Heterogeneous catalysis is widely used in chemical, refinery, and pollution-control processes. For this reason, achieving optimal performance of catalysts is a significant issue for chemical engineers and chemists. This book addresses the question of how catalytic material should be distributed inside a porous support in order to obtain optimal performance. It treats single- and multiple-reaction systems, isothermal and nonisothermal conditions, pellets, monoliths, fixed-bed reactors, and membrane reactors. The effects of physicochemical and operating parameters are analyzed to gain insight into the underlying phenomena governing the performance of optimally designed catalysts. Throughout, the authors offer a balanced treatment of theory and experiment. Particular attention is given to problems of commercial importance. With its thorough treatment of the design, preparation, and utilization of supported catalysts, this book will be a useful resource for graduate students, researchers, and practicing engineers and chemists.

Massimo Morbidelli is Professor of Chemical Reaction Engineering in the Laboratorium für Technische Chemie at ETH, Zürich.

Asterios Gavriilidis is Senior Lecturer in the Department of Chemical Engineering at University College London.

Arvind Varma is the Arthur J. Schmitt Professor in the Department of Chemical Engineering at the University of Notre Dame.
Catalyst Design

OPTIMAL DISTRIBUTION OF CATALYST IN PELLETS, REACTORS, AND MEMBRANES

Massimo Morbidelli
ETH, Zurich

Asterios Gavriilidis
University College London

Arvind Varma
University of Notre Dame
Contents

Preface
page xiii

1 **Introduction**
1.1 Importance of Catalysis
1.2 Nonuniform Catalyst Distributions
1.3 Overview of Book Contents

2 **Optimization of the Catalyst Distribution in a Single Pellet**
2.1 The Case of a Single Reaction
2.1.1 Isothermal Conditions
2.1.2 Nonisothermal Conditions
2.1.3 Arbitrary Kinetics with External Transport Resistances
2.1.4 Dynamic Behavior
2.2 Multiple Reactions
2.2.1 Isothermal Conditions
2.2.2 Nonisothermal Conditions

2.3 The General Case of a Complex Reaction System
2.3.1 An Illustrative Example

2.4 Catalyst Dispersion Considerations
2.4.1 Factors Affecting Catalyst Dispersion

2.5 Optimal Distribution of Catalyst Loading
2.5.1 The Problem Formulation
2.5.2 A Single First-Order Isothermal Reaction
2.5.3 Linear Dependence between the Active Element Surface Area and Its Loading

2.5.4 First-Order Nonisothermal Reactions: Numerical Optimization

2.5.5 Multistep Optimal Loading Distribution

2.6 Experimental Studies
2.6.1 Oxidation Reactions
2.6.2 Hydrogenation Reactions
2.6.3 Fischer–Tropsch Synthesis
Contents

3 Optimization of the Catalyst Distribution in a Reactor

3.1 A Single Reaction
- Isothermal Conditions 69
- Nonisothermal Conditions 75
3.2 Multiple Reactions
- Isothermal Conditions 77
- Nonisothermal Conditions 79
3.3 Experimental Studies
- Propane and CO Oxidation 83
- Catalytic Incineration of Volatile Organic Compounds 85

4 Studies Involving Catalyst Deactivation

4.1 Nonselective Poisoning
4.2 Selective Poisoning
4.3 Experimental Studies
- Methanation 91
- Hydrogenation 92
- NO Reduction 94

5 Membrane Reactors

5.1 Membrane Reactors with Nonuniform Catalyst Distribution
5.2 Optimal Catalyst Distribution in Pellets for an Inert Membrane Reactor 100
5.3 Optimal Catalyst Distribution in a Catalytic Membrane Reactor 100
5.4 Experimental Studies
- Dehydrogenation Reactions 102
- Preparation of Catalytic Membranes 105

6 Special Topics of Commercial Importance

6.1 Automotive Exhaust Catalysts
- Design of Layered Catalysts 111
- Nonuniform Axial Catalyst Distribution 113
6.2 Hydrotreating Catalysts 115
6.3 Composite Zeolite Catalysts 119
6.4 Immobilized Biocatalysts 121
6.5 Functionalized Polymer Resins 124
- Preparation of Nonuniformly Functionalized Resin Particles 124
- Applications to Reacting Systems 126

7 Preparation of Pellets with Nonuniform Distribution of Catalyst

7.1 Adsorption on Powders
- Adsorption Isotherm Models 132
- Effect of Impregnation Variables on Adsorption 135
- Solution pH and Nature of Support 135
- Surface Heterogeneity 138
- Ionic Strength 140
- Precursor Speciation 140
- Comimpregnants 142
- Nature of the Solvent 144
- Surface Ionization Models 144
- Constant-Capacitance Model 145
Contents

7.1.3.b Diffuse-Layer Model 146
7.1.3.c Basic Stern Model 147
7.1.3.d Triple-Layer Model 147
7.1.3.e Four-Layer model 149
7.2 Simultaneous Diffusion and Adsorption in Pellets 149
 7.2.1 Theoretical Studies 150
 7.2.1.a Dry Impregnation 150
 7.2.1.b Wet Impregnation 153
 7.2.1.c Effects of Electrokinetic and Ionic Dissociation Phenomena 156
 7.2.1.d Effect of Drying Conditions 156
 7.2.2 Experimental Studies 158
 7.2.2.a Single-Component Impregnation 159
 7.2.2.b Multicomponent Impregnation 161
 7.2.2.c Effects of Drying 165
 7.2.2.d Determination of Catalyst Distribution 169
 7.2.3 Comparison of Model Calculations with Experimental Studies 169
 7.2.3.a Dry Impregnation 169
 7.2.3.b Wet Impregnation 171

Appendix A: Application of the Maximum Principle for Optimization of a Catalyst Distribution 181
Appendix B: Optimal Catalyst Distribution in Pellets for an Inert Membrane Reactor: Problem Formulation 188
 B.1 The Mass and Energy Balance Equations 188
 B.2 The Performance Indexes 191
 B.3 Development of the Hamiltonian 192
Notation 195
References 201
Author Index 221
Subject Index 225
Preface

Heterogeneous catalysis is used widely in chemical, refinery and pollution-control processes. Current worldwide catalyst usage is about 10 billion dollars annually, with ca. 3% annual growth rates. While these numbers are impressive, the economic importance of catalysis is far greater since about $200–$1,000 worth of products are manufactured for every $1 worth of catalyst consumed. Further, a vast majority of pollution-control devices, such as catalytic converters for automobiles, are based on catalysis. Thus, heterogeneous catalysis is critically important for the economic and environmental welfare of society.

In most applications, the catalyst is deposited on a high surface area support of pellet or monolith form. The reactants diffuse from the bulk fluid, within the porous network of the support, react at the active catalytic site, and the products diffuse out. The transport resistance of the porous support alters the concentrations of chemical species at the catalyst site, as compared to the bulk fluid. Similarly, owing to heat effects of reaction, temperature gradients also develop between the bulk fluid and the catalyst. The consequence of these concentration and temperature gradients is that reactions occur at different rates, depending on position of the catalyst site within the porous support. In this context, since the catalytic material is often the most expensive component of the catalyst-support structure, the question naturally arises as to how should it be distributed within the support so that the catalyst performance is optimized? This book addresses this question, both theoretically and experimentally, for supported catalysts used in pellets, reactors and membranes.

In Chapter 2, optimization of catalyst distribution in a single pellet is considered, under both isothermal and nonisothermal conditions. Both single and multiple reaction systems following arbitrary kinetics are discussed. Chapter 3 deals with optimization of catalyst distribution in pellets comprising a fixed-bed reactor, while systems involving catalyst deactivation are addressed in Chapter 4. In Chapter 5, the effect of catalyst distribution on the performance of inorganic membrane reactors is presented, where the catalyst is located either in pellets packed inside an inert tubular membrane or within the membrane itself. Issues related to catalysts of significant commercial importance, including automotive, hydrotreating,
composite zeolite, biological, and functionalized polymer resin types, are ad-
dressed in Chapter 6. The final Chapter 7 considers catalyst preparation by im-
pregnation techniques, where the effects of adsorption, diffusion and drying on
obtaining desired nonuniform catalyst distributions within supports are discussed.
This book should appeal to all those who are interested in design, preparation and
utilization of supported catalysts, including chemical and environmental engineers
and chemists. It should also provide a rich source of interesting mathematical prob-
lems for applied mathematicians. Finally, we hope that industrial practitioners will
find the concepts and results described in this book to be useful for their work.

This book can be used either as text for a senior-graduate level specialized
course, or as a supplementary text for existing courses in reaction engineering,
industrial chemistry or applied mathematics. It can also be used as a reference for
industrial applications.

We thank our departmental colleagues for maintaining an atmosphere con-
ducive to learning. We also thank our families for their encouragement and sup-
port, which made this writing possible.

Massimo Morbidelli
Asterios Gavrilidis
Arvind Varma