
Preface

This work is aimed at mathematics students in the area of stochastic dynamical
systems and at engineering graduate students in signal processing and control sys-
tems. First-year graduate-level students with some background in systems theory
and probability theory can tackle much of this material, at least once the techniques
of Chapter 2 are mastered (with reference to the Appendices and some tutorial help).
Even so, most of this work is new and would benefit more advanced graduate stu-
dents. Familiarity with the language of the general theory of random processes and
measure-theoretic probability will be a help to the reader. Well-known results such
as the Kalman filter and Wonham filter, and also H2, H∞ control, emerge as special
cases. The motivation is from advanced signal processing applications in engineer-
ing and science, particularly in situations where signal models are only partially
known and are in noisy environments. The focus is on optimal processing, but with
a counterpoint theme in suboptimal, adaptive processing to achieve a compromise
between performance and computational effort.

The central theme of the book is the exploitation, in novel ways, of the so-called
reference probability methods for optimal estimation and control. These methods
supersede, for us at least, the more familiar innovation and martingale representa-
tion methods of earlier decades. They render the theory behind the very general and
powerful estimation and control results accessible to the first-year graduate student.
We claim that these reference probability methods are powerful and, perhaps, com-
prehensive in the context of discrete-time stochastic systems; furthermore, they turn
out to be relevant for systems control. It is in the nature of mathematics that these
methods were first developed for the technically more demanding area of continuous
time stochastic systems, starting with the theorems of Cameron and Martin (1944),
and Girsanov (1960). The reference probability approach to optimal filtering was in-
troduced in continuous-time in Duncan (1967), Mortensen (1966) and Zakai (1969).
This material tends to be viewed as inaccessible to graduate students in engineer-
ing. However, apart from contributions in Boel (1976), Brémaud and van Schuppen
(1976), di Masi and Runggaldier (1982), Segall (1976b), Kumar and Varaiya (1986b)
and Campillo and le Gland (1989), there has been little work on discrete-time filter-
ing and control using the measure change approach.
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An important feature of this book is the systematic introduction of new, equiva-
lent probability measures. Under the new measure the variables of the observation
process, and at times the state process, are independent, and the computations are
greatly simplified, being no more difficult than processing for linear models. An
inverse change of measure returns the variables to the “real world” where the state
influences the observations. Our methods also apply in continuous time, giving sim-
pler proofs of known theorems together with new results. However, we have chosen
to concentrate on models whose state is a noisily observed Markov chain. We thus
avoid much of the delicate mathematics associated with continuous-time diffusion
processes.

The signal models discussed in this text are, for the main part, in discrete time
and, in the first instance, with states and measurements in a discrete set. We pro-
ceed from discrete time to continuous time, from linear models to nonlinear ones,
from completely known models to partially known models, from one-dimensional
signal processing to two-dimensional processing, from white noise environments to
colored noise environments, and from general formulations to specific applications.

Our emphasis is on recent results, but at times we cannot resist the temptation to
provide “slicker” derivations of known theorems.

This work arose from a conversation two of the authors had at a conference
twenty years ago. We talked about achieving adaptive filter stability and perfor-
mance enhancement using martingale theory. We would have been incredulous then
at what we have recently achieved and organized as this book. Optimal filtering and
closed-loop control objectives have been attained for quite general nonlinear signal
models in noisy environments. The optimal algorithms are simply stated. They are
derived in a systematic manner with a minimal number of steps in the proofs.

Of course, twenty years ago we would have been absolutely amazed at the power
of supercomputers and, indeed, desktop computers today, and so would not have
dreamt that optimal processing could actually be implemented in applications ex-
cept for the simplest examples. It is still true that our simply formulated optimal
algorithms can be formidable to implement, but there are enough applications areas
where it is possible to proceed effectively from the foundations laid here, in spite of
the dreaded curse of dimensionality.

Our work starts with discrete-time signal models and with states and measure-
ments belonging to a discrete set. We first apply the change-of-measure technique
so that the observations under a probability measure are independent and uniformly
distributed. We then achieve our optimization objectives, and, in a final step, trans-
late these results back to the real world. Perhaps at first glance, the work looks too
mathematical for the engineers of today, but all the results have engineering motiva-
tion, and our pedagogical style should allow an engineer to build the mathematical
tools without first taking numerous mathematics courses in probability theory and
stochastic systems. The advanced mathematics student may find later chapters im-
mediately accessible and see earlier chapters as special cases. However, we believe
many of the key insights are right there in the first technical chapter. For us, these
first results were the key to most of what follows, but it must be admitted that only
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by tackling the harder, more general problems did we develop proofs which we now
use to derive the first results.

Actually, it was just two years ago that we got together to work on hidden Markov
model (HMM) signal processing. One of us (JBM) had just developed exciting ap-
plication studies for such models in biological signal processing. It turns out that
ionic channel currents in neuron cell membranes can now be observed using No-
bel prize winning apparatus measuring femto (10−15) amps. The noise is white and
Gaussian but dominates the signals. By assuming that the signals are finite-state
Markov chains, and adaptively estimating transition probability and finite state val-
ues, much information can be obtained about neural synapses and the synaptic re-
sponse to various new drug formulations. We believed that the on-line biological
signal processing techniques which we developed could be applied to communica-
tion systems involving fading channels, such as mobile radio communications.

The key question for us, two years ago, was how could we do all this signal
processing, with uncertain models in noisy environments, optimally? Then, if this
task was too formidable for implementation, how could we achieve a reasonable
compromise between computational effort and performance? We believed that the
martingale approach would be rewarding, and it was, but it was serendipitous to
find just how powerful were the reference probability methods for discrete-time
stochastic systems. This book has emerged somewhat as a surprise.

In our earlier HMM studies, work with Ph.D. student Vikram Krishnamurthy and
postdoctoral student Dr. Lige Xia set the pace for adaptive HMM signal processing.
Next, work with Ph.D. student Hailiang Yang helped translate some continuous-time
domain filtering insights to discrete time. The work of some of our next generation
of Ph.D. students, including Iain Collings, features quite significantly in our final
manuscript. Also, discussions with Matt James, Alain Bensoussan, and John Baras
have been very beneficial in the development of the book. We wish to acknowledge
to seminal thinking of Martin Clarke in the area of nonlinear filtering and his influ-
ence on our work. Special thanks go to René Boel for his review of the first version
of the book and to N. Krylov for supplying corrections to the first printing.

The support of the Cooperative Research Centre for Robust and Adaptive Sys-
tems, the Boeing Commercial Airplane Company, and the NSERC Grant A7964 are
gratefully acknowledged. We acknowledge the typing support of Shelley Hey, and
Marita Rendina, and LATEX programming support of James Ashton.



Chapter 2
Discrete States and Discrete Observations

2.1 Introduction

In this chapter, we deal with signals denoted by {Xk}, k ∈ N in discrete time. These
signals are further restricted to a discrete set and are thus termed discrete-state sig-
nals. They transit between elements in this set with transition probabilities depen-
dent only on the previous state, and so are Markov chains. The transition proba-
bilities are independent of time, and so the Markov chains are said to be homoge-
neous. The Markov chain is not observed directly; rather there is a discrete-time,
finite-state observation process {Yk} ,k ∈ N, which is a noisy function of the chain.
Consequently, the Markov chain is said to be hidden in the observations.

Our objective is to estimate the state of the chain, given the observations. Our
preference is to achieve such estimation on-line in an optimal recursive manner, us-
ing what we term optimal estimators. The term estimator covers the special cases of
on-line filters, where the estimates are calculated as the measurements are received,
on-line predictors where there is a prediction at a fixed number of discrete time
instants in the future, and on-line smoothers where there is improved estimation
achieved by using a fixed number of future measurements as well as the previous
ones. We also seek recursive filters and smoothers for the number of jumps from
one state to another, for the occupation time of a state, and for a process related to
the observations.

In the first instance, we assume that the equations describing the HMM are
known. However, if this is not the case, it is possible to estimate the parameters
also on-line and so achieve adaptive (or self-tuning) estimators. Unfortunately, it
is usually not practical to achieve optimal adaptive estimators. In seeking practical
suboptimal schemes, a multipass scheme is to update the parameters estimates only
after processing a large data set, perhaps the entire data set. At the end of each pass
through this data set, the parameter estimates are updated, to yield improved pa-
rameter estimates; see, for example, the so-called expectation maximization (EM)
scheme; see Dempster, Laird and Rubin (1977). Our approach requires only a for-
ward pass through the data to achieve parameter updates, in contrast to earlier
so-called forward-backward algorithms of the Baum-Welch type (Baum and Petrie
1966).
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Hidden Markov models have been found useful in many areas of probabilistic
modeling, including speech processing; see Rabiner (1989). We believe our model
is of wide applicability and generality. Many state and observation processes of the
form (2.14) arise in the literature. In addition, certain time-series models can be
approximated by HMMs.

As mentioned in the introduction, one of the fundamental techniques employed
throughout this book is the discrete-time change of measure. This is a version of Gir-
sanov’s Theorem (see Theorem A.1.2). It is developed for the discrete-state HMM
in Section 2.3 of this chapter.

A second basic observation is the idempotent property of the indicator functions
for the state space of the Markov chain. With X one of the unit (column) vectors ei,
1 ≤ i ≤ N, prime denoting transpose, and using the inner product notation 〈a,b〉 =
a′b, this idempotent property allows us to write the square XX ′ as ∑N

i=1 〈X ,ei〉eie′i
and so obtain closed (finite-dimensional), recursive filters in Sections 2.4–2.9. More
generally, any real function f (X) can be expressed as a linear functional f (X) =
〈 f ,X〉 where 〈 f ,ei〉 = f (ei) = fi and f = ( f1, . . . , fN). Thus with Xi = 〈X ,ei〉,

f (X) =
N

∑
i=1

f (ei)Xi =
N

∑
i=1

fiX
i. (1.1)

For the vector of indicator functions X , note that from the definition of expecta-
tions of a simple random variable, as in Appendix A,

E [〈X ,ei〉] =
N

∑
j=1

〈
e j,ei

〉
P(X = e j) = P(X = ei) . (1.2)

Section 2.10 of this chapter discusses similar estimation problems for a discrete-
time, discrete-state hidden Markov model in the case where the noise terms in the
Markov chain X and observation process Y are not independent. A test for indepen-
dence is given. This section may be omitted on a first reading.

2.2 Model

All processes are defined initially on a probability space (Ω,F ,P). Below, a new
probability measure P is defined. See Appendix A for related background in proba-
bility theory.

A system is considered whose state is described by a finite-state, homogeneous,
discrete-time Markov chain Xk, k ∈ N. We suppose X0 is given, or its distribution
known. If the state space of Xk has N elements it can be identified without loss of
generality, with the set

SX = {e1, . . . ,eN} , (2.1)

where ei are unit vectors in R
N with unity as the ith element and zeros elsewhere.
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Write F 0
k = σ {X0, . . . ,Xk}, for the σ -field generated by X0, . . . ,Xk, and {Fk}

for the complete filtration generated by the F 0
k ; this augments F 0

k by including all
subsets of events of probability zero. Again, see Appendix A for related background
in probability theory. The Markov property implies here that

P(Xk+1 = e j | Fk ) = P(Xk+1 = e j | Xk ) .

Write
a ji = P(Xk+1 = e j | Xk = ei ) , A = (a ji) ∈ R

N×N (2.2)

so that using the property (1.2), then

E [Xk+1 | Fk ] = E [Xk+1 | Xk ] = AXk. (2.3)

Define
Vk+1 := Xk+1 −AXk. (2.4)

So that
Xk+1 = AXk +Vk+1. (2.5)

This can be referred to as a state equation.
Now observe that taking the conditional expectation and noting that E[AXk |

Xk] = AXk, we have

E [Vk+1 | Fk ] = E [Xk+1 −AXk | Xk ] = AXk −AXk = 0,

so {Vk}, k ∈ N, is a sequence of martingale increments.
The state process X is not observed directly. We suppose there is a function c(. , .)

with finite range and we observe the values

Yk+1 = c(Xk,wk+1) , k ∈ N. (2.6)

The wk in (2.6) are a sequence of independent, identically distributed (i.i.d.) random
variables, with Vk,wk being mutually independent.{

G 0
k

}
will be the σ -field on Ω generated by X0,X1, . . . ,Xk and Y1, . . . ,Yk, and Gk

its completion. Also
{
Y 0

k

}
will be the σ -field on Ω generated by Y1, . . . ,Yk and Yk

its completion. Note Gk ⊂ Gk+1 ⊂ ·· · and Yk ⊂ Yk+1 ⊂ ·· · . The increasing family
of σ -fields is called a filtration. A function is G 0

k -measurable if and only if it is a
function of X0,X1, . . . ,Xk,Y1, . . . ,Yk. Similarly, for Y 0

k , Yk. See also Appendix A.
The wk in (2.6) are a sequence of independent, identically distributed (i.i.d.)

random variables, with Vk,wk being mutually independent. The pair of processes
(Xk,Yk) ,k ∈ N, provides our first, basic example of a hidden Markov model, or
HMM. This term is appropriate because the Markov chain is not observed directly
but, instead, is hidden in the noisy observations Y . In this HMM the time parameter
is discrete and the state spaces of both X and Y are finite (and discrete). Note that
there is a unit delay between the state X at time k and its measurement Y at time
k +1. A zero delay observation model is discussed later in this chapter.
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Suppose the range of c(. , .) consists of M points. Then we can identify the range
of c(. , .) with the set of unit vectors

SY = { f1, . . . , fM} , f j = (0, . . . ,1, . . . ,0)′ ∈ R
M, (2.7)

where the unit element is the jth element.
We have assumed that c(. , .) is independent of the time parameter k, but the

results below are easily extended to the case of a nonhomogeneous chain X and a
time-dependent c(. , .).

Now (2.6) implies

P(Yk+1 = f j | X0,X1, . . . ,Xk,Y1, . . . ,Yk ) = P(Yk+1 = f j | Xk ) .

Write
C = (c ji) ∈ R

M×N , c ji = P(Yk+1 = f j | Xk = ei ) (2.8)

so that ∑M
j=1 c ji = 1 and c ji ≥ 0, 1 ≤ j ≤ M, 1 ≤ i ≤ N. We have, therefore,

E [Yk+1 | Xk ] = CXk. (2.9)

If Wk+1 :=Yk+1−CXk, then taking the conditional expectation and noting E[CXk |
Xk] = CXk we have

E [Wk+1 | Gk ] = E [Yk+1 −CXk | Xk ]
= CXk −CXk = 0,

so Wk is a (P,Gk) martingale increment and

Yk+1 = CXk +Wk+1. (2.10)

Equation (2.10) can be thought of as an observation equation. The case where, given
Gk, the noise terms Wk in the observations Yk are possibly correlated with the noise
terms Vk in the Markov chain will be considered in Section 2.10.

Notation 2.1 Write Y i
k = 〈Yk, fi〉 so Yk =

(
Y 1

k , . . . ,Y M
k

)′
, k ∈ N. For each k ∈ N,

exactly one component is equal to 1, the remainder being 0.

Note ∑M
i=1 Y i

k = 1. Write ci
k+1 = E

[
Y i

k+1 | Gk
]
= ∑N

j=1 ci j
〈
e j,Xk

〉
and ck+1 = (c1

k+1,

. . . ,cM
k+1)

′. Then

ck+1 = E [Yk+1 | Gk ] = CXk. (2.11)

We shall suppose initially that ci
k > 0, 1 ≤ i ≤ M, k ∈ N. (See, however, the con-

struction of P from P in Section 2.3). Note ∑M
i=1 ci

k = 1, k ∈ N. We shall need the
following result in the sequel.

Lemma 2.2 With diag(z) denoting the diagonal matrix with vector z on its diago-
nal, we have
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Vk+1V ′
k+1 = diag(AXk)+diag(Vk+1)−A diag Xk A′

−AXkV
′
k+1 −Vk+1 (AXk)

′ (2.12)

and

〈Vk+1〉 := E
[
Vk+1V ′

k+1 | Fk
]

= E
[
Vk+1V ′

k+1 | Xk
]

= diag(AXk)−A diag Xk A′. (2.13)

Proof From (2.4)

Xk+1X ′
k+1 = AXk (AXk)

′ +AXkV
′
k+1 +Vk+1 (AXk)

′ +Vk+1V ′
k+1.

However, Xk+1X ′
k+1 = diag(Xk+1) = diag(AXk)+ diag(Vk+1). Equation (2.12) fol-

lows. The terms on the right side of (2.12) involving Vk+1 are martingale increments;
conditioning on Xk we see

〈Vk+1〉 = E
[
Vk+1V ′

k+1 | Xk
]
= diag(AXk)−A diag Xk A′.

�
Similarly, we can show that

〈Wk+1〉 := E
[
Wk+1W ′

k+1 | Gk
]
= diag(CXk)−C diag Xk C′.

In summary then, we have the following state space signal model for a Markov chain
hidden in noise with discrete measurements.
Discrete HMM The discrete HMM under P has the state space equations

Xk+1 = AXk +Vk+1,

Yk+1 = CXk +Wk+1, k ∈ N,
(2.14)

where Xk ∈ SX , Yk ∈ SY , A and C are matrices of transition probabilities given in
(2.2) and (2.8). The entries satisfy

N

∑
j=1

a ji = 1, a ji ≥ 0, (2.15)

M

∑
j=1

c ji = 1, c ji ≥ 0. (2.16)

Vk and Wk are martingale increments satisfying

E [Vk+1 | Fk ] = 0, E [Wk+1 | Gk ] = 0,

〈Vk+1〉 := E
[
Vk+1V ′

k+1 | Xk
]
= diag(AXk)−A diag Xk A′,

〈Wk+1〉 := E
[
Wk+1W ′

k+1 | Xk
]
= diag(CXk)−C diag Xk C′.
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2.3 Change of Measure

The idea of introducing new probability measures, as outlined in the previous chap-
ter, is now discussed for the observation process Y . This measure change concept is
the key to many of the results in this and the following chapters.

We assume, for this measure change, ci
� > 0, 1 ≤ i ≤ M, � ∈ N. This assumption,

in effect, is that given any Gk, the observation noise is such that there is a nonzero
probability that Y i

k+1 > 0 for all i. This assumption is later relaxed to achieve the
main results of this section. Define

λ� =
M

∑
i=1

(
M−1

ci
�

)
〈Y�, fi〉, (3.1)

and

Λk =
k

∏
�=1

λ�. (3.2)

Note that Y i
� = 1 for only one i at each �, and Y i

� = 0 otherwise, so that λ� is merely
the product of unity terms and one nonunity term. Consequently, since λk is a non-
linear function of Yk, then property (1.1) tells us that λk = λk (Yk) = ∑M

i=1 Y i
k/Mci

k.

Lemma 3.1 With the above definitions

E [λk+1 | Gk ] = 1. (3.3)

Proof Applying the properties (1.1) and (1.2),

E [λk+1 | Gk ] = E

[
M

∑
i=1

1

Mci
k+1

Y i
k+1

∣
∣∣∣ Gk

]

=
1
M

M

∑
i=1

1

ci
k+1

P
(

Y i
k+1 = 1 | Gk

)

=
1
M

M

∑
i=1

1

ci
k+1

· ci
k+1 = 1.

Here as in many places, we interchange expectations and summations, for a simple
random variable. This is permitted, of course, by a special case of Fubini’s Theorem;
see Loève (1978) and Appendix A. �

We now define a new probability measure P on (Ω,
∨∞

�=1 G�) by putting the re-
striction of the Radon-Nikodym derivative dP/dP to the σ -field Gk equal to Λk.
Thus

dP
dP

∣
∣∣∣
Gk

= Λk. (3.4)
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[The existence of P follows from Kolmogorov’s Extension Theorem (Kolmogorov
1933)]; see also Appendix A. This means that, for any set B ∈ Gk,

P(B) =
∫

B
Λk dP.

Equivalently, for any Gk-measurable random variable φ

E [φ ] =
∫

φ dP =
∫

φ
dP
dP

dP =
∫

φΛk dP = E [Λkφ ] , (3.5)

where E and E denote expectations under P and P, respectively. In the discrete-
state case under consideration, dP/dP reduces to the ratio P/P and the integrations
reduce to sums. This equation exhibits the basic idea of the change of measure; for
most of the results in this book a big challenge is to determine the appropriate forms
for λ and Λ. It is not straightforward to give insight into this process other than to
illustrate by examples and present hindsight proofs. Perhaps the measure changes
of Chapter 3 are the most transparent, and more discussion is given for these.

We now give a conditional form of Bayes’ Theorem which is fundamental for the
results that follow. The result relates conditional expectations under two different
measures. Recall that φ is integrable if E |φ | < ∞. First we shall consider a simple
case.

Consider the experiment of throwing a die. The set of outcomes is Ω = {1,2,
. . . ,6}. Suppose the die is not necessarily balanced, so that the probability of i show-
ing is P(i) = pi, p1 + · · ·+ p6 = 1.

The σ -field F associated with this experiment is the collection of all subsets of
Ω, including the empty set φ . The sets in F are the events. (See also Appendix A.)
The probability of the event “odd number,” for instance, is P{1,3,5}= p1 + p3 + p5.
Consider the sub-σ -field G of F defined by G = {Ω,φ ,{1,3,5} ,{2,4,6}}.

Now suppose φ is a real random variable on (Ω,F ), that is, φ (i) ∈ R for i =
1,2, . . . ,6. The mean, or expected, value of φ is then E [φ ] = ∑6

i=1 φ (i) pi.
The conditional expected value of φ , given G , E [φ | G ], is then a function which

is constant on the smallest, nonempty sets of G . That is,

E [φ | G ] (i) =
φ (1) p1 +φ (3) p3 +φ (5) p5

p1 + p3 + p5
, if i ∈ {1,3,5} ,

E [φ | G ] (i) =
φ (2) p2 +φ (4) p4 +φ (6) p6

p2 + p4 + p6
, if i ∈ {2,4,6}

We note that ψ = E [φ | G ] can be considered a function on (Ω,F ) and that then
E [E [φ | G ]] = E [φ ] .

Suppose we now rebalance the die by introducing weights Λ(i) on the different
faces. Note that Λ is itself, therefore, a random variable on (Ω,F ).

Write pi = Λ(i) pi = P(i), i = 1, . . . ,6, for the new balance proportion assigned to
the ith face. Then, because P is to be a probability measure, E [Λ] = p1 + · · ·+ p6 =
Λ(1) p1 + · · ·+Λ(6) p6 = 1.
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We have the following expressions:

E [Λφ | G ] (i)

=
φ (1)Λ(1) p1 +φ (3)Λ(3) p3 +φ (5)Λ(5) p5

p1 + p3 + p5
, if i ∈ {1,3,5} ,

E [Λφ | G ] (i)

=
φ (2)Λ(2) p2 +φ (4)Λ(4) p4 +φ (6)Λ(6) p6

p2 + p4 + p6
, if i ∈ {2,4,6} .

Similarly,

E [Λ | G ] (i) =
Λ(1) p1 +Λ(3) p3 +Λ(5) p5

p1 + p3 + p5
, if i ∈ {1,3,5} ,

E [Λ | G ] (i) =
Λ(2) p2 +Λ(4) p4 +Λ(6) p6

p2 + p4 + p6
, if i ∈ {2,4,6} .

However, with E denoting expectation under the new probability P:

E [φ | G ] (i) =
φ (1) p1 +φ (3) p3 +φ (5) p5

p1 + p3 + p5
, if i ∈ {1,3,5} ,

E [φ | G ] (i) =
φ (2) p2 +φ (4) p4 +φ (6) p6

p2 + p4 + p6
, if i ∈ {2,4,6} .

Consequently, E [φ | G ] = E [Λφ | G ]/E [Λ | G ].
We now prove this result in full generality. For background on conditional ex-

pectation see Elliott (1982b).

Theorem 3.2 (Conditional Bayes Theorem) Suppose (Ω,F ,P) is a probability
space and G ⊂ F is a sub-σ -field. Suppose P is another probability measure abso-
lutely continuous with respect to P and with Radon-Nikodym derivative dP/dP = Λ.
Then if φ is any P integrable random variable

E [φ | G ] = ψ where ψ =
E [Λφ | G ]
E [Λ | G ]

if E[Λ | G ] > 0

and ψ = 0 otherwise.

Proof Suppose B is any set in G . We must show

∫

B
E [φ | G ]dP =

∫

B

E [Λφ | G ]
E [Λ | G ]

dP.

Define ψ = E [Λφ | G ]/E [Λ | G ] if E [Λ | G ] > 0 and ψ = 0 otherwise. Then
E [φ | G ] = ψ .

Suppose A is any set in G . We must show
∫

A E [φ | G ]dP =
∫

A ψ dP. Write G =
{ω : E [Λ | G ] = 0}, so G ∈ G . Then

∫
G E [Λ | G ]dP = 0 =

∫
G ΛdP and Λ ≥ 0 a.s.
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So either P(G) = 0, or the restriction of Λ to G is 0 a.s. In either case, Λ = 0 a.s.
on G.

Now Gc = {ω : E [Λ | G ] > 0}. Suppose A∈G ; then A = B∪C where B = A∩Gc

and C = A∩G. Further,
∫

A
E [φ | G ]dP =

∫

A
φ dP =

∫

A
φΛdP

=
∫

B
φΛdP+

∫

C
φΛdP. (3.6)

Of course, Λ = 0 a.s. on C ⊂ G, so
∫

C
φΛdP = 0 =

∫

C
ψ dP, (3.7)

by definition.
Now

∫

B
ψdP =

∫

B

E [Λφ | G ]
E [Λ | G ]

dP

= E

[
IB

E [Λφ | G ]
E [Λ | G ]

]

= E

[
IBΛ

E [Λφ | G ]
E [Λ | G ]

]

= E

[
E

[
IBΛ

E [Λφ | G ]
E [Λ | G ]

| G
]]

= E

[
IBE [Λ | G ]

E [Λφ | G ]
E [Λ | G ]

]

= E [IBE [Λφ | G ]]
= E [IBΛφ ] .

That is ∫

B
Λφ dP =

∫

B
ψ dP. (3.8)

From (3.6), adding (3.7) and (3.8) we see that
∫

C
Λφ dP+

∫

B
Λφ dP =

∫

A
Λφ dP

=
∫

A
E [φ | G ] dP =

∫

A
ψ dP,

and the result follows. �
A sequence {φk} is said to be G -adapted if φk is Gk-measurable for every k.
Applying Theorem 3.2 result to the P and P of (3.4) we have the following:
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Lemma 3.3 If {φk} is a G -adapted integrable sequence of random variables, then

E [φk | Yk ] =
E [Λkφk | Yk ]
E [Λk | Yk ]

.

Lemma 3.4 Under P, {Yk}, k ∈ N, is a sequence of i.i.d. random variables each
having the uniform distribution that assigns probability 1

M to each point fi, 1 ≤ i ≤
M, in its range space.

Proof With E denoting expectation under P, using Lemma 3.1, Theorem 3.2 and
properties (1.1) and (1.2), then

P
(

Y j
k+1 = 1 | Gk

)
= E

[〈
Yk+1, f j

〉
| Gk

]

=
E
[

Λk+1
〈
Yk+1, f j

〉
| Gk

]

E [Λk+1 | Gk ]

=
ΛkE

[
λk+1

〈
Yk+1, f j

〉
| Gk

]

ΛkE [λk+1 | Gk ]
= E

[
λk+1

〈
Yk+1, f j

〉
| Gk

]

= E

⎡

⎣
M

∏
i=1

(
1

Mci
k+1

)Y i
k+1 〈

Yk+1, f j
〉
∣∣∣∣∣
Gk

⎤

⎦

= E

[
M

∑
i=1

(
1

Mci
k+1

)

Y i
k+1Y j

k+1

∣∣∣∣ Gk

]

=
1

Mc j
k+1

E
[

Y j
k+1

∣∣ Gk

]

=
1

Mc j
k+1

c j
k+1 =

1
M

= P
(

Y j
k+1 = 1

)
,

a quantity independent of Gk which finishes the proof. �
Now note that E [Xk+1 | Gk ] = E [Λk+1Xk+1 | Gk ]/E [Λk+1 | Gk ] = E[λk+1Xk+1 |

Gk ] = AXk so that under P, X remains a Markov chain with transition matrix A.

A Reverse Measure Change

What we wish to do now is start with a probability measure P on (Ω,
∨∞

n=1 Gn) such
that

1. the process X is a finite-state Markov chain with transition matrix A and
2. {Yk}, k ∈ N, is a sequence of i.i.d. random variables and

P
(

Y j
k+1 = 1 | Gk

)
= P

(
Y j

k+1 = 1
)

=
1
M

.
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Suppose C = (c ji), 1 ≤ j ≤ M, 1 ≤ i ≤ N is a matrix such that c ji ≥ 0 and
∑M

j=1 c ji =1.
We shall now construct a new measure P on (Ω,

∨∞
n=1 Gn) such that under P,

(2.14) still holds and E [Yk+1 | Gk ] = CXk. We again write

ck+1 = CXk

and ci
k+1 = 〈ck+1, fi〉 = 〈CXk, fi〉, so that

M

∑
i=1

ci
k+1 = 1. (3.9)

The construction of P from P is inverse to that of P from P. Write

λ � =
M

∏
i=1

(
Mci

�

)Y i
� , � ∈ N, (3.10)

and

Λk =
k

∏
�=1

λ �. (3.11)

Lemma 3.5 With the above definitions

E
[

λ k+1 | Gk
]
= 1. (3.12)

Proof Following the proof of Lemma 3.5

E
[

λ k+1 | Gk
]

= E

[
M

∏
i=1

(
Mci

k+1

)Y i
k+1 | Gk

]

= M
M

∑
i=1

ci
k+1P

(
Y i

k+1 = 1

∣∣∣∣ Gk

)

= M
M

∑
i=1

ci
k+1

M
=

M

∑
i=1

ci
k+1 = 1,

�
This time set

dP

dP

∣∣∣∣
Gk

= Λk. (3.13)

[The existence of P follows from Kolmogorov’s Extension Theorem (Kolmogorov
1933); see also Appendix A.]

Lemma 3.6 Under P,
E [Yk+1 | Gk ] = CXk.
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Proof Using Theorem 3.2 and the now familiar properties (1.1) and (1.2), then

P
(

Y j
k+1 = 1 | Gk

)
= E

[〈
Yk+1, f j

〉
| Gk

]

=
E
[

Λk+1
〈
Yk+1, f j

〉
| Gk

]

E
[

Λk+1 | Gk
] (case Λ �= 0)

=
E
[

λ k+1
〈
Yk+1, f j

〉
| Gk

]

E
[

λ k+1 | Gk
]

= E

[
M

∏
i=1

(
Mci

k+1

)Y i
k+1

〈
Yk+1, f j

〉
∣
∣
∣
∣ Gk

]

= ME
[

c j
k+1

〈
Yk+1, f j

〉
| Gk

]
= c j

k+1.

In case Λk+1 = 0 we take
0
0

= 1, and the result follows. �

2.4 Unnormalized Estimates and Bayes’ Formula

Recall our discrete HMM of Section 2.2; recall also that Yk is the complete σ -field
generated by knowledge of Y1, . . . ,Yk and Gk is the complete σ -field generated by
knowledge of X0, X1, . . . ,Xk and Y1, . . . ,Yk. We suppose there is a probability P on
(Ω,

∨∞
n=1 Gn) such that, under P, Xk+1 = AXk +Vk+1, where Vk is a

(
P,Gk

)
martin-

gale increment. That is, E [Vk+1 | Gk ] = 0 and the {Yk} are i.i.d. with P
(
Y j

k = 1
)

=
1
M , and the Yk are conditionally independent of Vk, given Gk, under both P and P. We
also have via the double expectation property listed in Appendix A,

E [Vk+1 | Yk+1 ] = E
[

E [Vk+1 | Gk,Yk+1 ] | Yk+1
]

= E
[

E [Vk+1 | Gk ] | Yk+1
]
= 0. (4.1)

The measure P is then defined using (3.13). Recall from Lemma 3.3 that for a
G -adapted sequence {φk},

E [φk | Yk ] =
E
[

Λkφk | Yk
]

E
[

Λk | Yk
] . (4.2)

Remark 4.1 This identity indicates why the unnormalized conditional expectation
E
[

Λkφk | Yk
]

is investigated.
�

Write qk (er), 1 ≤ r ≤ N, k ∈ N, for the unnormalized, conditional probability
distribution such that

E
[

Λk 〈Xk,er〉 | Yk
]
= qk (er) .
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Note that an alternative standard notation for this unnormalized conditional distri-
bution is α; this is used in later chapters for a related distribution.

Now ∑N
i=1 〈Xk,ei〉 = 1, so

N

∑
i=1

qk (ei) = E

[

Λk

N

∑
i=1

〈Xk,ei〉 | Yk

]

= E
[

Λk | Yk
]
.

Therefore, from (4.2) the normalized conditional probability distribution

pk (er) = E [〈Xk,er〉 | Yk ]

is given by

pk (er) =
qk (er)

∑k
j=1 qk (e j)

.

To conclude this section with a basic example we obtain a recursive expression for
qk. Recursive estimates for more general processes will be obtained in Section 2.5.

Notation 4.2 To simplify the notation we write c j (Yk) = M ∏M
i=1 c

Y i
k

i j .

Theorem 4.3 For k ∈ N and 1 ≤ r ≤ N, the recursive filter for the unnormalized
estimates of the states is given by

qk+1 = A diag c(Yk+1) ·qk. (4.3)

Proof Using the independence assumptions under P and the fact that ∑N
j=1

〈
Xk,e j

〉
=

1, as well as properties (1.1) and (1.2), we have

qk(er) = E
[
〈Xk+1,er〉Λk+1 | Yk+1

]

= E

[

〈AXk +Vk+1,er〉Λk

M

∏
i=1

(
Mci

k+1

)Y i
k+1

∣∣∣∣ Yk+1

]

= ME

[

〈AXk,er〉Λk

M

∏
i=1

(〈CXk, fi〉)Y i
k+1

∣∣∣∣ Yk+1

]

[because Vk+1 is a martingale increment with (4.1) holding]

= M
N

∑
j=1

E
[〈

Xk,e j
〉

ar jΛk | Yk+1
] M

∏
i=1

c
Y i

k+1
i j

= M
N

∑
j=1

E
[〈

Xk,e j
〉

ar jΛk | Yk
] M

∏
i=1

c
Y i

k+1
i j

(because yk is i.i.d. under P)

= M
N

∑
j=1

qk (e j)ar j

M

∏
i=1

c
Y i

k+1
i j .
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Using Notation 4.2 the result follows. �

Remark 4.4 This unnormalized recursion is a discrete-time form of Zakai’s Theorem
(Zakai 1969). This recursion is linear.

�

2.5 A General Unnormalized Recursive Filter

We continue to work under measure P so that

Xk+1 = AXk +Vk+1 (5.1)

and the Yk are independent random variables, uniformly distributed over f1, . . . , fM .

Notation 5.1 If {Hk}, k ∈ N, is any integrable sequence of random variables we
shall write

γk (Hk) = E
[

ΛkHk | Yk
]
. (5.2)

Note this makes sense for vector processes H.

Using Lemma 3.3 we see that

E [Hk | Yk ] =
E
[

ΛkHk | Yk
]

E
[

Λk | Yk
] =

γk (Hk)
γk (1)

. (5.3)

Consequently γk (Hk) is an unnormalized conditional expectation of Hk given Yk.
We shall take γ0 (X0) = E [X0]; this provides the initial value for later recursions.

Now suppose {Hk}, k ∈ N, is an integrable (scalar) sequence. With ∆Hk+1 =
Hk+1 −Hk, Hk+1 = Hk +∆Hk+1, then

γk+1 (Hk+1) = E
[

Λk+1Hk | Yk+1
]
+E

[
Λk+1∆Hk+1 | Yk+1

]
.

Consider the first term on the right. Then, using the now familiar properties (1.1)
and (1.2),

E
[

Λk+1Hk | Yk+1
]

= E
[

ΛkHkλ k+1 | Yk+1

]

= E

[

ΛkHkM
M

∏
i=1

〈CXk, fi〉Y
i
k+1

∣∣∣ Yk+1

]

=
N

∑
j=1

E
[

ΛkHk
〈
Xk,e j

〉
| Yk

]
M

M

∏
i=1

c
Y i

k+1
i j

=
N

∑
j=1

c j (Yk+1)
〈
γk (HkXk) ,e j

〉
.
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In this way the estimate for γk+1 (Hk+1) introduces γk (HkXk). A technical trick is
to investigate the recursion for γk+1 (Hk+1Xk+1). A similar discussion to that above
then introduces the term γk

(
HkXkX ′

k

)
; this can be written ∑N

i=1 〈γk (HkXk) ,ei〉eie′i.
Therefore, the estimates for γk+1 (Hk+1Xk+1) can be recursively expressed in terms
of γk (HkXk) (together with other terms). Writing 1 for the vector (1,1, . . . ,1)′ ∈ R

N

we see 〈Xk,1〉 = ∑N
i=1 〈Xk,ei〉 = 1, so

〈γk (HkXk) ,1〉 = γk (Hk 〈Xk,1〉) = γk (Hk) . (5.4)

Consequently, the unnormalized estimate γk (Hk) is obtained by summing the com-
ponents of γk (HkXk). Furthermore, taking Hk = 1 in (5.4) we see

γk (1) = 〈γk (Xk) ,1〉 = E
[

Λk | Yk
]
=

N

∑
i=1

qk (ei)

using the notation of Section 2.4. Therefore, the normalizing factor γk (1) in (5.3) is
obtained by summing the components of γk (Xk).

We now make the above observations precise by considering a more specific,
though general, process H.

Suppose, for k ≥ 1, Hk is a scalar process of the form

Hk+1 =
k+1

∑
�=1

(α� + 〈β�,V�〉+ 〈δ�,Y�〉)

= Hk +αk+1 + 〈βk+1,Vk+1〉+ 〈δk+1,Yk+1〉 . (5.5)

Here V� = X� − AX�−1 and α�, β�, δ� are G -predictable processes of appropriate
dimensions, that is, α�, β�, δ� are G�−1 measurable, α� is scalar, β� is N-dimensional,
and δ� is M-dimensional.

Notation 5.2 For any process φk, k ∈ N, write

γm,k (φm) = E
[

ΛkφmXk | Yk
]
. (5.6)

Theorem 5.3 For 1 ≤ j ≤ M write c j = Ce j =
(
c1 j, . . . ,cM j

)′
for the jth column of

C = (ci j) and a j = Ae j =
(
a1 j, . . . ,aN j

)′
for the jth column of A = (ai j). Then

γk+1,k+1 (Hk+1)

=
N

∑
j=1

c j (Yk+1)
{〈

γk,k (Hk)+ γk+1,k (αk+1 + 〈δk+1,Yk+1〉) ,e j
〉

a j

+
[
diag(a j)−a ja

′
j

]
E
[〈

ΛkXk,e j
〉

βk+1 | Yk+1
]}

. (5.7)

Proof

γk+1,k+1 (Hk+1)
= E

[
Xk+1Hk+1Λk+1 | Yk+1

]
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= E
[
(AXk +Vk+1)(Hk +αk+1 + 〈βk+1,Vk+1〉+ 〈δk+1,Yk+1〉)
×Λkλ k+1 | Yk+1

]

= E
[
((Hk +αk+1 + 〈δk+1,Yk+1〉)AXk + 〈Vk+1〉βk+1)

×Λkλ k+1 | Yk+1
]
,

{
because, as in Lemma 2.2,

E
[

Λkλ k+1Vk+1V ′
k+1 | Yk

]

= E
[

E
[

Λkλ k+1Vk+1V ′
k+1 | X0,X1, . . . ,Xk,Yk

]
| Yk

]

= E
[〈

Λkλ k+1Vk+1
〉
| Yk

]}

=
N

∑
j=1

c j (Yk+1)E
[(

(Hk +αk+1 + 〈δk+1,Yk+1〉)a j

+ 〈Vk+1〉βk+1
)
Λk

〈
Xk,e j

〉
| Yk+1

]
.

Finally, because the Y are i.i.d. this final conditioning is the same as conditioning
on Yk. Using Lemma 2.2 and Notation 5.2 the desired result follows. �

2.6 States, Transitions, and Occupation Times

Estimators for the State

Take Hk+1 = H0 = α0 = 1, α� = 0, � ≥ 1, β� = 0, � ≥ 0 and δ� = 0, � ≥ 0.
Applying Theorem 5.3 we have again the unnormalized filter Equation (4.3) for
qk = (qk (e1) , . . . ,qk (eN)) in vector form:

qk+1 =
N

∑
j=1

c j (Yk+1)
〈
qk,e j

〉
a j. (6.1)

with normalized form
pk = qk 〈qk,1〉−1 . (6.2)

This form is similar to that given by Aström (1965) and Stratonovich (1960). We
can also obtain a recursive form for the unnormalized conditional expectation of〈
Xm,ep

〉
given Yk+1, m < k + 1. This is the unnormalized smoother. For this we

take Hk+1 = Hm =
〈
Xm,ep

〉
, m < k + 1, 1 ≤ p ≤ N, α� = 0, β� = 0 and δ� = 0.

Applying Theorem 5.3 we have

E
[

Λk+1〈Xm,ep〉 | Yk+1
]
=

N

∑
j=1

c j (Yk+1)
〈
γm,k (〈Xm,ep〉) ,e j

〉
a j. (6.3)
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We see that Equation (6.3) is indeed a recursion in k; this is why we consider HkXk.
Taking the inner product with 1 and using Notation 5.1 gives the smoothed, unnor-
malized estimate

γk
(〈

Xm,ep
〉)

= E
[

Λk
〈
Xm,ep

〉
| Yk

]
.

Estimators for the Number of Jumps

The number of jumps from state er to state es in time k is given by

J rs
k =

k

∑
�=1

〈X�−1,er〉〈X�,es〉 .

Using X� = AX�−1 +V� this is

=
k

∑
�=1

〈X�−1,er〉〈AX�−1,es〉+
k

∑
�=1

〈X�−1,er〉〈V�,es〉

=
k

∑
�=1

〈X�−1,e1r〉asr +
k

∑
�=1

〈X�−1,er〉〈V�,es〉 .

Applying Theorem 5.3 with Hk+1 = J rs
k+1, H0 = 0, α� = 〈X�−1,er〉asr, β� =

〈X�−1,er〉es, δ� = 0 we have

γk+1,k+1
(
J rs

k+1

)

= M
N

∑
j=1

( M

∏
i=1

c
Y i

k+1
i j

){〈
γk,k (J rs

k )+ γk,k (〈Xk,er〉asr) ,e j
〉

a j

+
[
diag(a j)−a ja

′
j

]

×E
[〈

ΛkXk,e j
〉
〈Xk,er〉es | Yk+1

]}

= M
N

∑
j=1

( M

∏
i=1

c
Y i

k+1
i j

)〈
γk,k (J rs

k ) ,e j
〉

a j

+M 〈qk,er〉
( M

∏
i=1

c
Y i

k+1
ir

)[
asrar + es diag(ar)− es

(
ara

′
r

)]

that is, using Notation 4.2,

γk+1,k+1
(
J rs

k+1

)
=

N

∑
j=1

c j (Yk+1)
〈
γk,k (J rs

k ) ,e j
〉

a j

+ cr (Yk+1)〈qk,er〉asres.

(6.4)
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Together with the recursive Equation (6.1) for qk we have in (6.4) a recursive estima-
tor for γk,k

(
J rs

k

)
. Taking its inner product with 1, that is, summing its components,

we obtain γk
(
J rs

k

)
= E

[
ΛkJ

rs
k | Yk

]
.

Taking Hk+1 = Hm = J rs
m , α� = 0, � > m, β� = 0, � ≥ 0, δ� = 0, � ≥ 0, and

applying Theorem 5.3 we obtain for k > m, the unnormalized smoothed estimate
E
[

Λk+1J
rs

m Xk+1 | Yk+1
]

γm,k+1 (J rs
m ) =

N

∑
j=1

c j (Yk+1)
〈
γm,k (J rs

m ) ,e j
〉

a j. (6.5)

Again, by considering the product J rs
m Xk a recursive form has been obtained.

Taking the inner product with 1 gives the smoothed unnormalized estimate
E
[

ΛkJ
rs

m | Yk
]
.

Estimators for the Occupation Time

The number of occasions up to time k for which the Markov chain X has been in
state er, 1 ≤ r ≤ N, is

Or
k+1 =

k+1

∑
�=1

〈X�−1,er〉 .

Taking Hk+1 = Or
k+1, H0 = 0, α� = 〈X�−1,er〉, β� = 0, δ� = 0 and applying Theo-

rem 5.3 we have

γk+1,k+1
(
Or

k+1

)
= M

N

∑
j=1

M

∏
i=1

c
Y i

k+1
i j

(〈
γk,k (Or

k) ,e j
〉

+
〈
γk,k (〈Xk,er〉) ,e j

〉)
a j.

That is

γk+1,k+1
(
Or

k+1

)
=

N

∑
j=1

c j (Yk+1)
〈
γk,k (Or

k) ,e j
〉

a j

+ cr (Yk+1)〈qk,er〉ar. (6.6)

Together with (6.1) for qk this equation gives a recursive expression for γk,k
(
Or

k

)
.

Taking the inner product with 1 gives γk
(
Or

k

)
= E

[
Or

k | Yk
]
. For the related

smoother take k > m, Hk+1 = Hm = Or
m, α� = 0, β� = 0, δ� = 0 and apply Theo-

rem 5.3 to obtain

γm,k+1 (Or
m) =

N

∑
j=1

c j (Yk+1)
〈
γm,k (Or

m) ,e j
〉

a j. (6.7)
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Estimators for State to Observation Transitions

In estimating the parameters of our model in the next section we shall require esti-
mates and smoothers of the process

T rs
k =

k

∑
�=1

〈X�−1,er〉〈Y�, fs〉

which counts the number of times up to time k that the observation process is in
state fs given the Markov chain at the preceding time is in state er, 1 ≤ r ≤ N,
1 ≤ s ≤ M. Taking Hk+1 = T rs

k+1, H0 = 0, α� = 0, β� = 0, δ� = 〈X�−1,er〉 fs and
applying Theorem 5.3

γk+1,k+1
(
T rs

k+1

)
= M

N

∑
j=1

M

∏
i=1

c
Y i

k+1
i j

(〈
γk,k (T rs

k ) ,e j
〉

+
〈
γk,k (〈Xk,er〉〈Yk+1, fs〉) ,e j

〉)
a j.

That is, using Notation 4.2,

γk+1,k+1
(
T rs

k+1

)
=

N

∑
j=1

c j (Yk+1)
〈
γk,k (T rs

k ) ,e j
〉

a j

+M 〈qk,er〉〈Yk+1, fs〉csrar.

Together with Equation (6.1) for qk we have a recursive expression for γk,k
(
T rs

k

)
.

To obtain the related smoother take k + 1 > m, Hk+1 = Hm = T rs
m , α� = 0, β� = 0,

δ� = 0 and apply Theorem 5.3 to obtain

γm,k+1 (T rs
m ) =

N

∑
j=1

c j (Yk+1)
〈
γm,k (T rs

m ) ,e j
〉

a j. (6.9)

This is recursive in k.

Remark 6.1 Note the similar form of the recursions (6.1), (6.4), (6.6), and (6.8).
�

2.7 Parameter Reestimation

In this section we show how, using the expectation maximization (EM) algorithm,
the parameters of the model can be estimated. In fact, it is a conditional pseudo
log-likelihood that is maximized, and the new parameters are expressed in terms
of the recursive estimates obtained in Section 2.6. We begin by describing the EM
algorithm.
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The basic idea behind the EM algorithm is as follows (Baum and Petrie 1966).
Let {Pθ ,θ ∈ Θ} be a family of probability measures on a measurable space (Ω,F )
all absolutely continuous with respect to a fixed probability measure P0 and let Y ⊂
F . The likelihood function for computing an estimate of the parameter θ based on
the information available in Y is

L(θ) = E0

[
dPθ
dP0

∣∣∣ Y

]
,

and the maximum likelihood estimate (MLE) is defined by

θ̂ ∈ argmax
θ∈Θ

L(θ) .

The reasoning is that the most likely value of the parameter θ is the one that maxi-
mizes this conditional expectation of the density.

In general, the MLE is difficult to compute directly, and the EM algorithm pro-
vides an iterative approximation method:

Step 1. Set p = 0 and choose θ̂0.
Step 2. (E-step) Set θ ∗ = θ̂p and compute Q(·,θ ∗), where

Q(θ ,θ ∗) = Eθ∗

[
log

dPθ
dPθ∗

∣∣∣ Y
]
.

Step 3. (M-step) Find
θ̂p+1 ∈ argmax

θ∈Θ
Q(θ ,θ ∗) .

Step 4. Replace p by p + 1 and repeat beginning with Step 2 until a stopping
criterion is satisfied.

The sequence generated
{

θ̂p, p≥ 0
}

gives nondecreasing values of the likelihood
function to a local maximum of the likelihood function: it follows from Jensen’s
Inequality, see Appendix A, that

logL
(

θ̂p+1

)
− logL

(
θ̂p

)
≥ Q

(
θ̂p+1, θ̂p

)
,

with equality if θ̂p+1 = θ̂p. We call Q(θ ,θ ∗) a conditional pseudo-log-likelihood.
Finding a set of parameters which gives a (local) maximum of the expected log-
likelihood function gives an optimal estimate.

Our model (2.14) is determined by the set of parameters

θ := (a ji, 1 ≤ i, j ≤ N, c ji, 1 ≤ j ≤ M, 1 ≤ i ≤ N)

which are also subject to the constraints (2.15) and (2.16). Suppose our model is
determined by such a set θ and we wish to determine a new set

θ̂ = (â ji (k) , 1 ≤ i, j ≤ N, ĉ ji (k) , 1 ≤ j ≤ M, 1 ≤ i ≤ N)
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which maximizes the conditional pseudo-log-likelihoods defined below. Recall Fk

is the complete σ -field generated by X0,X1, . . . ,Xk. Consider first the parameters a ji.
To replace the parameters a ji by â ji (k) in the Markov chain X we define

Λk =
k

∏
�=1

(
N

∑
r,s=1

[
âsr (k)

asr

]
〈X�,es〉〈X�−1,er〉

)

.

In case a ji = 0, take â ji(k) = 0 and â ji(k)/a ji = 0. Set

dPθ̂
dPθ

∣
∣
∣
∣
Fk

= Λk.

To justify this we establish the following result.

Lemma 7.1 Under the probability measure Pθ̂ and assuming Xk = er, then

Eθ̂ [〈Xk+1,es〉 | Fk ] = âsr (k) .

Proof

Eθ̂ [〈Xk+1,es〉 | Fk ] =
E [〈Xk+1,es〉Λk+1 | Fk ]

E [Λk+1 | Fk ]

=
E
[
〈Xk+1,es〉 âsr(k)

asr

∣
∣Fk

]

E
[

∑N
r=1

[
âsr(k)

asr

]
〈Xk+1,es〉

∣∣ Fk

]

=
âsr(k)

asr
asr

∑N
r=1

âsr(k)
asr

asr

= âsr (k) .

�

Notation 7.2 For any process φk, k ∈ N, write φ̂k = E [φk | Yk ] for its Y -optional
projection. In discrete time this conditioning defines the Y -optional projection.

Theorem 7.3 The new estimates of the parameter âsr (k) given the observations up
to time k are given, when defined, by

âsr (k) =
Ĵ rs

k

Ôr
k

=
γk
(
J rs

k

)

γk
(
Or

k

) . (7.1)

We take
0
0

to be 0.
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Proof

logΛk =
N

∑
r,s=1

k

∑
�=1

〈X�,es〉〈X�−1,er〉 [log âsr (k)− logasr]

=
N

∑
r,s=1

J rs
k log âsr (k)+R(a) ,

where R(a) is independent of â. Therefore,

E [ logΛk | Yk ] =
N

∑
r,s=1

Ĵ rs
k log âsr (k)+ R̂(a) . (7.2)

Now the âsr (k) must also satisfy the analog of (2.15)

N

∑
s=1

âsr (k) = 1. (7.3)

Observe that
N

∑
s=1

J rs
k = Or

k (7.4)

and in conditional form
N

∑
s=1

Ĵ rs
k = Ôr

k . (7.5)

We wish, therefore, to choose the âsr (k) to maximize (7.2) subject to the constraint
(7.3). Write λ for the Lagrange multiplier and put

L(â,λ ) =
N

∑
r,s=1

Ĵ rs
k log âsr (k)+ R̂(a)+λ

(
N

∑
s=1

âsr (k)−1

)

.

Differentiating in λ and âsr (k), and equating the derivatives to 0, we have the opti-
mum choice of âsr (k) is given by the equations

1
âsr (k)

Ĵ rs
k +λ = 0, (7.6)

N

∑
s=1

âsr (k) = 1. (7.7)

From (7.5)–(7.7) we see that λ =−Ôr
k so the optimum choice of âsr (k), 1≤ s,r ≤N,

is

âsr (k) =
Ĵ rs

k

Ôr
k

=
γk
(
J rs

k

)

γk
(
Or

k

) . (7.8)

�
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Note that the unnormalized conditional expectations in (7.8) are given by the
inner product with 1 of (6.4) and (6.6).

Consider now the parameters c ji in the matrix C. To replace the parameters csr

by ĉsr (k) we must now consider the Radon-Nikodym derivative

Λ̃k =
k

∏
�=1

(
N

∑
r=1

M

∑
s=1

[
ĉsr (k)

csr

]
〈X�−1,er〉〈Y�, fs〉

)

.

By analogy with Lemma 3.1 we introduce a new probability by setting

dPθ̂
dPθ

∣
∣
∣
∣
Gk

= Λ̃k.

Then Eθ̂ [〈Yk+1, fs〉 | Xk = er ] = ĉsr (k) .
Then

E
[

log Λ̃k | Yk

]
=

N

∑
r=1

M

∑
s=1

T rs
k log ĉsr (k)+ R̃(c) , (7.9)

where R̃(c) is independent of ĉ. Now the ĉsr (k) must also satisfy

M

∑
s=1

ĉsr (k) = 1. (7.10)

Observe that
M

∑
s=1

T rs
k = Or

k

and conditional form
M

∑
s=1

T̂ rs
k = Ôr

k . (7.11)

We wish, therefore, to choose the ĉsr (k) to maximize (7.9) subject to the constraint
(7.11). Following the same procedure as above we obtain:

Theorem 7.4 The maximum log likelihood estimates of the parameters ĉsr (k) given
the observation up to time k are given, when defined, by

ĉsr (k) =
γk
(
T rs

k

)

γk
(
Or

k

) . (7.12)

We take
0
0

to be 0.

Together with the estimates for γk
(
T rs

k

)
given by the inner product with 1 of Equa-

tion (6.8) and the estimates for γk
(
Or

k

)
given by taking the inner product with 1
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of Equation (6.6) we can determine the optimal choice for ĉsr (k), 1 ≤ s ≤ M − 1,
1 ≤ r ≤ N. However, ∑M

s=1 ĉsr (k) = 1 for each r, so the remaining ĉMr (k) can also
be found.

Remarks 7.5 The revised parameters âsr (k), ĉsr (k) determined by (7.8) and (7.12)
give new probability measures for the model. The quantities γk

(
J rs

k

)
, γk

(
T rs

k

)
,

γk
(
Or

k

)
can then be reestimated using the new parameters and perhaps new data,

together with smoothing equations.
�

2.8 Recursive Parameter Estimation

In Section 2.7 we obtained estimates for the a ji and the c ji. However, these are not
recursive, that is, the estimate at time k is not expressed as the estimate at time
(k−1) plus a correction based on new information. In this section we derive recur-
sive estimates for the parameters. Unfortunately, these recursions are not in general
finite-dimensional. Recall our discrete HMM signal model (2.14) is parametrized in
terms of a ji, c ji. Let us collect these parameters into a parameter vector θ , so that
we can write A = A(θ), C = C (θ). Suppose that θ is not known a priori. Let us
estimate θ in a recursive manner, given the observations Yk. We assume that θ will
take values in some set Θ ∈ R

p.
Let us now write Gk for the complete σ -field generated by knowledge of X0,X1,

. . . ,Xk, Y1, . . . ,Yk, together with θ . Again Yk will be the complete σ -field generated
by knowledge of Y1, . . . ,Yk. With this enlarged Gk the results of Sections 2.2 and 2.3
still hold. We suppose there is a probability P on (Ω×Θ,

∨∞
�=1 G�) such that, under

P, the {Y�} are i.i.d. with P
(
Y j

� = 1
)

= 1
M , and Xk+1 = AXk +Vk+1, where Vk is a(

P,Gk
)

martingale increment. Write qr
k (θ), 1 ≤ r ≤ N, k ∈ N, for an unnormalized,

conditional density such that

E
[

Λk 〈Xk,er〉 I (θ ∈ dθ) | Yk
]
= qr

k (θ)dθ .

Where dθ is Lebesgue measure on Θ ∈ R
p.

Here, I (A) is the indicator function of the set A, that is, the function that is 1 on
A and 0 otherwise. The existence of qr

k (θ) will be discussed below. Equalities in the
variable θ can be interpreted almost surely.

The normalized conditional density pr
k (θ), such that

pr
k (θ)dθ = E [〈Xk,er〉 I (θ ∈ dθ) | Yk ] ,

is then given by

pr
k (θ) =

qr
k (θ)

∑N
j=1

∫
Θ q j

k (u)du
.
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We suppose an initial distribution p0 (.)=
(

p1
0 (.) , . . . , pN

0 (.)
)

is given. This is further
discussed in Remark 8.2. A recursive expression for qr

k (θ) is now obtained:

Theorem 8.1 For k ∈ N, and 1 ≤ r ≤ N, then the recursive estimates of an unnor-
malized joint conditional distribution of Xk and θ are given by

qr
k+1 (θ) = a′r,(.) diag(qk (θ)) c(.) (Yk+1) . (8.1)

Proof Suppose g is any real-valued Borel function on Θ. Then

E
[
〈Xk+1,er〉g(θ)Λk+1 | Yk+1

]

=
∫

Θ
qr

k+1 (u)g(u)du (8.2)

= E

[

〈AXk +Vk+1,er〉g(θ)Λk

M

∑
i=1

M 〈CXk, fi〉〈Yk+1, fi〉
∣
∣
∣ Yk+1

]

= ME

[

〈AXk,er〉g(θ)Λk

M

∑
i=1

〈CXk, fi〉〈Yk+1, fi〉
∣∣∣ Yk+1

]

= M
N

∑
s=1

E
[
〈Xk,es〉arsg(θ)Λk | Yk

] M

∏
i=1

c
Y i

k+1
is

= M
∫

Θ

N

∑
s=1

arsq
s
k (u)g(u)du

M

∏
i=1

c
Y i

k+1
is . (8.3)

As g is arbitrary, from (8.2) and (8.3) we see

qr
k+1 (u) = M

N

∑
s=1

(

arsq
s
k (u)

M

∏
i=1

c
Y i

k+1
is

)

.

Using Notation 4.2 the result follows. �
Compared with Theorem 4.3 the new feature of Theorem 8.1 is that it updates

recursively the estimate of the parameter.

Remark 8.2 Suppose π = (π1, . . . ,πN), where πi = P(X0 = ei) is the initial distribu-
tion for X0 and h(θ) is the prior density for θ . Then

qr
0 (θ) = πrh(θ) ,

and the updated estimates are given by (8.1).
�

If the prior information about X0 is that, say, X0 = ei, then the dynamics of X ,
(2.4) will move the state around and the estimate is given by (8.1). If the prior in-
formation about θ is that θ takes a particular value, then h(θ) (or a factor of h)
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is a delta function at this value. No noise or dynamics enters into θ , so the equa-
tions (8.1) just continue to give the delta function at this value. This is exactly to be
expected. The prior distribution h taken for θ must represent the a priori information
about θ ; it is not an initial guess for the value of θ .

Time-varying dynamics for θ could be incorporated in our model. Possibly
θk+1 = Aθ θk +vk+1, where vk+1 is the noise term. However, the problem then arises
of estimating the terms of the matrix Aθ .

Finally, we note the equations (8.1) are really just a family of equations para-
metrized by θ . In particular, if θ can take one of finitely many values θ1,θ2,
. . . ,θp we obtain p equations (8.1) for each possible θi. The prior for θ is then
just a distribution over θ1, . . . ,θp.

2.9 Quantized Observations

Suppose now the signal process {x�} is of the form

xk+1 = Axk + vk+1,

where xk ∈R
d , A = (a ji) is a d×d matrix and {v�}, �∈N, is a sequence of i.i.d. ran-

dom variables with density function ψ . (Time-varying densities or nonlinear equa-
tions for the signal can be considered.) We suppose x0, or its distribution, is known.
The observation process is again denoted by Y�, � ∈ N. However, the observations
are quantized, so that the range space of Y� is finite. Here, also, we shall identify the
range of Y� with the unit vectors f1, . . . , fM , f j = (0, . . . ,1, . . . ,0)′ ∈R

M , for some M.
Again suppose some parameters θ ∈ Θ in the model are not known. Write Gk for
the complete σ -field generated by x0,x1, . . . ,xk, Y1, . . . ,Yk and θ ; Yk is the complete
σ -field generated by Y1, . . . ,Yk. If Y i

� = 〈Y�, fi〉, 1 ≤ i ≤ M, then Y� =
(
Y i

� , . . . ,Y
M
�

)′

and ∑M
i=1 Y i

� = 1. Write

ci
� = E [〈Y�, fi〉 | G�−1 ] = P(Y� = fi | G�−1 ) .

We shall suppose

P(Y� = fi | G�−1 ) = P(Y� = fi | x�−1 ) , 1 ≤ i ≤ M, � ∈ N.

In this case we write ci
� (x�−1). Suppose ci

� (x�−1) > 0, 1 ≤ i ≤ M, � ∈ N. Write

Λk =
k

∏
�=1

(
M

∑
i=1

[
1

Mci
� (x�−1)

]
〈Y�, fi〉

)

.

Defining P by setting
dP
dP

∣
∣
∣∣
Gk

= Λk
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gives a measure such that

E [〈Y�, fi〉 | G�−1 ] =
1
M

.

Suppose the parameter θ takes values in R
d and is random and unknown.

Suppose we start with a measure P on
(
Ω×R

d ,
∨∞

�=1 G�

)
such that

E [〈Y�, fi〉 | G�−1 ] =
1
M

and xk+1 = Axk + vk+1. Write

Λk =
k

∏
�=1

(
M

∑
i=1

M
[
ci
� (x�−1)

]
〈Y�, fi〉

)

.

[Note this no longer requires ci
k+1 (xk) > 0.]

Introduce P by putting
dP

dP

∣∣∣∣
Gk

= Λk.

Suppose f is any Borel function on R
d and g is any Borel function on Θ, and write

qk (z,θ) for an unnormalized conditional density such that

E
[

ΛkI (xk ∈ dz) I (θ ∈ dθ) | Yk
]
= qk (z,θ)dzdθ .

Then

E
[

f (xk+1)g(θ)Λk+1 | Yk+1
]
=
∫ ∫

f (ξ )g(u)qk+1 (ξ ,u)dξ dλ (u) . (9.1)

The right-hand side is also equal to

= ME

[

f (Axk + vk+1)g(θ)Λk

M

∏
i=1

ci
k+1 (xk)

Y i
k+1 | Yk+1

]

= M
∫ ∫ ∫

f (Az+ v)g(u)

[
M

∏
i=1

ci
k+1 (z)Y i

k+1

]

ψ (v)qk (z,u)dvdzdλ (u) .

Write ξ = Az+ v, so v = ξ −Az. The above is

= M
∫ ∫ ∫

f (ξ )g(u)

(
M

∏
i=1

ci
k+1 (z)Y i

k+1

)

ψ (ξ −Az)qk (z,u)dzdξ dλ (u) . (9.2)

Comparing (9.1) and (9.2) and denoting
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ck+1 (Yk+1,z) = M
M

∑
i=1

ci
k+1 (z)〈Yk+1, fi〉

we have the following result:

Theorem 9.1 The recursive estimate of an unnormalized joint conditional density
of the signal x and the parameter θ satisfies:

qk+1 (ξ ,u) =
∫

Rd
ck+1 (Yk+1,z)ψ (ξ −Az)qk (z,u)dz.

Example

In Kulhavy (1990) the following simple situation is considered. Suppose θ ∈ R is
unknown. {v�}, � ∈ N, is a sequence of i.i.d. N

(
0,σ 2

)
random variables. The real

line is partitioned into M disjoint intervals,

I1 = (−∞,α1) , I2 = [α1,α2) , . . . , IM−1 = [αM−2,αM−1) , IM = [αM,∞) .

The signal process is x� = θ + v�, � ∈ N. The observation process Y� is an M-
dimensional unit vector such that Y i

� = 1 if x� ∈ Ii. Then

ci
� = P

(
Y i

� = 1 | G�−1
)

= P
(

Y i
� = 1 | θ

)
= P

(
αi−1 ≤ Y i

� < αi | θ
)

=
(
2πσ 2)−1/2

∫ αi−θ

αi−1−θ
exp

(
−x2/2σ 2)dx

= ci
� (θ) , 1 ≤ i ≤ M.

Measure P is now introduced. Write qk (θ) for the unnormalized conditional density
such that

E
[

ΛkI (θ ∈ dθ) | Yk
]
= qk (θ)dθ .

Then, for an arbitrary Borel function g,

E
[

g(θ)Λk+1 | Yk+1
]

=
∫

R

g(λ )qk+1 (λ )dλ

= ME

[

g(θ)Λk

M

∑
i=1

ci
k+1 (θ)〈Yk+1, fi〉 | Yk+1

]

= M
∫

R

g(λ )

[
M

∑
i=1

ci
k+1 (λ )〈Yk+1, fi〉

]

qk (λ )dλ .
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We, therefore, have the following recursion formula for the unnormalized condi-
tional density of θ :

qk+1 (λ ) =

(
M

∏
i=1

ci
k+1 (λ )Y i

k+1

)

qk (λ ) . (9.3)

The conditional density of θ given Yk is then

pk (λ ) =
qk (λ )

∫
R

qk (ξ )dξ
.

2.10 The Dependent Case

The situation considered in this section, (which may be omitted on a first reading),
is that of a hidden Markov Model for which the “noise” terms in the state and obser-
vation processes are possibly dependent. An elementary prototype of this situation,
for which the observation process is a single point process, is discussed in Segall
(1976b). The filtrations {Fk}, {Gk} and {Yk} are as defined in Section 1.2. The
semimartingale form of the Markov chain is, as in Section 2.2,

Xk+1 = AXk +Vk+1, k ∈ N,

where Vk is an {Fk} martingale increment, a ji = P(Xk+1 = e j | Xk = ei ) and A =
(a ji). Again the Markov chain is not observed directly; rather we suppose there is
a finite-state observation process Y . The relation between X and Y can be given as
P(Yk+1 = fr | Gk ) = P(Yk+1 = fr | Xk ) so that

Yk+1 = CXk +Wk+1, k ∈ N,

where Wk is an {Gk} martingale increment, c ji = P(Yk+1 = f j | Xk = ei ) and C =
(c ji). We initially assume c ji positive for 1 ≤ i ≤ N and 1 ≤ j ≤ M.

However, the noise, or martingale increment, terms Vk and Wk are not indepen-
dent. In fact, the joint distribution of Yk and Xk is supposed, given by

Yk+1X ′
k+1 = SXk +Γk+1, k ∈ N,

where S = (sr ji) denotes a MN ×N matrix, or tensor, mapping R
N into R

M ×R
N

and

sr ji = P(Yk = fr, Xk = e j | Xk−1 = ei ) 1 ≤ r ≤ M, 1 ≤ i, j ≤ N.

Again Γk+1 is a martingale increment, so E [Γk+1 | Gk ] = 0.
If the terms are independent

SXk = CXk (AXk)
′ .
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In this dependent case, recursive estimates are derived for the state of the chain,
the number of jumps from one state to another, the occupation time of the chain
in any state, the number of transitions of the observation process into a particular
state, and the number of joint transitions of the chain and the observation process.
Using the expectation maximization algorithm optimal estimates are obtained for
the elements a ji, c ji and sr ji of the matrices A, C, and S, respectively. Our model
is again, therefore, adaptive or “self-tuning.” In the independent case our results
specialize to those of Section 2.5.

Dependent Dynamics

We shall suppose

P(Yk+1 = fr, Xk+1 = e j | Gk ) = P(Yk+1 = fr, Xk+1 = e j | Xk ) (10.1)

and write

sr ji = P(Yk+1 = fr,Xk+1 = e j | Xk = ei ) , 1 ≤ r ≤ M, 1 ≤ i, j ≤ N.

Then S = (sr ji) denotes a MN ×N matrix, or tensor, mapping R
N into R

M ×R
N .

From this hypothesis we have immediately:

Yk+1X ′
k+1 = SXk +Γk+1, k ∈ N, (10.2)

where Γk+1 is a (P,Gk) ,RM ×R
N martingale increment.

Remark 10.1 Our model, therefore, involves the three sets of parameters (a ji), (cri),
and (sr ji).

�
Write 1 = (1,1, . . . ,1)′ for the vector, in R

M or R
N according to context, all

components of which are 1.

Lemma 10.2 For 1 ∈ R
M, then

〈1,SXk〉 = AXk. (10.3)

For 1 ∈ R
N, then

〈SXk,1〉 = CXk. (10.4)

Proof In each case 〈1,Γk〉 and 〈Γk,1〉 are martingale increments. Taking the inner
product of (10.2) with 1 the left side is, respectively, either

〈
1,Yk+1X ′

k+1

〉
= Xk or〈

Yk+1X ′
k+1,1

〉
=Yk+1. Therefore, the result follows from the unique decompositions

of the special semimartingales Xk and Yk. �
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In contrast to the independent situation, we have here P
[

Xk+1 = e j |Fk,Yk+1
]
=

P [Xk+1 = e j | Xk,Yk+1 ]. This is not, in general, equal to P [Xk+1 = e j | Xk ] so that
knowledge of Yk, or in particular Yk, now gives extra information about Xk.

Write

α jir =
sr ji

cri
;

(recall the cri are positive). We then have the following:

Lemma 10.3 With Ã the N × (N ×M) matrix (α jir), 1 ≤ i, j ≤ N, 1 ≤ r ≤ M,

Xk+1 = Ã
(
XkY

′
k+1

)
+Ṽk+1,

where

E
[

Ṽk+1 | Fk,Yk+1

]
= 0. (10.5)

Proof

P [Xk+1 = e j | Xk = ei,Yk+1 = fr ]

=
P [Yk+1 = fr,Xk+1 = e j | Xk = ei ]

P [Yk+1 = fr | Xk = ei ]

=
sr ji

cri
= α jir.

With Ã = (α jir), 1 ≤ i, j ≤ N, 1 ≤ r ≤ M, we define Ṽk by putting

Xk+1 = Ã
(
XkY

′
k+1

)
+Ṽk+1. (10.6)

Then

E
[

Ṽk+1 | Fk,Yk+1

]
= E [Xk+1 | Fk,Yk+1 ]− Ã

(
XkY

′
k+1

)

= Ã
(
XkY

′
k+1

)
− Ã

(
XkY

′
k+1

)
= 0.

�
In summary then, we have the following.

Dependent Discrete HMM The dependent discrete HMM is

Xk+1 = Ã
(
XkY

′
k+1

)
+Ṽk+1

Yk+1 = CXk +Wk+1, k ∈ N,
(10.7)

where Xk ∈ SX , Yk ∈ SY , Ã and C are matrices of transition probabilities given in
Lemmas 10.3 and (2.8). The entries of Ã satisfy
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N

∑
j=1

α jir = 1, α jir ≥ 0. (10.8)

Ṽk is a martingale increment satisfying

E
[

Ṽk+1 | Fk,Yk+1

]
= 0.

Next, we derive filters and smoothers for various processes.

The State Process

We shall be working under a probability measure P as discussed in Sections 2.3
and 2.4, so that the observation process is a sequence of i.i.d. random variables,
uniformly distributed over the set of standard unit vectors { f1, . . . , fM} of R

M .
Here Λk is as defined in Section 2.3. Using Bayes’ Theorem we see that

P [Xk+1 = e j | Fk,Yk+1 ] = E
[〈

Xk+1,e j
〉
| Fk,Yk+1

]

=
E
[〈

Xk+1,e j
〉

Λk+1 | Fk,Yk+1
]

E [Λk+1 | Gk,Yk+1 ]

=
Λk+1E

[〈
Xk+1,e j

〉
| Fk,Yk+1

]

Λk+1

= P [Xk+1 = e j | Fk,Yk+1 ]

= P [Xk+1 = e j | Xk,Yk+1 ] .

Therefore under P, the process X satisfies (10.7). Write q̃k, k ∈ N, for the unnormal-
ized conditional probability distribution such that

E
[

ΛkXk | Yk
]

:= q̃k.

Also write

Ã
(
e j f ′r

)
= α· jr =

(
α1 jr,α2 jr, . . . ,αN jr

)
and sr· j =

(
sr1 j, . . . ,srN j

)
.

Lemma 10.4 A recursive formula for q̃k+1 is given by

q̃k+1 = M
M

∑
r=1

N

∑
j=1

〈
q̃k,e j

〉
〈Yk+1, fr〉sr· j = MSq̃kY

′
k+1. (10.9)
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Proof

q̃k+1 = E
[

Λk+1Xk+1 | Yk+1
]

= E

[

Λk

M

∏
r=1

(M 〈CXk, fr〉)Y r
k+1 E [Xk+1 | Fk,Yk+1 ] | Yk+1

]

= E

[

Λk

M

∏
r=1

(M 〈CXk, fr〉)Y r
k+1 ÃXkY

′
k+1 | Yk+1

]

= M
M

∑
r=1

N

∑
j=1

〈
q̃k,e j

〉
〈Yk+1, fr〉cr jα· jr

= M
M

∑
r=1

N

∑
j=1

〈
q̃k,e j

〉
〈Yk+1, fr〉sr· j

= MSq̃kY
′
k+1.

�
Remark 10.5 If the noise terms in the state X and observation Y are independent,
then

SXk = E
[
Yk+1X ′

k+1 | Gk
]

= CXk (AXk)
′

=
N

∑
i=1

〈Xk,ei〉cia
′
i,

where ci = Cei and ai = Aei.
�

A General Recursive Filter

Suppose Hk is a scalar G -adapted process such that H0 is F0 measurable. With
∆Hk+1 = Hk+1 −Hk, Hk+1 = Hk + ∆Hk+1. For any G -adapted process φk, k ∈ N,
write γ̃m,k (φm) = E

[
ΛkφmXk | Yk

]
. Then

γ̃k+1,k+1 (Hk+1)
= E

[
Λk+1HkXk+1 | Yk+1

]
+E

[
Λk+1∆Hk+1Xk+1 | Yk+1

]

= E
[

ΛkHkÃ
(
XkY

′
k+1

)
λ k+1 | Yk+1

]
+E

[
Λk+1∆Hk+1Xk+1 | Yk+1

]

= M
M

∑
r=1

N

∑
j=1

〈
γ̃k,k (Hk) ,e j

〉
〈Yk+1, fr〉sr· j

+E
[

Λk+1∆Hk+1Xk+1 | Yk+1
]

= MSγ̃k,k (Hk)Y ′
k+1 +E

[
Λk+1∆Hk+1Xk+1 | Yk+1

]
. (10.10)
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For the smoother at time m < k +1, we have

γ̃m,k+1 (Hm) = M
M

∑
r=1

N

∑
j=1

〈
γ̃m,k (Hm) ,e j

〉
〈Yk+1, fr〉sr· j

= MSγ̃m,k (Hm)Y ′
k+1. (10.11)

Remark 10.6 The use of the product Hk+1Xk+1 and HmXk+1 is explained in Sec-
tion 2.5. Specializing (10.10) and (10.11), estimates and smoothers for various pro-
cesses of interest are now obtained.

�

The State Process

Here Hk+1 = H0 = 1 and ∆Hk+1 = 0. Denoting γ̃k,k (1) by q̃k we have from (10.10)
and (10.11)

q̃k+1 = MSq̃kY
′
k+1 (10.12)

which we have already obtained in Lemma 10.4. For m < k + 1 we have the
smoothed estimate

γ̃m,k+1
(〈

Xm,ep
〉)

= MSγ̃m,k
(〈

Xm,ep
〉)

Y ′
k+1. (10.13)

The Number of Jumps

Here Hk+1 = J pq
k+1 = ∑k+1

n=1

〈
Xn−1,eq

〉〈
Xn,ep

〉
and ∆Hk+1 =

〈
Xk,ep

〉
×
〈
Xk+1,eq

〉
.

Substitution of these quantities in (10.10) and (10.11) gives the estimates and
smoothers for the number of jumps:

γ̃k+1,k+1
(
J pq

k+1

)
= M

(
Sγ̃k,k

(
J pq

k

)
Y ′

k+1 +
〈
q̃k,ep

〉〈
Yk+1,s·qp

〉
eq
)

(10.14)

and for m < k +1 we have the smoothed estimate

γ̃m,k+1 (J pq
m ) = MSγ̃m,k (J pq

m )Y ′
k+1. (10.15)

The Occupation Time

Here Hk+1 = O p
k+1 = ∑k+1

n=1

〈
Xn,ep

〉
and ∆Hk+1 =

〈
Xk,ep

〉
. Using again (10.10) and

(10.11) we have the estimates

γ̃k+1,k+1
(
O p

k+1

)
= M

(
Sγ̃k,k

(
O p

k

)
Y ′

k+1 +
〈
q̃k,ep

〉〈
Yk+1,s··p

〉)
, (10.16)
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where
〈
Yk+1,s··p

〉
= ∑M

r=1 〈Yk+1, fr〉sr·p, and the smoothers for m < k +1

γ̃m,k+1 (O p
m) = MSγ̃m,k (O p

m)Y ′
k+1. (10.17)

The Process Related to the Observations

Here Hk+1 =T ps
k+1 = ∑k+1

�=1

〈
X�−1,ep

〉
〈Y�, fs〉 and ∆Hk+1 =

〈
Xk,ep

〉
〈Yk+1, fs〉. Again,

substitution in (10.10) and (10.11) gives

γ̃k+1,k+1
(
T ps

k+1

)
= M

(
Sγ̃k,k

(
T ps

k

)
Y ′

k+1 +
〈
q̃k,ep

〉
〈Yk+1, fs〉ss·p

)
(10.18)

and for m < k +1 we have the smoothed estimate

γ̃m,k+1 (T ps
m ) = MSγ̃m,k (T ps

m )Y ′
k+1. (10.19)

The Joint Transition

In the dependent situation a new feature is the joint transition probabilities. Here
Hk+1 =L tqp

k+1 = ∑k+1
�=1 〈Y�, ft〉

〈
X�,eq

〉〈
X�−1,ep

〉
and ∆Hk+1 = 〈Yk+1, ft〉

〈
Xk+1,eq

〉
×〈

Xk,ep
〉
. Estimates and smoothers for the joint transitions are obtained using again

(10.10) and (10.11). These are:

γ̃k+1,k+1
(
L tqp

k+1

)
= M

(
Sγ̃k,k

(
L tqp

k

)
Y ′

k+1 +
〈
q̃k,ep

〉
〈Yk+1, ft〉stqpeq

)
(10.20)

and
γ̃m,k+1

(
L tqp

m

)
= MSγ̃m,k

(
L tqp

m

)
Y ′

k+1. (10.21)

Parameter Estimation

Our hidden Markov model is described by the equations:

Xk+1 = AXk +Vk+1

Yk+1 = CXk +Wk+1

Yk+1X ′
k+1 = SXk +Γk+1, k ∈ N.

The parameters in the model are, therefore, given in a set

θ =
{

a ji,1 ≤ i, j ≤ N;

c ji,1 ≤ j ≤ M, 1 ≤ i ≤ N;

sr ji,1 ≤ r ≤ M, 1 ≤ i, j ≤ N
}
.
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These satisfy

N

∑
j=1

a ji = 1,
M

∑
j=1

c ji = 1,
M

∑
r=1

N

∑
j=1

sr ji = 1. (10.22)

Suppose such a set θ is given and we wish to determine a new set θ̂ =
{
(â ji (k)) ,

(ĉ ji (k)) ,(ŝr ji (k))
}

which maximizes the log-likelihood function defined below.
Consider the parameters (sr ji,1 ≤ r ≤ M,1 ≤ i, j ≤ N). To replace the joint tran-
sitions sr ji by ŝr ji (k) consider the Radon-Nikodym derivatives

dP̂
dP

∣
∣
∣
∣
Gk

=
k

∏
�=1

M

∏
r=1

N

∏
i, j=1

[
ŝr ji (k)
sr ji (k)

]〈Y�, fr〉〈X�,e j〉〈X�−1,ei〉
.

Therefore

E

[

log
dP̂
dP

∣
∣
∣
∣
Gk

| Yk

]

=
M

∑
r=1

N

∑
i, j=1

L̂ r ji
k log ŝr ji (k)+ R̂(s) , (10.23)

where R̂(s) is independent of ŝ. Now observe that

M

∑
r=1

N

∑
j=1

L r ji
k = O i

k. (10.24)

Conditioning (10.24) on Yk we have:

M

∑
r=1

N

∑
j=1

L̂ r ji
k = Ô i

k. (10.25)

Now the ŝr ji (k) must also satisfy:

M

∑
r=1

N

∑
i=1

ŝr ji (k) = 1. (10.26)

We wish, therefore, to choose the ŝr ji (k) to maximize the conditional log-likelihood
(10.23) subject to the constraint (10.26). Write λ for the Lagrange multiplier and
put

F (ŝ,λ ) =
M

∑
r=1

N

∑
i, j=1

L̂ r ji
k log ŝr ji (k)+ R̂(s)+λ

(
M

∑
r=1

N

∑
j=1

ŝr ji (k)−1

)

.

Equating the derivatives of F in ŝr ji (k) and λ to zero we have that the optimum
choice of ŝr ji (k) is given, when defined, by
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ŝr ji (k) =
L̂ r ji

k

Ô i
k

=
γ̃k

(
L r ji

k

)

γ̃k
(
O i

k

) . (10.27)

Similarly, as in Section 2.7 the optimal choice for â ji (k) and ĉ ji (k) given the obser-
vations are, respectively, when defined

â ji (k) =
γ̃k

(
J i j

k

)

γ̃k
(
O i

k

) (10.28)

and

ĉ ji (k) =
γ̃k

(
T i j

k

)

γ̃k
(
O i

k

) . (10.29)

Remark 10.7 We have found recursive expressions for γ̃k(O i
k), γ̃k(L

r ji
k ), γ̃k(J

i j
k )

and γ̃k(T
i j

k ). The revised parameters θ̂ = ((â ji(k)), (ĉ ji(k)), (ŝr ji(k))), are then de-
termined by (10.27), (10.28), and (10.29). This procedure can be iterated and an
increasing sequence of likelihood ratios obtained.

�

A Test for Independence

Taking inner products with 1∈R
N , (10.16) and (10.20) provide estimates for γ̃k

(
O i

k

)

and γ̃k
(
L r ji

k

)
, respectively; an optimal estimate for ŝr ji (k) is then obtained from

(10.27). However, if the noise terms in the state X and observation Y are independent
we have

SXk = C diag Xk A′.

Taking Xk = ei and considering
〈
Sei, fre

′
j

〉
= 〈Cei, fr〉

〈
Aei,e j

〉

we see that if the noise terms are independent:

sr ji = cria ji

for 1 ≤ r ≤ M, 1 ≤ i, j ≤ N. If the noise terms are independent γk,k
(
J i j

k

)
, γk,k

(
O i

k

)
,

and γk,k
(
T i j

k

)
are given in Section 2.6. Taking inner products with 1 ∈ R

N gives

estimates for γk
(
J i j

k

)
, γk

(
O i

k

)
, and γk

(
T i j

k

)
, and substituting in (10.28) and (10.29)

gives estimates for â ji (k) and ĉ ji (k). Consequently, a test for independence is to
check whether

ŝr ji (k) = ĉri (k) · â ji (k) .
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Modification of our model and this test will give other tests for independence. For
example, by enlarging the state space, so the state at time k is in fact (Xk+1,Xk) a
test can be devised to check whether either the process Xk is Markov, or (Xk+1,Xk)
is Markov, in a hidden Markov model situation. Alternatively, models can be con-
sidered where Xk+1 and Yk+1 depend also on Yk.

2.11 Problems and Notes

Problems

1. Show that Λk defined in Section 2.3 is a
(
P,Gk

)
-martingale, and Λk defined in

Section 2.7 is a (P,Gk)-martingale.
2. Fill in the details in the proof of Theorem 5.3.
3. Write ρm,k (er) = E

[
〈Xm,er〉Λk | Yk

]
, Λm,k =∏k

�=m γ̄� and βm,k (er) = E[Λm+2,k |
Xm = er,Yk ]. Show that βm,k satisfies the following backward recursive equation

βm,k (er) = M
N

∑
�=1

M

∏
i=1

d
Y i

m+2
i� βm,k (e�) pr�

and βm,k (·) = βn−1,k (·) = 1. Then verify that:

ρm,k (er) = qm (er)βm,k (er)
M

∏
i=1

dY i
m

ir ,

where qm (·) is given recursively by (4.3).
4. Prove Theorem 7.4.
5. It is pointed out in Section 2.10 that alternatively, the transitions at time k of

the processes X and Y could also depend on Yk−1. Describe the dynamics of this
model and define a new probability measure under which the observed process
Y is a sequence of i.i.d. random variables uniformly distributed.

6. Using a “double change of measure” changing both processes X and Y into i.i.d.
uniform random variables, rederive the recursions of Sections 2.4 to 2.6.

Notes

Hidden Markov models, HMMs, have found applications in many areas. The survey
by Rabiner (1989) describes their role in speech processing. Stratonovich (1960) de-
scribes some similar models in Stratonovich (1960). The results of Aström (1965)
are obtained using Bayes’ rule, and the recursion he obtained is related to Theo-
rem 4.3.
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The expectation maximization, EM, algorithm was first introduced by Baum and
Petrie (1966) and further developed by Dempster et al. (1977).

Our formulation, in terms of filters which estimate the number of jumps from
one state to another J , the occupation time O , and the T process, avoids use of
the forward-backward algorithm and does not require so much memory. However,
it requires a larger number of calculations that can be done in parallel.

Related contributions can be found in Boel (1976) and Segall (1976b). The latter
discusses only a single counting observation process. Boel has considered multidi-
mensional point processes, but has not introduced Zakai equations or the change of
measure.

The continuous-time versions of these results are presented in Chapters 7 and 8.


