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2.0 CLASSICAL MECHANICS

2.1 FUNDAMENTAL TECHNIQUES
2.1.1 The Virial Theorem

The equation of motion of a system can be written in the form

Ty

-p =0. (2.1)
We are interested in the quantity
= Z POF. (2.2)
i
Differentiating this expression gives
=AMy pm = mid+y A, (2.3)
i i i i
From Equation 2.1 this reduces to

=Ty R (2.4)

Averaging over a period of time we obtain

—J-—dt—— G(1) - G(0)] = <Z Fcr> (2.5)

If the motion is periodic, withi = period,then theneft handside of Equation
2.5 is zero and we see that

(2.6)
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2.1.2 D'Alembert's Principle

From Equation 2.1 ifollows that the virtualwork done bythis system is also
zero,

S (R -a)wr =0. @7

The totalforce will be a combination of externally applied foreesl internal
constraints,

R=FR+f, (2.8)
so that Equation 2.8 reduces to

S (Fe-p)wr -y f @ =o. (2.9)

i
If we restrict our attention to rigid bodies and other systems for which the

forces of constraint do no work then we conclude that the condition for
equilibrium of a system is given by D'Alemberts principle which states

S (F*-p)w@r =0, (2.10)

2.1.3 Lagrange's Equation

If i; is a function of independent variablgsthen
5 = Zﬁaq- (2.11)
i j aqj j

Dropping the superscrip&™ for convenience, the first term from Equation 2.10
is

S A=Y RS = Y Q. (212)
i .



where q is the generalized force. The second term in Equation 2.10 is

mer—zm?mr Zmr 2 eSqJ

By definition

and

Similarly
. ar . ari
Vi = Zaquk+0t
so it follows that

o _on

Using Equations 2.15 and 2.17 in Equation 2.14 we find that

S mien =3 |5 (mv ‘WJ my G |,
1
i 0q; i oq 0q;

Equations 2.12 and 2.18 are combined to give

Fafa e i) oo

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

, (2.19)



or

df ot ) o B
Z([a[a}‘a}‘@}éq] =0. (2.20)

dor) ot )__

(E(aqjl aqj}—QJ. (2.21)

Consequently,

If £ =-0V, then

(2.22)

Equation 2.21 is equivalent to

d{oT) o _
(E[an E(T V)}—O. (2.23)

We defineL=T-V to be the Lagrangian. Wfis not a function of time then

(E(G__LJ_"_L}O, (2.24)

which is known as Lagrange's equation, candesl to determinthe equations
of motion. We also define

oL
=, 2.25
Pj 2, (2.25)

to be the canonical, or conjugate, momentum. If the Lagrardpas not

contain a given coordinatqj then thecoordinate is said to beyclic or
ignorable.



2.1.3.1 The Two Body Central Force Problem
As an example of the application of Lagrange's equation, consilestean of

two mass pointsy andm, subject to annteraction potentiaV, whereV is any
function of the vector between the particles. The kinetic energy is

1 2,1
=§mlE2 + En@g. (2.26)

The kineticenergycan also be written as the kinegicergy ofthe center of
mass plus the kinetienergy abouthe center of mass. We defife= position
of the center of masandr =r; -r, = vector betweem; andm,. The kinetic

energy of the center of mass is given by
_1 =
Tom =2 (M +my) R (2.27)

Relative to the center of mass, the positiompandm, are given by

_ommy
Q= r, (2.28)
Lomp+m

and
o_oom
r, = r. (2.29)
2 m+my

Therefore, the kinetic energy about the center of mass is given by

ol o2 1 o 1 mmy ) oo
T—Zerl +2mzr2 = Z(WH_HQJr . (2.30)

Consequently, the Lagrangian is

L=%(rm+”h) R"+%(%J P2 ov(rr,...). (2.31)

We see immediatelthat becausehe potential ionly a function otthe vector
betweenthe particles the conjugate momentunmRpf(the momentum of the
center of mass), is constarithat is, themotion of the center of mass has no



effect onthe motionaboutthe center of mass. Thadso impliesthat therewill
be no out of plane motion.
2.1.3.2 The Inverse Square Law of Forces

WhenV is a function ofr only, as isthe case for gravitational or electrostatic
forces, Equation 2.31 may be expressed in polar coordinates as

L=%u(r‘2+r262)—v (). (2.32)

Note that we have chosen to ignore the term describing the motion of the center
of mass since ihas noeffect onother parameters and vaave introduced the
definition

_ mm
p=—=2-2_ (2.33)
m +m

wherey is termed the reduced mass. The equations of moticiownd from
Lagrange's equation, (Equation 2.24). For the varigbl® we have

d(aoL) oL _d, .
—| — |——=—(ur8) =0, 2.34
dt(aeiJ o6, ar® (239
while forq =r we have
d{oL) oL .. A
— | = |-==uF-uré*+—=0. 2.35
dt(ar) o  HTHE TG (2.35)

For many problems of interest, such as orbital mechamgs> m, and
U — m,. The physical consequence is that the smaller panigles subjected
to the largest perturbation in its motion. From this pdartvard we will
follow the usual conventioand replace p with the symbol m with the
understanding that it refers to the motion of the smallemn,aindm, about the
center of mass.

Equation 2.34 is the statement of conservation of angular momentum. That is,

| =mr29, (2.36)



is a constant. Equation 2.36 can be rewritten in the form

ldt = mr2do, (2.37)
which implies
d | d
a. ' c 2.38
dt mr2 do ( )
and
d> 1 d{ I d
— = —— . 2.39
dt? mr? de(mrzde) (2:39)

The area swept out by a moving body is given by
1
A=§r(r6). (2.40)
It follows that

|
dt  mr2 do| 2 2

Becauseangular momentum igonserveddA/dt is also constant. This is
Kepler's Second Lawhich stateghat the planetsweepout equal areas in
equal times.

From the definition of, equation 2.35 becomes

m'r'—_:——' (242)

2
mr = —i[v +1'—]. (2.43)



The particle moves in an effective potential given by

2
Vet =| V+ . (2.44)
¢ [ 2mr2]
Equation 2.43 reduces to
dv,
mi = ——or (2.45)
dr
thus
dv, dv,
mit = 3(1 rﬂ:—ﬁ—eﬁ =-—, (2.46)
dt\ 2 dt dr dt
Consequently,
di1_ .
—| =mi© +V, =0, 2.47
dt(Z eff) ( )

which is the statemenhbat energy is conserved. Fratiis equation, welso
find that

or simply

dt = dr : (2.49)

2
2 E-V- ! >
m 2mr

Substituting the relation betwedhanddd, Equation 2.37, and we find that

de = 1 ar (2.50)
\/ZmE_ 2mv _ 1 r?
2
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Consider thecase wherthe potential is of the forid = _k =-ku. Equation
r

2.50 becomes

do = 1 du. (2.51)
\/ZmE 2mk =
——+——u-u
122
Integrating this expression gives
2mk _ﬁl
o T 2 17 mkr
0 —6; =arcsin = arcsi . (2.52)
gmE _ [ 2mk)’ 2E1%
12 |2 mk?
Inverting this expression gives
2
L_omkly | 1+ 2E Lsin(e, -6, )L (2.53)
ro? mk?

This is usually written in the form

1_mkl)esin(o; -6;)], (2.54)

ro|
2
e:1/1+2E|2 . (2.55)
mk

This is the equatiofor a conic sectiohaving severatlasses of solutions as
shown below.

where

1) Ife>1, anckE > 0, the orbit is a hyperbola.

2) Ife=1, andE = 0, the orbit is a parabola.



3.) Ife<1, andE < 0, the orbit is an ellipse.

mk? L
4) Ife=0, andE = 5 the orbit is a circle.
2

2.2 VARIATIONAL TECHNIQUES
2.2.1 The Calculus of Variations

Consider a functionf (y, y, x) defined on gpathy=y(x) betweenx; and x,
wherey = dy/ dx We wish to find a particular payix) such that the integral

J= j f(y, ¥, %) dx (2.56)

X1

has a stationary value relative to paths differing infinitesimally from the correct
functiony(x). SinceJ must have a stationary value the correcpathrelative

to any neighboringath, the variation must keero relative to somparticular

set of neighboring paths. Such a set of paths can be denoted by

y(x,a) = y(x0) +an(x), (2.57)

wherey(x, 0) is the correct path amgx,) —n(x,) = 0. Explicitly,

I@) = [ F(y(xa), ¥ xa), 3 dx (2.58)

X1
A necessary condition for a stationary point is

)

= 0. (2.59)

a=0

From Equation 2.58



I _ J[ﬂﬂﬂﬂ]dx. (2.60)

da dy 0a 0y da
X1
It is easily seen that
2
o9y ot oy (2.61)
dy da 0y oxda

so that

o S L TR KT AL PO
ayaa ayaxaa ay da dx\ dy Joa '

X1

From theboundary conditionghe first term on theight handside vanishes
and Equation 2.60 reduces to

X
@ _ffa_daey, (269
da dy dxay joa

1

The fundamental lemma of the calculus of variations states that if
2
J-M(x)r](x) dx=0, (2.64)
X1

for all n(x) continuous through the second derivatibeen M(x) must be
identically zero on the interval. Thudss stationary only if

i——(afJ 0. (2.65)
oy dx{ oy

If fis a function of many independent variables then

o o =0. (2.66)
ay, dx ay



2.2.2 Hamilton's Principle
Hamilton's principle statethat themotion, in configuration space, ofsgstem
where all non-constrainingforces are derivable from a generalized scalar

potentialthatmay be a function of coordinates, velocit@sd time issuchthat
the integral

t
| =J-Ldt, (2.67)
t

has a stationary value for the correct path of the motion. That is,
t
3l =6J‘ Ldt =0. (2.68)
&1
The integrall is termed the actiorand Hamilton's principle statethat the

variation inl is zero. In other wordshe action is minimized. By comparison
with Equation 2.65 it follows that

= =T -y, (2.69)

which is Lagrange's equation.

2.2.3 Lagrange Multipliers
D'Alemberts principleand the resultinfporm of Lagrange's equation, assume

no constraint forces. Consider a treatment when the equations of constraint can
be put in the form

> adgc+ g =0, (2.70)
k

where thea, anda,'s may be functions d, t For virtual displacements it
follows that



Za,kéqk =0. (2.71)
K
If this is true, then it must also follow that

A Za{kéq( =0, (2.72)
k

where the\| are undeterminedoefficients called.agrange multipliers. From
Equations 2.63, 2.6&nd 2.69 it iseenthatHamilton's principle is equivalent
to

oL d oL
_—— =0. 2.73
j;[aqk a3, o (2.73)

By the same process, Equation 2.72 is equivalent to
JZAlqkaq(dtzo. (2.74)
k]

We combine these two relations to obtain

n
oL d oL
—  —— —— 4+ N\ A 0q, dt=0. 2.75
J-kzzl(aqk at 2, IZlaik}Qk (2.75)

The dq, 's are not necessarily independent, but because the values\¢é tre
undetermined we may choose them such that

df oL oL
—|—|-=—=) A . 2.76
dt(aqu 2 IZ 134K (2.76)

Thes equations, together with Equation 2.70, camudesxl to determine the
equations of motions for systems with constraining forces.



Example 2.1

Consider the case of a ladder of
length L that is inclined against a 0,
frictionless wall and floor as K|
shown atright. Find the equations |
of motion.

The position of the center of mass of the ladded its orientation, can be
described withihe variablex, y, 6. The motion of the ladder is constrained by
the wall and floor. We have the two constraints

= Lsine, (2.77)
2
and
L
=—cos. (2.78)
2
From Equation 2.60 it follows that these give the constraining relations
L
)\l|:dX—ECOSGde:| =0, (279)
and
L .
)\Z[dy+ES|n9d6} =0, (280)
respectively. By inspection, the kinetic energy is
=1n{e+y2)+1 B2 (2.81)
2 2
wherel =1—12mL2. Similarly, the potential energy is

V = mgy, (2.82)



so that the Lagrangian is

L=%m(>‘<2+ y2)+m2—|;1262—mgy.

From Equations 2.76, 2.79, and 2.80 the equations of motion are

mX= )\l,
my+ mg=A,,

and

2
ML G = [ Lcosd |+2,[ < sid |,
24 2 2

respectively. From Equations 2.77 and 2.78 we see that
%= L singo? + L cosoB,
2 2
and
y= L cos06? — L sined.
2 2
From Equations 2.84 and 2.87 we see that
A= rr{—Lsineé2 +£coseé),
2 2

while from Equation 2.85 and 2.88 we see that

Ao = W‘(LCOSGQZ L sinod+ g).
2 2

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

When these are combined with Equation 2.86 and simplified we obtain

%é = (—sineé2 + coseé)(cose) —( co$6? - singh + g)(sine), (2.91)



which is equivalent to

—géz ~25in6 coHd? - gsind. (2.92)

2.2 RIGID BODY MOTION
2.2.1 Rotations

A rigid body in space needs 6 independent generalized coordinates to specify its
configuration. For example, 3 coordinates meeded tspecifythe location of

the center of mass relative someexternal axesnd 3 otheroordinates are
needed tespecifythe orientation of thbody relative to a coordinateystem
parallel to the external axes. The orientationsjgcified bystating the
direction cosine ofhe body axes relative to the external axeEhat is, if the

prime denotes body axes then

R N (2.93)
or
M=o o, ok, (2.94)
or
= cod" ) +cod ™} +cod K K. (2.95)
Similarly,
X'= RX, (2.96)
where
(o @y ag
R=| B By B3| (2.97)

Y1 Y2 VY3



Because

%=1, (2.98)
we have
RR =1, (2.99)
or
aZ+p2+y? =1, (2.100)
forl=1, 2, 3. Thatis,
X'=3a %, (2.101)
and
X'%'=g & ¥ K = KX (2.102)

Thereforea o = 1, ifj =k, oy = 0 otherwise. In two dimensions

(2.103)

G- cosp  sinp
“| -sing cosp)’

2.2.1.1 General Properties of Rotations

If G=AF and we transform to anew coordinate systethen
BG = BAF = BABBF we saythat BAB! is the form of A in the new
coordinate system.A'= BAB?! defines a similarity transformation. Bome
coordinate system

cosp simp O
A'=| -sing cosp 0], (2.104)
0 0 1

so thatTrA=1+2cogp. This property holds true in all coordinate systems.



Example 2.2

Find the axis of rotation and compute the angle of rotation for

3 J6 1
4 4 4
g=| Y6 1 6
4 2 40
1 V6 3
4 4 4
It can easily be verifiedhat RR" = T, so R satisfies the requirements of a

rotation matrix. The axis of rotation can thefined as the directiothat any

vector which remains unchanged Bypoints. That is, ik = RX, thenX is the
axis of rotation. We must solve

which gives the equations

X2 =(X1 X2 Xs)'

3 6 1
444X
V6 1 Vet
4 2 4
1 _Je 3|\
4 4 4

3x + \/Exz + X3 = 4X,

—V6X1 + 2% +\/%x3 = 4x,,

X1 —V6Xy + 3X3= 4Xa3.

(2.105)

(2.106)
(2.107)

(2.108)

These three equations can dmved to showthat x; = X3 andx, = 0. The

normalized axis of rotation is therefo%(l, 0,1). By examination, TR = 1

+ 2 cosO = 2, so thab = 60°.



2.2.2.2 The Euler Angles

Ratherthanspecifythe 9 independent elements of the rotation matrix we may
describethe orientation in terms of 3 Euler angles. For example, rotate the
initial system of axesxyz by an angle} counterclockwise abouwt This
definesthe {n¢ axes. Next rotate abotite { axis by an anglé® in the
counterclockwise direction. This defines the &'n'¢' axes. Finally rotate
counterclockwise by aangle@ aboutthe {' axes. Thiglefinesthe §''¢’ axes.

In matrix form

%'= AX, (2.109)
where
A=BCD, (2.110)
and
cosy sinp O
B=|-sing cosp O], (2.111)
0 0 1
1 0 0
C=|0 cosH sib |, (2.112)
0 -sin® coH
cosp simp O
D=|-sing cogp 0. (2.113)
0 0 1

2.2.2.3 The Cayley-Klein Parameters
Consider a general linear transformation in 2 dimensional space
U'=au+pv, (2.114)

and



V'= VO +3V, (2.115)

where the transformation matrix is

5= P 2.116
Q_[y 5) (2116)

Notethata, B, y, 3 may be complex. If weequireQQ' =T and |(§| =+1 we
find thatf = —-y* and d = a*, that is

= [« B
Q= B+ o) (2.117)
Consider a matrix of the form

;5:( z X_iy} (2.118)

such that
pr= Q p (3 . (2.119)

The hermitianpropertyand thetrace of a matrix arenaffected by similarity
transformations. Consequently; is of the form

;3-:( z X'_iy) (2.120)

XI + Iyl _ Zl

If we let x, = x+iy andx_ = x— iy, then

. zZ x' a BYz xYYo -B
p'= R . (2.121)
X' Z Yy OAX, —-zA-y «a
In this way, we may define a 8lement rotation matrix in terms ofayley-
Klein parameters.



2.2.2 The Rate of Change of a Vector
The rate of change ofwector as seen by an observerthre body system of
axes will differ fromthe corresponding change as seen bgleerver fixed in

space. If thebody axes are rotating wittangular velocity w the general
solution is

(ﬁ) =(£) +DXF. (2.122)
dt space dt body

We have
Vg =V +QXT, (2.123)

and a successive application of Equation 2.122 gives

aszab+2(a)va)+a)x(a)x*r)+‘z—‘fxr. (2.124)
If the angular velocity of the body is constant Newton's law is
F=ma = mg+2 ndx )+ mx (@x ). (2.125)

To an observer irthe rotatingsystem itappears as though the particle is
moving under an effective force

Fetf =May= F-2m(@x V)~ nddx (@x 7). (2.126)

The seondterm on the right hanslide is called the Corioliforceand the last
term on the right hand side is called the centrifugal force.



Example 2.3

Show that if a particle is thrown ugertically with initial speed y and reached

a height h, that it will experiment a Coriolis deflection that is opposite in
direction, and four times greater in magnitude, than the deflectiovoitld
experience if it were dropped at rest from the same maximum height.

The rate of rotation of thé&arth, W
w, is identical for each scenario. Z
The difference is the initial

velocity and position of the Y
particle. From equation 2.126, the 8

Coriolis force is $®xV,).
Defining the coordinate axes as X A
shown, we havew, =w, =0 and

W, =W, while v, =0,
vy =vcosd, andv, = vsing.
As a result,
~2(@x V) = +2wvcosd)i + A 0+ 4 Ok, (2.127)
As a result, the acceleration due to the Coriolis force is simply
X = 2wvcosh. (2.128)
A body falling under the influence of gravity satisfies the condition

v=v(0)- gt, (2.129)

where v(0) is defined as theelocity attime t = 0. Substituting this into
Equation 2.128 and integrating gives

x:zmcose[v(o)t—% gtz] (2.130)
Integrating a second time gives

X = 2mcoseE v(0)t? —% gt3] (2.131)



To solvethe problem ahand, welet t be the time it takefor the particle to
complete the trip. The position of the particle at any time is given by

h(t) = h(0) + \/(O)t—% ot, (2.132)

In one case, the particle starts at re@) = 0, at heighh. From the definition
of the problem, it can be setmat the time required wompletethe drop to the
ground is

t) = |—=—2, (2.133)
Consequently, the deflection when dropped from rest at hieiight
3 3
1 g(V—OJ } = —(E)(EJ gw co$. (2.134)
619 3N 9

If instead, we let, be the time it takes to fall from height we havev; = v,
andt, = 2t;. The deflection is

2 3 3
Vv
X =2mcose[%vo(2iJ 1 g(ﬁJ }: +(g)—gm co® . (2.135)

X1 = 2wcoH

g 67\ 9 g

Thus, thedeflection when thrown frorthe ground up ispposite in direction,
andfour times greater in magnitudéhan thendeflection when dropped from
rest.

2.2.3 The Rigid Body Equations of Motion

We have previously sedhat thetotal kinetic energy of aigid body may be
expressed abhe sum of the kinetienergy ofthe entirebody as ifconcentrated
at the center of mass, plus the kinetiergy ofthe motionaboutthe center of
mass. If a rigidbody moveswith one point stationary, thengular momentum
about the center of mass is



L=m (§x¥).

Sincer, is a fixed vector in the body

Vi =WXF.

Thus

C=m (§ x(@xF))=m (@ ~F (i @)).

Thex-component is

Ly = 00,m; (12 = %?) —wym X y —w, M XiZ

or
Ly = oo+l o g+l g0 5

We define

| e :Jp(f)(r 28 1 —X %y )dV,

\"

to be the inertia tensor so that

L=T.

The kinetic energy of motion about a point is
1 1 ~ -
T=§nﬂf=§dewXN,

or

(2.136)

(2.137)

(2.138)

(2.139)

(2.140)

(2.141)

(2.142)

(2.143)

(2.144)



The moment of inertiaj , about
some givenaxis is related to the

a b
moment about aparallel axis
through the center of mass. Let
the vector fromthe origin to the
center of mass b& andlet the
radii vectors fromthe origin and
the center of mass to thdi

particle bef; andFf;' respectively.
That is

f=R+7" (2.145)
The moment of inertial about axass
la=m (F x A)> =m [(R+T")x AF, (2.146)
or
la= MRxM)Z+m (T +H? +2m(ReMErxm.  (2.147)

The last term i2(Rx f)[{hx m7"), but Z mt'=0andi, =m, (ﬁ'xﬁ)2 so
i
iy =Tp+M R xn)2. (2.148)

2.2.3.1 The Euler Equations and Torque-Free Motion
By definition
db) _(db) L exi=R. (2.149)
dt dt
5 b
In the body system, using = |j; wj, we find

do;
|id—t|+€ijk(.oj(.0k|k :Ni' (2150)



The Euler equations are

Il(.k)l—(k)z(k)s(l 2—| 3)=N 1 (2151)
Iz(;)z—(k)é.k)l(l 3-' 1)=N ) (2152)
|3(.A)3—(A)1(02 (I 1—| 2) =N 3 (2153)

The principle axes of a system are those where the ténisdiagonal. If this
is the case,

2 2 2

L L
T:li+£_2+l_3_ (2.154)

21; 21, 213

BecauseT is constant, the relatiotiefines an ellipsoid fixed ithe body axes.
Becausengular momentum isonservedl must be on a fixed sphere defined
by

L2=12+12+12. (2.155)

For the giveninitial conditions, kineticenergyand angulamomentum, the

path of L is constrained to be the intersection of the sphe?e,and the
ellipsoid, T. If we have &odysymmetrical abouthe z axis so that; = |, the
Euler equations are, in the absence of torque's,

Ild)lz(l 1_| 3) (1)3(01, (2156)
Izd)zz_(ll_l 3) (1)3(01, (2157)
| 3005 =0. (2.158)

We havew; = constant, and
Wy = -Qw,, Wy =Qwy, 2.159
1 2, W2 1

where

Q= '3|_'1m3. (2.160)
1



Thus,
d)l = _Q(A)l, (2161)

which has solutions; = AcosQt andw, = AsinQt . Hence, the total angular

velocity isconstant in magnitude bptecesses with frequen€y aboutthe (-
axis. We may solve fok andw; by noting that

1 1, 5

T=21,A% += 1,02, 2.162
X 5 130 ( )

and

2 _ 1272 2. .2
L% =12A%+1 2002, (2.163)

2.2.3.2 The Heavy Symmetrical Top

Consider a heavy towiith a symmetry axis taken to be the-axis of the
coordinate system fixed ithe body asshown. The 3 Euler angles af:=
inclination of thezaxis from the verticalp = azimuth of thetop about the

vertical,and ¢ = rotation angle of the topbout itsown z-axis. The kinetic
energy is

1 1
T=§|l(mf+m§)+§|3m§, (2.164)
or
1 R ) 1 .
T=§I1(6 +@?sin 6)+§I3(¢+(pcose)2. (2.165)

The potential energy is
V = mglcoso, (2.166)

so that the Lagrangian is given by



L =%|1(92 +(;ozsin26)+%l3 () +@cosd ¥ -mgl co®. (2.167)

We have
=0 L+ peosB)= 1 gog=l (2.168)
Py U 3 ¢ wz=l4a, .
oL ) .
p(pza—(b:(llsm 0+15cos 0 Yp+lgpcosB=Ip, (2.169)
and

1, 20 2. 1
E=T+V=2 |1(92+<,ozsm29)+E 1205 + Mgl cod.  (2.170)

Combining these first two expressions gives

- b-acosb
= (2.171)
sin®@

and

| —
W :La—cosew. (2.172)
I3 sin“ 0
2.3 OSCILLATORY MOTION
2.3.1 Oscillations
Consider a systerthat is subjected to gotentialthat isonly a function of

coordinates. If we expand the coordinaggsibouttheir equilibriumposition
according to

0 =Go *Ni (2.173)

and then perform a Taylor series expansion on the potential we obtain



ninj +.-- (2.174)

(o]

V(g)=V( qg{%’_}

1f v
i +§(a 0 J
o GioG;
The first term on the right hand side may be redefined to be zero by shifting the
zero potential to be the equilibrium value. Similarly, if the generafiaexs
are zero the sendterm is also zero. As a result, the potential can be
approximated by the matrix relation

1[ v
V(g)==< nin; - (2.175)
2(6q,aqj JO t
Similarly, we can define
T .1 .. 1_..
Tzznﬁqq =3 mn 1 —EijTlﬂl’j] , (2.176)
so that the Lagrangian is
|
L= (T = oy ). (2.177)
The equations of motion are given by
T nj +\f nj =0. (2.178)

If we try a solution of the form; = Ca exp'i‘*’t we find that
Vi g -w® T g =0, (2.179)
which is equivalent to

|V—(o2T |=o. (2.180)

Example 2.4



force constants as shown. Find the
frequencies of the normal modes of > X
oscillation.

Two particles move in one
. . . . m, m,
dimension at the junction of three
springs as shown. The springs all
have unstretched length a and
— X

We define the coordinateg andx, to describethe displacement of the two
blocks, relative to the left attachment point. In these coordinates

1 2.1
T :mef +2 ms. (2.181)

Expandingabout equilibrium, we define;x= a +n4, X, = 2a +n,. Equation
2.181 is equivalent to

1 .2_

1 ., 1.,
T—Emnl+§ m]z—a Fnin; . (2.182)
where
m O
Ti=lo ) (2.183)
Similarly,
V:%k(xl—a)2+%3l{ %— %- 5}2% K a x?° (2.184)
or
1
v =§Vij nn;j. (2.185)
with

2
Vj = v | (2.186)

a




By examination

ov
_:k —_ _3 —_ — ,
o (q-a)-3K%-%-3
2
a—\Z/:k+3k:4k,
axl
and
N - ak(xg-x-a- H2a ¥),
0Xo
2
a—\2/:3k+k:4k.
6x2

Likewise, the cross terms are

2 2
o _ 0N _
0X10X2 6X26X1

so that
v = 4k -3k
P -3k 4k )
The secular equation is

‘v - mZT‘ = -0,

3k 4k-w?

4k-w?m -3k ﬂl

which reduces to
2
(4k -w?m)” - 9k= rfw* - 8knw?+7 R= Q

From the quadratic equation, this has solutions

(2.187)

(2.188)

(2.189)

(2.190)

(2.191)

(2.192)

(2.193)

(2.194)



Wy =,[—, (2.195)
m
and
Wy = 7—k. (2.196)
m

2.4 HAMILTON'S EQUATIONS
2.4.1 Legendre Transformations and Hamilton's Equations of Motion
Consider a functiofiof two variables such that

df = udx+ vdy (2.197)

whereu =i andv= g_f We wish to change from the variablesy to the

0X y
variablesu, y. We define a function

g=f-ux (2.198)
We have
dg=df - dux- udx vdy xdu (2.199)
so thatx = —% andv = g—s This is an example of a Legendre transformation.

It is frequently used in thermodynamics.

Recall that Lagrange's equations are

droLy_ ot _q (2.200)
dti dg; ; Jq

whereL = L(q;,q ,t), and the conjugate momenta are



NCH

. (2.201)
aq;

P

We can transform from the variableg (G ,.t) to the variablescf p t, by the
use of

H(g.n.)=gp- LWa @ (2.202)
whereH is called the Hamiltonian. We have

oH oH oH
dH=—dg +—dp +—dt. 2.203
oq; 4 op, H ot ( )

However, from the definition

oL oL oL
dH=pdg + g dp——dg ——dg ——dt, 2.204
paq + qap 3, G 3 G at ( )
or simply
oL oL
dH = ¢ dp ——dqg ——dt. 2.205
G ap 3, q ot ( )

Comparing the two expressions fii we obtain Hamilton's equations

oH oL
M-y, (2.206)
aq; 0q;
oH
— =0, 2.207
on Gi ( )
oH_ o (2.208)
ot ot

If the equations defining the generalized coordinates don't depend on time
explicitly, and if the forces are derivable from a conservative potantithlen

H=T+V=E. (2.209)



If we define a colummatrix fj with 2n elements sudhatn; =¢, Njz, = B,
fori<n, then

(a_HJza_H, (2.210)
on; ) 0qg
and
( OH J:a_H_ (2.211)
ONi+n /OB

- (0 1
If we defined = (1 OJ' then Hamilton's equations may be written in the form

jaH

—. 2.212
o (2.212)

ﬁ =
This is called symplectic notation.

Example 2.5

The Lagrangian for a simple spring is given by
=Ime-Lwe.
2 2

Find the Hamiltonian and the equations of motion using the Hamiltonian
formulation. ldentify any conserved quantities.

From the definition of; we have

oL
=— =mx. 2.213
Px = 3% (2.213)

From the definition of the Hamiltonian, equation 2.227, we see that

H = )‘((mx)—% mix +% 3 (2.214)



or simply

H=_1p2

- p2 +% k2. (2.215)

From Hamilton's equations we have

oH
—=kx=-p,, (2.216)
0q;
a_Hzﬁzx, (2.217)
op m
oH
—=0 2.218
m ( )

The first equation is the equation of motion in one dimension,

mX+ kx=0, (2.219)
the seond equation ishe definition of momentunand the laseéquation is the
statement of conservation of energy.
2.5.2 Canonical Transformations
If a generalized coordinatg has constantonjugate momenta it is said to be
cyclic. If this is thecasethenp, = 0, which tells ughat the Hamiltonian is

independent of thas. If all coordinatesy; arecyclic the conjugate momenta
can be defined by, = a;. Consequently,

. _ OH
G = a =W, (2.220)
or
G =@ t+p . (2.221)

A problem is often easier &olve if wecan find asystem wher¢he number of
cyclic coordinates ismaximum. How do wetransform to thisset of



coordinates? We need a new set of coordir@te, whereQ = Q (q,p.1),
P=R(g,p.1). We requireQ;, P, to be canonical coordinates. Therefore,
some functiork = K(Q, R ,t) exists such that

' =6—K, (2.222)
oR
and
R = a—K. (2.223)
0Q

If Q, P, are canonical coordinatéeey mustsatisfy a modified Hamilton's
principle that can be put in the form

tp
5_[(RQ - K(Q, P, 9)dt=0, (2.224)

ty

because the old coordinates satisfy

t
6J(p,q ~H(q, p,H)dt=0. (2.225)

&1
Both requirements can be satisfied if we require a relation

Mpg-H=PQ- K+‘Z—T, (2.226)

where A = constant and- is any function of the phasgpace coordinates
continuous through the second derivativeA is related to a scale
transformation. I\ = 1 the relatiordefines a canonical transformation. The
functionF is termed the generating function.nialy be a function af;, p;, Q;,

P;, t and defines the transformation.

2.5.3 Symplectic Transformations and Poisson Brackets



Recall that Hamilton's equations can be written in the from

i=J a_|:|_ (2.227)
on
If we have a canonical transformation fram- & =&(n), then
. 0% .
i =—n;j. 2.228
& an| nj ( )
In matrix form,
£ = Mij, (2.229)
where M; =ﬁ. We have
i=miot (2.230)
also
0¢ .
G_H :a_Hi' (2.231)
arh an aﬂ.
and
oH_waH (2.232)
on 0¢
Consequently,
£=nmgmH -394 (2.233)
0¢ 0¢

MIM = 3. (2.234)



The Poisson bracket of a function is defined by

Vo= 2T . 2.235
[ Vles =g, an " on 00 (2259
We have
[A.A]pg = J. (2.236)
and
o 0B 0E_ g s
[E,E}PB o N - M3V = 3. (2.237)

In other wordsthe fundamentdPoisson bracketre invariant under canonical
transformations. We also have

du OJu ou ou
— =G t—p t—, 2.238
dat og ' op Mot (2.238)

or
du _ ou
- [u,H] g e (2.239)
Similarly,
G =[q,H]pg B =[R.H]pe (2.240)

2.6 CONTINUOUS SYSTEMS
2.6.1 The Transition from a Discrete to a Continuous System

Consider an infinitely long elastic rothat canundergo small longitudinal
vibrations. We approximate this by an infinite chain of equal mass points a
distancea apart andconnected by uniform massless springs having force
constraintk. The kinetic energy is



_1 -2
T=> .Z 2, (2.241)

wherem is the mass of each particd@dn, is the location of théth particle.
The potential energy is

1 2
V=§Zk(ni+l—ni) : (2.242)
We have
1 . 2
L=§iz[mn?—k(m+l—ni) It (2.249)
or
e [mo2  (Min—n )
L==Y a —n--ka /=1 |, 2.244
ZZ [an, ( " ) } (2.244)
The equations of motion are
m. _ Ni+1 ~Ni M~Mia
;ni ka( Iaz ')+ka( ! 2 )—O. (2.245)

We havem/a=p = mass/unit length. Hooke's law statiest theextension of a
rod/unit length is proportional to the force, i.e.

F=VYE, (2.246)

where § =(M) is the extension/unit length. Tlerce necessary to
a

stretch the string by an amouis

F=k(na-n)= ka[—”‘*la' L ) (2.247)

Consequentlyka = Y= Young's modulus. Note that



i =N _N(x*+a)-n(x  dn (2.248)
a a dx

asa - 0. Also asa - 0 the summatiooverthe particledecomes amtegral
and Equation 2.244 becomes

_1qf 2o dnY
L—ZJ-[W] Y(dx) }dx. (2.249)

The equation of motion is

d’n _d?n
H—'-Y—=0. (2.250)
dt?  dx?

This is awave equation withwave propagationvelocity v = \/z Equation
u

2.249 is said to define a Lagrangian density
2 2
- dn dn
L=y —1 =Y — 1. 2.251
) M) (2251

2.6.2 The Lagrangian Formulation

Consider a Lagrangian density

L= E(n,‘;—”%,x,t). (2.252)
X
Hamilton's principle is
2
3l = 6” Cdxdt =0. (2.253)
1

We choose value of such that

nixt;a)=n(x,t;0)+a&(xt), (2.254)



wheren(x,t;0) is the function that satisfies Hamilton's principle.
5 = (ﬂ) -0,
da a=0
where
J’J' aLan oL O(d_r]j oL a(dr]j _
an da 0( dnj dx (dr]j dt
i dx dt
This expression may be simplified as follows. First,
R d L 1o
n oan
t ——— dt,
.[ (dn) ( ) -[ dt dr] oa
y, |0 . t 0
dt dt
plus a boundary term that goes to zero. Also,
T |l d oL |[o
J-dx ( ﬂ) '[ o dx,
3 dnjyo dx| 5 dn ) |oa
e dx e dx
plus another boundary term that goes to zero. Therefore,
% 0 d oL d oL 0
”dth _L_E dL " dx dL (%) =0
SRR b

and

We have

(2.255)

(2.256)

(2.257)

(2.258)

(2.259)



d| oL d| oL oL _

- + - =

dt| .fdn dx dn) on

d — a —
(dx) (dt

(2.260)

Similarly for other Lagrangians.

2.6.3 Noether's Theorem
A formal description of the connectiobetweeninvariance orsymmetry

propertiesand conserved quantities is contained in Noether's theorem. We
consider transformations where

X = X = {0y, (2.261)
”p(xu) - ﬂp(ﬁ)= ﬂp(m)mp(ém), (2.262)

L(np5)mo O )op) = T () (%) % ). @.269)

We make three assumptions:
1.) 4-space is Euclidean,

2.) The Lagrangiandensity has thesame functional form after
transformation,

3.) The magnitude of the action integral is invariant under the
transformation.

From assumptions 2, 3 we have

[l sy o, )65, - [ Unpanp )y =0, (2269
' Q

Q

X, isa dummy variable, so Ier[1 - X, to obtain



[ el ()i (). )b = [ g ) ( ). ) e =0- (2:265)

o'

Under the transformations the first orddifference betweerthe integrals
consists of two parts, one is an integral deand the other is an integraver
Q' —-Q. For example, in one dimension,

b+&b b
J-[f (x)+6f(x)]dx—'|- f( %) dx
aroa b b+gb a+da
=J-6f(x)dx+ J [ £(X)+8f( %] dx j[ f 3+5 { ¥] dx(2.266)
a b a

To first order, the last two terms are

b+6b a+da

j f (x)dx— j f(X) dx=3 bi( B-3 af & (2.267)

b a

The difference between integrals is
b b q
Jéf (x)dx+ F(9Bf2 = J-[éf( 3 +(5xt (x))}dx (2.268)
X
b a

Consequently, for the Lagrangians we have

,['E(”"Xu)d)ii'_ﬁ-(ﬂ'&)%
- .”E(”"Xu)' C(n %, )Jd %, +_[ npx dg =0, (2.269)

o'

E['d Xv{[ Un'y,)- i, m)}*%(i(n.xp)éxu)} =0. (2.270)

To first order,



oL < oL =
—on, + ooy >
an, ° oony Y

C(n' )= C(n.x,) =

or

o) Cns) = 52 |

The invariance condition is

_[d"u d { oL Snp+E6xv}=O.

dx, | gy

We define
OX, =& Xy, ONp = €Wy,
because
and
N,

Np =Ny +E6X0"

we have

Sﬂp =& (l.Ier ~Npo Xro)-

Equation 2.305 reduces to

ar]p,v

(2.271)

(2.272)

(2.273)

(2.274)

(2.275)

(2.276)

(2.277)

d J[ oL - oL
[ E{(_nm - LéchXm ——’wrp}(dxu) =0. (2.278)



The result is Noether's theorem, which states that

d oL - oL
— -Ld Xig————W.,+=0. 2.279
ax, {[ oy Np,o VUJ ro Moy rp} ( )
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