsets associated with distinct macros are disjoint. Each
center of each grid cell represents a candidate pin location. Pin locations on macros
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input C := ∅ = set of vertices contained in nets
B := ∅ = set of vertices not yet in C but spatially

adjacent (in G) to at least one vertex in C.
Create a local net e at a random location.
Insert all v ∈ e into C and all G-neighbors of e into B.
while (B is not empty)

Select an as yet unconnected grid cell b ∈ B and a
connected grid cell c ∈ C such that b and c are
adjacent in G. Cell b may be either a standard cell
or a grid cell assigned to the boundary of an as yet
unconnected macro. Cell c may be either a
standard cell or an as yet unconnected grid cell
assigned to the boundary of a connected macro.

Create a net e containing b and c and containing as
many other standard cells as possible, up to the
maximum target net degree remaining in N#.

if (N# [|e|] > 0) then decrement N# [|e|]
else

k := min{ j | j > |e| and N# [ j] > 0}.
decrement N# [k] and increment N# [k − |e|],

end if
for ( all v ∈ e )

remove v from B and insert it into C.
for ( each grid neighbor w of v )

if (w �∈ e and w �∈ C) insert w into B end if
end for

end for
end while
output minimal connected netlist EB covering all v ∈ V

Fig. 2.3. Peko-MS Netlist backbone generator.

are restricted to grid-cells on macro boundaries and kept distinct. I.e., the center of
each grid-cell along any macro’s boundary can serve as a pin for at most one net. For
simplicity, however, all pins on each standard cell are located at the same point at the
center of that cell; i.e., the center of each standard cell may represent several pins for
several different nets.

With all t pins of a given net placed at distinct grid-cell centers, the minimum
HPWL of a t-pin net in such a grid is r +s −2, where r = ⌈√

t
⌉

and s = 
t/r�. This
result is easily derived by packing the t square grid cells of the net into a rectangle
of least possible perimeter. However, as shown in Figure 2.4, the optimal HPWL for
a t-pin net may be attained by pin configurations with bounding boxes of different
shapes.

In order to construct a local net of optimal or near optimal HPWL containing a
small subset of rectilinearly connected seed pin locations, rectangles of gradually
increasing sizes containing the seeds are recursively examined. Each such rectangle
is a rectangular subset of grid-cells containing the seed locations and representing
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(a) (b)

Fig. 2.4. On a uniform square grid, the optimal HPWLof a 7-pin net (4 grid units) can be
attained by pin configurations with either of the two bounding boxes shown as dashed line
segments.

a bounding box for a candidate net. In addition to the seeds, it may contain white
space, standard cells, or grid-cells on the boundaries or interiors of macros. Of these,
the available pin locations are the centers of the standard cells and the centers of the
grid-cells on macro boundaries which have not yet been used as pins in other nets.
As long as the number of available, rectilinearly connected pin locations in each such
rectangle R is high enough to ensure optimal HPWL of the corresponding net, four
larger rectangles containing R may also be considered. As shown in Figure 2.5, a
rectangle is enlarged by adding to it a row or column of grid-cells along one of its
four edges. Hence, the candidate rectangles for a given set of seeds form a quad-tree,
the rectangles increasing in size along any path from root to leaf. Rectangles are
enlarged until either optimal-HPWL cannot be obtained or the maximum-degree net
remaining in N# can be formed.1

At each seed location, the highest-degree optimal-HPWL net possible is formed,
subject to the constraint that the number of nets of that degree in N# has not yet been
attained in the benchmark. The reason to form high-degree nets first is simply that
they are the most difficult to construct. As pin locations along macros are gradually
taken, high-degree nets become ever harder to construct. As not all high-degree tar-
gets in N# may be attained during the construction, a compromise is made in the
backbone-construction phase. When the degree db of a large backbone net b is no
longer available in N# but a larger target degree dt > db in N# exists (i.e., N#[dt ] > 0
for some (net-degree) index dt > db), then (1) net b is retained in the constructed
netlist, (2) the maximum net-degree target remaining in N# is decremented, and (3)
the difference degree target entry N#[dt −db] is incremented. In this way, the total pin
count of the constructed netlist is typically assured of matching the total pin count in
the original benchmark.

As is suggested by the labeling in Figure 2.5, incremental enumeration of dis-
tinct candidate optimal-HPWL bounding boxes amounts to the enumeration of dis-
tinct finite sequences {di }N

1 , where each di ∈ {n, s, e, w} represents the direction of
enlargement at the i th step, and N = 1, 2, . . . is the total number of enlargements
for a given box. Two sequences of the same length N are distinct if and only if the
numbers of occurrences of all the symbols {n, s, e, w} are not the same for both.

1 To reduce search time, rectangles after a certain level in the quad-tree are enlarged in only
one of the most promising directions, i.e., a direction containing the most available pin
locations.
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Fig. 2.5. The first level of local search for the largest optimal-HPWL net containing a given
5-pin seed. After the first level, many duplicate (e.g., rsn) and suboptimal (e.g., ree) cases at
the subsequent levels can be pruned.

E.g., ns and sn are equivalent and lead to the same bounding box containing the
initial seed box, but nse and nsn are distinct. The number of distinct sequences of
length N is the number of ways p4(N ) that the integer N can be expressed as the sum
of four non-negative integers; asymptotically, p4(N ) grows with order N 3/6.2 How-
ever, sequences for suboptimal bounding boxes (such as ree and rew in Figure 2.5)
and their descendants can be easily avoided.

Ideally, the resolution of grid G should be high enough to capture all macro and
cell dimensions exactly. Our implementation simplifies the definition of fG in two
ways. First, Pmac is represented in floating point; macro positions and dimensions are
expressed as fractions of chip dimensions prior to their conversion to integer grid
units. Macro dimensions are truncated in G as needed to snap macros into the grid.3

Second, each standard cell is represented by just one of the square grid cells of G –
variations in standard-cell width are ignored. These two assumptions significantly
reduce the size of G necessary to accurately represent Pmac. However, the resolution
of G must still be large enough that:
(1) Each macro has nonzero height and width.
(2) The number of grid cells not used for macros is large enough to form both the
requested number of standard cells Nsc and the requested fraction of white space φws.

2.4 Experiments

Four sets of experiments with leading academic placement tools are reported. The
first is on standard-cell PEKO-MC circuits generated from the 2004 FastPlace-IBM
benchmarks. The second is on mixed-size PEKO-MS circuits derived from the ISPD

2 The precise expression is p4(N ) = (N 3 + 6N 2 + 11N + 6)/6, which is the coefficient of
x N in the Taylor series for (1 − x)−4 = (1 + x + x2 + x3 + · · · )4, assuming |x | < 1 [3].

3 A small fraction of the transformed macros in G may be discarded due to error incurred in
the truncation, e.g., macros mapped to zero-width rectangles in G, or one of a pair abutting
macros in Pmac which overlap in G.
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2005 suite. The third considers the impact of introducing chains of optimal-HPWL
nets into a PEKO-MS benchmark. The fourth examines the suboptimality of legal-
ization and detailed-placement engines in isolation from their global-placement
counterparts on a parametrized adaptation of the PEKO-MS circuits.

2.4.1 Nonlocal Nets (Peko-MC)

All PEKO-MC benchmarks used in our experiments are generated from the Fast-
Place [8] versions of the 2002 IBM/ISPD benchmarks [2]. The white space in these
test cases is approximately 20%. The FastPlace-IBM benchmarks modify the original
IBM benchmarks by replacing macros with standard cells. However, the PEKO-MC
algorithm can also be applied to examples with macros for the generation of mixed-
size circuits with known optimal placements. Although no new pads are explicitly
inserted, most existing pads are connected to several nets each to allow for more
chains.

The PEKO-MC benchmark generator described in Sect. 2.2 requires as input
both a netlist and an initial “seed” placement of that netlist. Dragon 3.01 [25] and
mPL4 [10] were used to seed separate suites of PEKO-MC benchmarks. Using other
placers as seeds was observed to have negligible impact on final results, even when
the placer used to create the seed placements was run on the resulting PEKO-MC
netlists.

The PEKO-MC suite matches the FastPlace-IBM benchmarks exactly in number
of cells, cell areas, number of nets, and net-degree distribution. Roughly 60–70% of
the nets in the original and synthetic benchmarks are identical, and the distributions
of net lengths in the optimal placement of the synthetic benchmarks are nearly iden-
tical to those of their seed placements on the original netlists. Moreover, the cell-
degree distributions of the original and synthetic benchmarks are very similar (the
degree of a cell is the number of nets containing the cell). Almost 80% of the cells in
an PEKO-MC netlist have a cell-degree difference at most 1 from their corresponding
cells in the original netlist. Detailed statistics are shown in Figures 2.6 and 2.7.

Fig. 2.6. The cell-degree difference (in absolute values) distribution between the cells of mPL-
MC01 and their corresponding cells in FastPlace-ibm01.
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Fig. 2.7. The wire length distribution (relative to the chip half-perimeter) of the nets in
FastPlace-ibm01 (as placed by mPL4) and the nets in mPL-MC01 (in their optimal place-
ments).
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Fig. 2.8. Results of some leading academic tools on MC Circuits seeded by Dragon 3.01
placements of FastPlace-IBM Benchmarks.

Results for programs APlace 2.0 [17], mPL6 [6, 11], and Capo 9.5 [1] on the
Dragon-MC suite are shown in Figure 2.8. Very similar results (not shown) were
obtained for all the tools on the mPL4-MC suite. The overall results show very good
performance by all tools on all the benchmarks, regardless of which tool generates
the initial placement used to seed the benchmark construction. The worst reported
quality ratio by any of the placers on any benchmark is 1.07. We attribute this result
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Table 2.1. Peko-MS benchmark circuit statistics, with notation.

circuit Nsc Nmac Nnets φmac φ0
ws φmax

ws ρmax
PWS-A1 216180 63 233982 0.43 0.24 0.30 1.01
PWS-A2 264793 159 299358 0.62 0.21 0.29 1.03
PWS-A3 474287 723 531843 0.62 0.25 0.28 1.03
PWS-A4 531245 1329 563521 0.49 0.37 0.38 1.03
PWS-B1 280141 32 301577 0.17 0.46 0.46 1.01
PWS-B2 583514 23084 624625 0.38 0.38 0.40 1.03
PWS-B3 1137839 3778 1265913 0.67 0.14 0.24 1.08
PWS-B4 2237605 8170 2469988 0.38 0.35 0.40 1.03

Nsc average number of standard cells
Nmac number of macros

Nnets average number of nets
φmac macro-area utilization
φ0

ws original benchmark’s white-space fraction
φmax

ws maximum white-space fraction attained by the generator
ρmax maximum ratio of generated HPWL to its lower bound

Averages and maxima are taken over the 4 different white-space values by which each circuit is
parametrized. Standard deviations of Nsc range from 0.5% to 4.2% of Nsc; standard deviations
of Nnets range from 10% to 16% of Nnets .

to the increased range of optimal locations available to modules in multipin nets of
monotone chains.

2.4.2 Parametrized White Space (Peko-MS)

The PEKO-MS approach gives the user control over the layout of the macros. In the
ISPD 2005 benchmarks, all macro locations are prespecified for all circuits anyway,
except bigblue3. For our construction based on bigblue3, we extracted mov-
able macro locations from the placement generated for it by APlace [17] for the ISPD
2005 placement contest [29].

Each PEKO-MS local net’s construction proceeds by depth-limited local search
from a given subset of adjacent grid cells. A small amount of HPWL suboptimality
is tolerated in some nets to simplify the implementation.4 The optimal and attained
HPWLs of the individual nets are simply added up to determine the limit on the total
HPWL suboptimality in the final benchmark. These limits are shown in Table 2.1.
On some circuits, nets e in the source netlist with more than a few hundred pins are
represented by small subsets of high-degree nets whose pin counts sum to |e|.

Quality ratios of mPL6, APlace 2.0, and Capo 9.5 are listed in Table 2.2. The
results show substantial variation both between tools and across different white-space
values.

2.4.3 Suboptimality Under Both Parametrized White Space and Nonlocal Nets

The preceding results separate the impact of white space and mixed-size modules
from that of nonlocal nets. However, the PEKO-MC and PEKO-MS techniques can

4 However, we still refer to the placements as optimal, because the set of modules in each net
is rectilinearly connected and hence supports an optimal routed wire length of the net.
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Table 2.2. Results for mPL6, APlace 2.0, and Capo 9.5 on Peko-MS-ISPD2005 suboptimality
benchmarks parametrized by white-space fraction. Displayed are quality ratios of total com-
puted HPWL to near-optimal HPWL upper bounds. Results with uniformly distributed white
space are shown for 5%, 10%, 20%, and the maximum possible white space values. For Peko-
MS-adaptec1–4, quality ratios are also shown for benchmarks with optimal zero-white-space
layouts (“pack”) on the left side of the core region and 10% white space on the right. “mem”
denotes an out-of-memory error. Capo 9.5 was run with option-noHMetis on Peko-MS-a3,
Peko-MS-a4, and all four of the packed benchmarks; otherwise, all tools are in default mode
in all cases.

mPL6 APlace 2.0 Capo 9.5
ckt\ ws pack 5% 10% 20% max pack 5% 10% 20% max pack 5% 10% 20% max
PWS-A1 1.80 1.35 1.48 1.70 1.80 1.33 1.50 1.22 1.15 1.54 6.17 3.33 3.14 3.05 2.67
PWS-A2 2.11 1.48 1.48 1.36 1.54 3.46 fail fail 3.65 2.29 8.06 4.01 3.85 3.53 3.12
PWS-A3 4.32 2.14 1.52 1.41 1.33 2.27 1.23 1.14 1.13 1.10 4.10 2.10 1.93 1.53 1.33
PWS-A4 4.39 1.50 1.32 1.51 1.24 1.70 1.29 1.23 1.34 1.44 3.09 2.08 1.92 1.62 1.35
PWS-B1 – 1.30 1.34 1.30 1.24 – 1.44 1.32 1.17 1.33 – 2.50 2.42 2.08 1.77
PWS-B2 – 2.10 2.16 1.64 1.39 – 1.25 1.26 1.58 1.44 – 2.42 2.13 1.83 1.51
PWS-B3 – 1.54 1.62 1.99 2.02 – 2.14 1.59 2.02 2.23 – 2.49 2.10 1.89 1.91
PWS-B4 – 1.51 1.46 1.71 mem – 1.26 1.21 1.16 1.33 – mem mem mem mem

Averages 3.16 1.61 1.55 1.58 1.51 2.19 1.45 1.28 1.65 1.59 5.35 2.70 2.50 2.22 1.96

be combined into a single set of suboptimality benchmarks supporting parametrized
percentages of both nonlocal nets and white space. A combination derived from the
Peko-MS construction (Figure 2.2) was tested on the mixed-size IBM01 benchmark
from the ICCAD2004 test suite [1], as follows. Following the construction of the
Peko-MS netlist backbone (Figure 2.3), monotone chains of nonlocal nets are con-
structed as follows:

1. The set of all boundary pads and candidate pin locations of fixed macros is parti-
tioned by a simple heuristic into pairs of fixed terminals, such that the terminals
in each pair are relatively far apart.

2. For each pair of terminals, designate one terminal in the pair as the start, and
another as the end. A chain of nonlocal nets is iteratively constructed for the pair
of terminals by the following sequence of steps (compare to Figure 2.1):
(a) Randomly select an available pin location in the bounding box of the end ter-

minal and the net corner pin most recently added to the chain. The selected
location is the next net corner pin.

(b) Randomly select additional pins in the resulting bounding box of that new
net-corner pin location and the preceding net-box corner pin to populate the
net.

Net-box corner-pin locations are selected at randomized distances from one
another approximately 1/10 of the width or height of the placement region, until
the end terminal of the chain is reached.

Results of APlace 2.0, Capo 10, and mPL6, all run in default mode, are shown
for the combined PEKO-MSPEKO-MC IBM01 benchmark in Table 2.3, both without
and with nonlocal nets. Macros larger than ten cell rows high were treated as fixed,
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Table 2.3. HPWL Suboptimality of APlace 2.0, Capo 10, and mPL6, compared on 10% and
40% white-space versions of a PWS circuit derived from the ICCAD 2004 IBM01 mixed-size
benchmark, both without (top) and with (bottom) the addition of optimal-HPWL nonlocal nets.
Approximately 13,15% of the nets in the second set are nonlocal, accounting for 57%, 68% of
total HPWL.

With Local Nets Only
APlace Capo mPL

ibm01-10WS 1.20 1.88 1.31
ibm01-40WS 1.40 1.96 1.27

Averages 1.30 1.92 1.29

With Chains of Optimal-HPWL Non-local Nets
#nln
#nets

W Lnonloc
W Ltotal

APlace Capo mPL
ibm01-10WS 0.15 0.57 1.11 1.49 1.16
ibm01-40WS 0.13 0.68 1.08 1.67 1.10

Averages 1.10 1.58 1.13

their boundaries thus supplying some additional terminal locations. As expected, the
presence of monotone chains of nonlocal nets decreases all placers’ suboptimality
ratios.

2.4.4 Suboptimality of Detailed Placement

Optimal GPs (OGP) parametrized by bin size were generated from the optimal
PEKO-MS placements as follows. Uniform rectangular bin grids of user-specified
dimensions were superimposed. Cells and macros centered in the same bin were
moved to the bin center, where they were placed concentrically. These OGP place-
ments were then used as benchmarks for the DP engines of mPL6 [6, 11] and
APlace2.0 [17]. Each PEKO-MS circuit can generate several different OGP circuits,
one for each bin size. The DP engines were run on a set of these OGP circuits, and the
rate of degradation in their quality with respect to bin size and white-space value was
observed. For each of the different white-space values, the quality ratios obtained by
the DP engines were averaged over the eight different circuits. The result is illus-
trated in Figure 2.9. The benchmarks reveal opposite trends in these engines with
respect to increasing white space. For these test cases, mPL’s performance degrades
as white space increases, while APlace’s improves. APlace’s cell-swapping strategy
may have some advantage on these benchmarks, because the standard cells in these
test cases are all of uniform size and shape. Under higher white space, the size of the
set of candidate swaps is reduced, making successful swaps more likely to be found.
On the other hand, mPL’s local-window-based refinement is apparently a drawback
on the higher-white-space cases, where larger scale moves are apparently needed.

Results on the OGP benchmark derived from the PEKO-MS-adaptec2 bench-
mark with 10% uniformly distributed white space are summarized in Figure 2.10.
Results are shown for two scenarios: one in which all macros are held fixed, and
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Fig. 2.9. Average quality ratios of APlace2.0-DP and mPL6-DP over the eight different netlists
of OGP DP benchmarks.
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Fig. 2.10. Suboptimality of APlace2.0-DP and mPL6-DP on the OGP DP benchmarks gener-
ated from Peko-MS-adaptec2 with 10% white space.

hence only standard cells are aggregated into bin centers, and another in which both
kinds of objects are moved from their locations in the known near-optimal place-
ment to the nearest bin center. The results of these experiments show that the quality
of DP deteriorates fairly rapidly as the bin size increases, even for these uniformly
accurate GPs. For bin sizes up to 4 × 4, macro legalization is not a primary source of
suboptimality, but for larger bin sizes, it is.
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Table 2.4. Estimated suboptimality of mPL6 global (GP) and detailed placement (DP) engines.
The GP estimate is obtained simply by subtracting the observed DP quality ratio obtained on
the 2 × 2 OGP benchmark from the overall quality ratio observed for the corresponding Peko-
MS benchmark.

%WS GP DP Total
5 51% 10% 61%

10 46% 9% 55%
20 39% 17% 56%
40 29% 22% 51%

The OGP benchmarks provide a means of estimating how much of a placer’s sub-
optimality is attributable to its GP, and how much to legalization and DP. Table 2.4
compares the suboptimality observed for mPL on 2 × 2 OGP cases to that observed
for mPL6, including both GP and DP, on the corresponding PEKO-MS source circuits
from which the OGP cases are derived. Subtracting the observed DP suboptimality
on the 2 × 2 OGP benchmark from the total mPL6 GP+DP suboptimality on the cor-
responding PEKO-MS benchmark gives an estimate of the mPL6 GP suboptimality. It
should be noted, however, that these suboptimality values are not truly additive, for
at least two reasons. First, the starting configuration for DP on the OGP benchmark
is very different from the DP starting configuration on the corresponding PEKO-MS
benchmark. Second, relative module positions in a GP below the resolution of the
2 × 2 OGP grid will typically be used as hints during legalization and DP to improve
results.

Figure 2.11 displays line segments between modules’ placed locations and their
optimal locations in a small PEKO-MS testcase (IBM02) constructed with 5% white
space from the ICCAD2004 mixed-size suite [1]. Results for both global and detailed
placements of APlace 2.0 and mPL6 are shown. From these plots, it is clear that
displacement errors are not at all randomly distributed, and, on the contrary, display
large-scale systematic bias. We observe similar trends in displacement plots for other
tools on other Peko-MS circuits and at other white-space fractions. We conclude that,
even when each cell in a GP is very close to (one of) its optimal location(s), further
reduction in the objective can often only be achieved by moving large subsets of cells
simultaneously by small amounts. Iterative, local, window-based refinement will not
remove the systematic error.

2.4.5 HPWL Suboptimality Comparison of Leading Academic Tools
on Peko-MS 2005

Recent (early 2007) versions of the placers entered in the 2006 ISPD Placement
Contest were run on PEKO-MS adaptations of the ISPD 2005 and ISPD 2006 bench-
mark suites. The ratios of attained HPWL to the known near-optimal HPWL on the
2005 PEKO-MS benchmarks at 80% free-space utilization are shown in Table 2.5.
Summary statistics for these benchmarks are shown in Table 2.6. Notational abbre-
viations are summarized in Table 2.7.
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APlace 2.0 GP APlace 2.0 DP

mPL6 GP mPL6-DP

Fig. 2.11. Individual module displacements from optimal on the Peko-MS-ICCAD04-IBM02
benchmark with 5% white space. Displacements of both global and detailed placements are
shown for APlace (top) and mPL6-DP (bottom). The HPWL quality ratios observed on this
benchmark are 1.45 for APlace and 1.23 for mPL.

There are at least two ways in which these results may be useful in identifying
weaknesses of the tools. First, the PEKO-MS benchmarks tend to amplify the subopti-
mality associated with local nets. Hence, a relatively high-average suboptimality gap
on these test cases by a given tool (e.g., DPlace, mFar) suggests that tool might ben-
efit from enhancements designed to help it better identify such local nets and reduce
their lengths. Second, detailed investigation of a given tool’s computation on a par-
ticular test case where it exhibits a relatively large gap (e.g., Kraftwerk on bigblue2,
APlace on bigblue1, mPL6 on bigblue3) compared to its own results on other test
cases may be useful in improving the tool’s robustness. Such anomalous gaps may
be particularly useful when the circuits on which they are observed have some distin-
guishing features, e.g., the relatively large number of movable macros in bigblue2,
or the relatively low-area-fraction of fixed objects in bigblue1.
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Table 2.5. HPWL suboptimality ratios of leading academic placers on Peko-MS ISPD 2005
benchmarks. For notation, see Table 2.7.

PEKO-MS-05 (80% free-space utilization) suboptimality ratios
Circuit DPlace Kraft Capo APlace FastP Mfar NTUPlace3 mPL6 Dragon Averages

adaptec1 1.47 1.19 1.50 1.13 1.58 2.44 1.30 1.27 2.63 1.61
adaptec2 1.62 1.17 1.61 1.12 1.61 2.61 1.61 1.32 3.07 1.75
adaptec3 1.77 1.21 1.60 1.13 1.79 2.50 1.58 1.43 2.95 1.77
adaptec4 1.73 1.23 1.47 1.13 1.71 2.21 1.37 1.29 2.21 1.59
bigblue1 1.52 1.22 1.42 1.31 1.63 2.67 1.24 1.21 2.74 1.66
bigblue2 1.61 1.45 1.57 1.29 1.65 – 1.34 1.34 4.75 1.87
bigblue3 2.49 1.27 2.01 1.19 1.84 3.04 3.01 1.56 6.73 2.57
bigblue4 2.20 1.29 1.48 1.29 2.00 3.61 1.39 1.31 3.03 1.96
Averages 1.80 1.25 1.58 1.20 1.73 2.72 1.60 1.34 3.51 1.85

Table 2.6. Peko-MS ISPD 2005 benchmarks statistics. For notation, see Table 2.7.

PEKO-MS-ISPD2005 statistics (80% free-space utilization)
Circuit #obj #mac a(mac) a(fix) #term # net # pin #pad util HPWL

adaptec1 211977 63 0.431 0.430 542 243402 939918 480 0.80 20056216
adaptec2 261153 159 0.615 0.613 543 290584 1061117 407 0.80 24969764
adaptec3 466560 723 0.615 0.615 723 515720 1864504 0 0.80 40954784
adaptec4 511448 1129 0.486 0.486 1329 558781 1903080 0 0.80 39391712
bigblue1 273708 32 0.172 0.172 559 307892 1136899 528 0.80 20858240
bigblue2 578938 22984 0.384 0.346 3313 634210 2117165 0 0.80 42256768
bigblue3 1122682 3778 0.680 0.668 675 1207133 3791237 0 0.80 94399040
bigblue4 2244173 8169 0.376 0.358 664 2494307 8792369 0 0.80 171477120

2.4.6 Suboptimality of Routability-Aware Placement

The Peko-MS algorithm was adapted to model the 2006 ISPD placement-contest
scaled-HPWL objective, excluding run time, as follows. The scaled HPWL objective
is computed as HPWL × (1 + 0.01 × σ), where σ is the “scaled overflow factor,”
defined by summation of bin-overflow penalties over each bin in a uniform grid
consisting of square bins ten standard-cell rows high. We refer to this uniform grid
as the “utilization evaluation grid.” The utilization penalty for a given bin B is [20],
⎛

⎝
∑

{modules m}
area of m overlapping with B

⎞

⎠ − utilization target × free area(B),

where the free area in B is simply the total area in B not occupied by fixed
objects. Although this measure may vary somewhat with the size and position of
the utilization-evaluation grid relative to fixed objects, it does test a placer’s ability
to target area congestion in a specified subregion.

The PEKO-MS generator of Figure 2.2 in Sect. 2.3 was adapted to target user-
specified bin utilizations simply by iterating its random white-space insertion sep-
arately over all bins in the utilization-evaluation grid, terminating when either the
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Table 2.7. Notation for column labels in this section.

Notation
#obj number of objects, movable and fixed
#mac number of macros, i.e., objects of height greater than 1 row
a(mac) fraction of core area occupied by macros, movable, or fixed
a(fix) fraction of core area occupied by fixed objects
#term number of fixed terminals
# net number of nets
# pin number of pins
#pad number of perimeter I/O objects
util target utilization in the part of core not occupied by fixed objects
HPWL total HPWL of the given near-optimal placement
Hratio ratio of attained HPWL to near-optimal HPWL
SOV/bin average scaled overflow per bin
SHPWL HPWL, scaled by 1 + 0.01×SOV/bin
Sratio ratio of attained SHPWL to near-optimal SHPWL

Table 2.8. Peko-MS ISPD 2006 benchmarks statistics. For notation, see Table 2.7.

PEKO-MS-06 statistics
Circuit # objs # macs a(mac) a(fix) #term # nets # pins

adaptec5 872276 646 0.572 0.572 646 1029763 3394072
newblue1 385625 64 0.379 0.000 337 334324 1237412
newblue2 461252 5000 0.652 0.636 1171 463382 1772264
newblue3 511413 8756 0.792 0.792 8845 559874 1940730
newblue4 671548 3422 0.359 0.359 3422 711993 2418450
newblue5 1282550 4881 0.495 0.495 4881 1520814 4805020
newblue6 1318990 6505 0.334 0.334 6505 1301252 5305156
newblue7 2641754 25065 0.535 0.535 25065 2651867 10098844

Circuit #pads util (%) hpwl sov/bin shpwl
adaptec5 0 50 81893792 9.99 9.01E+07

newblue1 337 80 20500032 1.73 2.09E+07
newblue2 0 90 32869280 10.29 3.63E+07
newblue3 0 80 73514272 9.55 8.05E+07
newblue4 0 50 49143584 9.26 5.37E+07
newblue5 0 50 102083104 9.58 1.12E+08
newblue6 0 80 90657856 8.36 9.82E+07
newblue7 0 80 206175072 7.07 2.21E+08

utilization target is reached or when a given limit on BFS iterations (from 200 to
800) is reached. Complex fixed-macro geometries often make the precise target dif-
ficult for this simple approach to attain; hence, the final bin-utilization Peko-MS
benchmarks have a low but nonzero and hence suboptimal level of overflow in most
evaluation bins. Characteristics of these benchmarks are described in Table 2.8.
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Table 2.9. HPWL and SHPWL suboptimality ratios of leading academic placers on Peko-MS
ISPD-2006 benchmarks. For notation, see Table 2.7.

PEKO-MS-06 suboptimality ratios
DPlace Kraftwerk Capo

Circuit Hratio SOV/bin Sratio Hratio SOV/bin Sratio Hratio SOV/bin Sratio
adaptec5 2.53 369.8 10.80 1.17 36.37 1.45 1.58 4.97 1.51

newblue1 2.42 116.1 5.14 1.49 11.6 1.63 2.75 1.53 2.74
newblue2 2.18 124.2 4.42 1.29 50.87 1.76 2.77 1.17 2.54
newblue3 2.19 141.8 4.82 1.10 53.27 1.55 1.65 1.72 1.53
newblue4 2.22 282.5 7.77 1.23 36.26 1.54 1.61 6.43 1.57
newblue5 2.96 360.7 12.45 1.37 66.94 2.09 1.64 6.33 1.60
newblue6 2.28 168.5 5.66 1.23 51.88 1.72 2.15 2.3 2.03
newblue7 3.70 261.0 12.48 1.25 46.07 1.71 2.04 2.11 1.94
Averages 2.56 228.1 7.94 1.27 44.16 1.68 2.02 3.32 1.93

APlace FastPlace MFar
Circuit Hratio SOV/bin Sratio Hratio SOV/bin Sratio Hratio SOV/bin Sratio

adaptec5 1.13 117.2 2.23 2.09 100.3 3.80 3.30 213.1 9.40
newblue1 1.35 89.7 2.51 2.18 13.3 2.43 5.98 39.1 8.18
newblue2 1.43 162.5 3.41 1.61 45.4 2.12 3.72 186.8 9.66
newblue3 1.20 132.6 2.55 1.11 81.3 1.84 2.15 162.8 5.15
newblue4 1.12 75.1 1.80 1.54 98.5 2.80 3.08 219.2 9.00
newblue5 2.61 217.6 7.55 2.05 84.8 3.46 3.16 207.7 8.87
newblue6 1.15 48.4 1.57 1.39 45.6 1.87 2.98 176.5 7.59
newblue7 1.31 119.8 2.68 1.32 45.1 1.79 2.74 177.1 7.10
Averages 1.41 120.34 3.04 1.66 64.28 2.51 3.39 172.78 8.12

NTUPlace3 mPL6 Dragon
Circuit Hratio SOV/bin Sratio Hratio SOV/bin Sratio Hratio SOV/bin Sratio

adaptec5 1.31 7.4 1.28 1.35 17.7 1.44 2.96 0.29 2.69
newblue1 1.26 14.2 1.42 1.50 11.5 1.65 3.11 0.01 3.06
newblue2 1.45 2.6 1.35 1.35 31.5 1.61 4.20 0.13 3.81
newblue3 1.28 5.3 1.23 1.36 20.6 1.50 3.49 0.14 3.19
newblue4 1.26 3.3 1.19 1.37 15.8 1.45 2.64 0.29 2.43
newblue5 1.29 4.7 1.23 1.29 17.0 1.38 2.94 0.30 2.69
newblue6 1.23 2.0 1.16 1.40 18.0 1.53 2.80 0.17 2.59
newblue7 1.36 8.3 1.38 1.54 26.7 1.83 3.76 0.11 3.52
Averages 1.30 6.0 1.28 1.40 19.8 1.55 3.24 0.18 3.00***

Results of the most recent available implementations of the placers entered in
the ISPD 2006 Placement Contest on the 2006 PEKO-MS test cases are shown in
Table 2.9; median results over all the placers are listed in Table 2.10. Overall, the
high-scaled HPWL suboptimality values obtained by most tools on most of the these
benchmarks reveals considerable room for improvement of these tools in the pres-
ence of congestion metrics. As with the other PEKO-MS benchmarks, the utility of
the 2006 PEKO-MS test cases lies primarily in helping to identify particular test
cases where investigation of a given tool’s performance may reveal weaknesses.
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Table 2.10. Median HPWL and SHPWL suboptimality ratios of all leading academic placers
listed in Table 2.9 on Peko-MS ISPD-2006 benchmarks. For notation see Table 2.7.

Median PEKO-MS-06 Suboptimality Ratios
Circuit Hratio SOV/bin Sratio

adaptec5 1.58 36.37 2.23
newblue1 2.18 13.27 2.51
newblue2 1.61 45.40 2.54
newblue3 1.36 53.27 1.84
newblue4 1.54 36.26 1.80
newblue5 2.05 66.94 2.69
newblue6 1.40 45.61 1.87
newblue7 1.54 45.06 1.94
Medians 1.56 45.23 2.08

E.g., consider (1) Capo on newblue1 and newblue2, and (2) APlace, DPlace, and
FastPlace on newblue5, etc. While such hints might also be obtained simply by com-
paring to results of several tools on the original ISPD 2006 benchmarks, use of the
PEKO-MS test cases may reduce the time needed to identify deficiencies by providing
an absolute measure of suboptimality. In particular, the PEKO-MS test cases facilitate
analysis of the trade-off between routability optimization and HPWL optimization
without the need for comparisons to results of other tools. E.g., on the PEKO-MS
test cases, results suggest that the superior area-congestion reduction of Capo and
Dragon comes at a significant cost in increased HPWL. APlace, on the other hand,
typically attains excellent HPWL reduction but relatively high-bin-overflow values;
this result suggest that its placements may sometimes be difficult to route.

2.5 Conclusions

Two new sets of synthetic benchmark circuits with known optimal-HPWL or near-
optimal-HPWL placements have been presented. The PEKO-MC set quantifies the role
of nonlocal nets in suboptimality; the PEKO-MS set quantifies the role of white space
and modules of mixed size. Experiments with leading academic placement tools sup-
port four main conclusions. First, as shown in Table 2.2, different tools produce
widely varying results on some of the mixed-size PEKO-MS benchmarks. Hence,
these benchmarks can be used to identify deficiencies in tools producing relative
poor results. Second, the presence of netwise-disjoint chains of nets linking pairs
of numerous, well distributed, fixed terminals appears to make wire length-driven
placement by contemporary methods considerably less difficult. Circuits designed
to ensure the existence of monotone paths for all signals [23, 24, 26, 27] might rea-
sonably be expected to have wire lengths far closer to optimal than what leading
placement tools are able to achieve on other circuits. Third, the accumulation of
small but systematic errors in the placement of local nets appears to be a greater
source of suboptimality than the total error in identifying and placing nonlocal nets.
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The corrective action needed to further reduce that suboptimality, whether taken
during global placement, legalization, or detailed placement, must consider simul-
taneous motion of large subsets of objects in order to be effective. Restriction to
subsets localized in an arbitrary way is, in general, insufficient to improve on exist-
ing results. Fourth, the high-scaled HPWL suboptimality values obtained by most
tools on most of the bin-utilization-controlled PEKO-MS benchmarks suggest that
considerable room for improvement of these tools remains, particularly on large
complex test cases, and particularly when bin-area congestion is factored into the
quality evaluation.
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