OCEAN WAVES AND OSCILLATING SYSTEMS

LINEAR INTERACTIONS INCLUDING WAVE-ENERGY EXTRACTION

JOHANNES FALNES
Department of Physics
Norwegian University of Science and Technology NTNU
Contents

Preface

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Mathematical Description of Oscillations</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Free and Forced Oscillations of a Simple Oscillator</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Free Oscillation</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Forced Oscillation</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Electric Analogue: Remarks on the Quality Factor</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Complex Representation of Harmonic Oscillations</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Complex Amplitudes and Phasors</td>
<td>13</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Mechanical Impedance</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Power and Energy Relations</td>
<td>18</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Harmonic Oscillation: Active Power and Reactive Power</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>State-Space Analysis</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Linear Systems</td>
<td>25</td>
</tr>
<tr>
<td>2.5.1</td>
<td>The Delta Function and Related Distributions</td>
<td>26</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Impulse Response: Time-Invariant System</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Fourier Transform and Other Integral Transforms</td>
<td>28</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Fourier Transformation in Brief</td>
<td>31</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Time-Invariant Linear System</td>
<td>33</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Kramers-Kronig Relations and Hilbert Transform</td>
<td>37</td>
</tr>
<tr>
<td>2.6.4</td>
<td>An Energy Relation for Non-sinusoidal Oscillation</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Interaction Between Oscillations and Waves</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Comparison of Waves on Water with Other Waves</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>Dispersion, Phase Velocity and Group Velocity</td>
<td>45</td>
</tr>
<tr>
<td>3.3</td>
<td>Wave Power and Energy Transport</td>
<td>46</td>
</tr>
<tr>
<td>3.4</td>
<td>Radiation Resistance and Radiation Impedance</td>
<td>49</td>
</tr>
<tr>
<td>3.5</td>
<td>Resonance Absorption</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>54</td>
</tr>
</tbody>
</table>
4 Gravity Waves on Water

4.1 Basic Equations: Linearisation 58
4.2 Harmonic Waves on Water of Constant Depth 64
4.3 Plane Waves: Propagation Velocities 70
4.4 Wave Transport of Energy and Momentum 75
 4.4.1 Potential Energy 75
 4.4.2 Kinetic Energy 76
 4.4.3 Total Stored Energy 77
 4.4.4 Wave-Energy Transport 77
 4.4.5 Relation Between Energy Transport and Stored Energy 78
 4.4.6 Momentum Transport and Momentum Density of a Wave 79
4.4.7 Drift Forces Caused by the Absorption and Reflection of Wave Energy 81
4.5 Real Ocean Waves 83
4.6 Circular Waves 87
4.7 A Useful Integral Based on Green’s Theorem 91
4.8 Far-Field Coefficients and Kochin Functions 96
4.9 Waves in the Time Domain 104
 4.9.1 Relation Between Wave Elevations at Two Locations 105
 4.9.2 Relation Between Hydrodynamic Pressure and Wave Elevation 109
Problems 109

5 Wave-Body Interactions

5.1 Six Modes of Body Motion: Wave Forces and Moments 118
 5.1.1 Six Modes of Motion 119
 5.1.2 Hydrodynamic Force Acting on a Body 121
 5.1.3 Excitation Force 123
5.2 Radiation from an Oscillating Body 125
 5.2.1 The Radiation Impedance Matrix 125
 5.2.2 Energy Interpretation of the Radiation Impedance 127
 5.2.3 Wavemaker in a Wave Channel 128
 5.2.4 Examples of Other Body Geometries 133
5.3 Impulse Response Functions in Hydrodynamics 138
 5.3.1 The Kramers-Kronig Relations in Hydrodynamic Radiation 139
 5.3.2 Non-causal Impulse Response for the Excitation Force 141
5.4 Reciprocity Relations 143
 5.4.1 Radiation Resistance in Terms of Far-Field Coefficients 144
 5.4.2 The Excitation Force: The Haskind Relation 147
 5.4.3 Reciprocity Relation Between Radiation Resistance and Excitation Force 148
5.5 Several Bodies Interacting with Waves 149
 5.5.1 Phenomenological Discussion 150
 5.5.2 Hydrodynamic Formulation 151
 5.5.3 Radiation-Impedance and Radiation-Resistance Matrices 153
CONTENTS

5.5.4 Radiation-Reactance and Added-Mass Matrices 156
5.5.5 Excitation Force Vector: The Haskind Relation 158
5.5.6 Wide-Spacing Approximation 159
5.6 The Froude-Krylov Force and Small-Body Approximation 160
5.6.1 The Froude-Krylov Force and Moment 161
5.6.2 The Diffraction Force 163
5.6.3 Small-Body Approximation for a Group of Bodies 163
5.6.4 Small-Body Approximation for a Single Body 165
5.7 Axisymmetric Oscillating System 168
5.7.1 The Radiation Impedance 171
5.7.2 Radiation Resistance and Excitation Force 172
5.7.3 Numerical 2-Body Example 175
5.8 Two-Dimensional System 179
5.9 Motion Response and Control of Motion 181
5.9.1 Dynamics of a Floating Body in Heave 183

Problems 187

6 Wave-Energy Absorption by Oscillating Bodies 196
6.1 Absorption Considered as Wave Interference 196
6.2 Absorption by a Body Oscillating in One Mode of Motion 198
6.2.1 Maximum Absorbed Power 200
6.2.2 Upper Bound of Power-to-Volume Ratio 200
6.2.3 Maximum Converted Useful Power 202
6.3 Optimum Control for Maximising Converted Energy 204
6.4 Absorption by a System of Several Oscillators 212
6.4.1 Maximum Absorbed Power and Useful Power 214
6.4.2 Maximum Absorbed Power by an Axisymmetric Body 216
6.4.3 Maximum Absorbed Power in the Two-Dimensional Case 218
6.4.4 Maximum Absorbed Power with Amplitude Constraints 222

Problems 222

7 Wave Interaction with Oscillating Water Columns 225
7.1 The Applied-Pressure Description for a Single OWC 226
7.1.1 Absorbed Power and Radiation Conductance 229
7.1.2 Reactive Power and Radiation Susceptance 230
7.1.3 An Axisymmetric Example 230
7.1.4 Maximum Absorbed Power 232
7.1.5 Reciprocity Relations for an OWC 234
7.1.6 OWC with Pneumatic Power Takeoff 236
7.2 Systems of OWCs and Oscillating Bodies 238
7.2.1 Phenomenological Theory 239
7.2.2 Absorbed Power 242
7.2.3 Hydrodynamic Formulation 244
7.2.4 Hydrodynamic Parameters 246
7.2.5 Reciprocity Relations for Radiation Parameters 247
7.2.6 Extension of the Haskind Relation 251
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.7 Reciprocity Relations for the Radiation Damping Matrix</td>
<td>254</td>
</tr>
<tr>
<td>7.2.8 Axisymmetric Systems</td>
<td>256</td>
</tr>
<tr>
<td>Problems</td>
<td>259</td>
</tr>
<tr>
<td>Bibliography</td>
<td>263</td>
</tr>
<tr>
<td>Index</td>
<td>269</td>
</tr>
</tbody>
</table>
Preface

This book is intended to provide a thorough consideration of the interaction between waves and oscillating systems (immersed bodies and “oscillating water columns”) under conditions where amplitudes are sufficiently small that linear theory is applicable. In practice, this small-wave assumption is reasonably valid for most of the time, during which, for example, a wave-energy converter is generating most of its income. During the rather rare extreme-wave situations, however, non-linear effects may be significant, and such situations influence design loads, and hence the costs, for ships and other installations deployed at sea. This matter is treated in several other books.

The present book is mainly based on lecture notes from a postgraduate university course on water waves and extraction of energy from ocean waves, which I have taught many times since 1979. For the purposes of this book, I have selected those parts of the subject which have more general interest, rather than those parts of my course which pertain to wave-power conversion in particular. I hope that the book is thus of interest to a much wider readership than just the wave-energy community.

Except in 1983, my course has been taught every second year, mainly for doctorate students at the university in Trondheim, but other interested students have also attended. Moreover, a similar two-week course was given in 1986 with participants from Norwegian industry. Another two-week course, with international participation, was held at the Chalmers University of Technology in Gothenburg, Sweden, in 1998.

In February 1980, the lecture notes were issued in a bound volume entitled *Hydrodynamisk teori for bølgjekraftverk* (“Hydrodynamic theory for wave power plants”) by L. C. Iversen and me. One hundred copies were published by the University of Trondheim, Division of Experimental Physics. Later I revised the lecture notes, while translating them into English. In 1993 this process resulted in a two-volume work entitled *Theory for extraction of ocean-wave energy*.

I wish to thank the course participant Knut Bønke for his inspiring encouragement to have the lecture notes typed in 1979 and issued in a bound volume, and
for his continued encouragement over many years to write a textbook based on the notes. Moreover, I would like to thank Jørgen Hals, a course participant from 1997, for working out the subject index of the present book. I am also in debt to my other students for their comments and proof-reading. In this connection I wish to mention, in particular, the following graduate students (the years they completed their doctorate degrees are given): L. C. Iversen (1980), Å. Kyllingstad (1982), O. Malmo (1984), G. Oltedal (1985), A. Brendmo (1995) and H. Eidsmoen (1996). Also my collaborator over many years, P. M. Lillebekken, who attended the course in 1981, has made many valuable comments.

Most of all, I am in debt to my late colleague Kjell Budal (1933–1989), whose initiative inspired my interest in wave-power utilisation at an early stage. During the oil crisis at the end of 1973, we started a new research project aimed at utilising ocean-wave energy. At that time we did not have a research background in hydrodynamics, but Budal had carried out research in acoustics, developing a particular microphone, whereas I had studied waves in electromagnetics and plasma physics. During 1972–4 we jointly authored a (Norwegian) textbook Bølgjelære (“Wave Science”) for the second-year undergraduate students in physics. This is an interdisciplinary text on waves, with particular emphasis on acoustics and optics.

With this background our approach and attitude towards hydrodynamic waves have perhaps been more interdisciplinary than traditional. In my view, this has influenced our way of thinking and stimulated our contributions to the science of hydrodynamics. This background is also reflected in the present book, notably in Chapter 3, where interaction between oscillations and waves is considered in general; water waves, in particular, are treated in subsequent chapters (Chapters 4–7).

I am also grateful to Elsevier Science for permission to reuse, in Sections 4.9, 5.5 and 7.2, parts of my own contributions to papers in Applied Ocean Research. Moreover, I wish to thank Professor J. N. Newman and Dr. Alain Clément for suggesting the use of computer codes WAMIT and AQUADYN, which have been used to compute the numerical results presented in Subsections 5.2.4 and 5.7.3, respectively. I am also grateful to Dr. Stephen Barstow for permission to use Problem 4.4, which he formulated.

Finally, I wish to thank my wife, Dagny Elisabeth, for continuous support during the many years I have worked on this book. Our oldest son, Magne, took the photographs used in composition of the front cover of the book.

4 September 2001 Johannes Falnes