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2.0  CLASSICAL MECHANICS

2.1  FUNDAMENTAL TECHNIQUES

2.1.1  The Virial Theorem

The equation of motion of a system can be written in the form
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From Equation 2.1 this reduces to
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Averaging over a period of time τ, we obtain
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If the motion is periodic, with τ = period, then then left hand side of Equation
2.5 is zero and we see that
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2.1.2  D'Alembert's Principle

From Equation 2.1 it follows that the virtual work done by this system is also
zero,
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The total force will be a combination of externally applied forces and internal
constraints,
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If we restrict our attention to rigid bodies and other systems for which the
forces of constraint do no work then we conclude that the condition for
equilibrium of a system is given by D'Alemberts principle which states
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2.1.3  Lagrange's Equation

If 
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ri  is a function of independent variables qi, then
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Dropping the superscript "a" for convenience, the first term from Equation 2.10
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where Qj is the generalized force.  The second term in Equation 2.10 is
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By definition
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and
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Similarly
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so it follows that
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Using Equations 2.15 and 2.17 in Equation 2.14 we find that
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Equations 2.12 and 2.18 are combined to give
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or
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Consequently,
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If F Vi i= −∇ , then
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Equation 2.21 is equivalent to
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We define L=T–V to be the Lagrangian.  If V is not a function of time then
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which is known as Lagrange's equation, can be used to determine the equations
of motion.  We also define

p
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to be the canonical, or conjugate, momentum.  If the Lagrangian does not
contain a given coordinate qj then the coordinate is said to be cyclic or
ignorable.



2.1.3.1  The Two Body Central Force Problem

As an example of the application of Lagrange's equation, consider a system of
two mass points m1 and m2 subject to an interaction potential V, where V is any
function of the vector between the particles.  The kinetic energy is
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The kinetic energy can also be written as the kinetic energy of the center of
mass plus the kinetic energy about the center of mass.  We define 
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Relative to the center of mass, the position of m1 and m2 are given by
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Therefore, the kinetic energy about the center of mass is given by
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Consequently, the Lagrangian is
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We see immediately that because the potential is only a function of the vector
between the particles the conjugate momentum of R, (the momentum of the
center of mass), is constant.  That is, the motion of the center of mass has no



effect on the motion about the center of mass.  This also implies that there will
be no out of plane motion.

2.1.3.2  The Inverse Square Law of Forces

When V is a function of r only, as is the case for gravitational or electrostatic
forces, Equation 2.31 may be expressed in polar coordinates as
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Note that we have chosen to ignore the term describing the motion of the center
of mass since it has no effect on other parameters and we have introduced the
definition
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where µ is termed the reduced mass.  The equations of motion are found from
Lagrange's equation, (Equation 2.24).  For the variable q = θ we have
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while for q = r we have
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For many problems of interest, such as orbital mechanics, m m1 2>>  and
µ → m2.  The physical consequence is that the smaller particle, m2, is subjected
to the largest perturbation in its motion.  From this point forward we will
follow the usual convention and replace µ with the symbol m with the
understanding that it refers to the motion of the smaller of m1 and m2 about the
center of mass.

Equation 2.34 is the statement of conservation of angular momentum.  That is,
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is a constant.  Equation 2.36 can be rewritten in the form
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The area swept out by a moving body is given by
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Because angular momentum is conserved dA/dt is also constant.  This is
Kepler's Second Law which states that the planets sweep out equal areas in
equal times.

From the definition of l, equation 2.35 becomes
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or, because V is only a function of r,
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The particle moves in an effective potential given by
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Equation 2.43 reduces to
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which is the statement that energy is conserved.  From this equation, we also
find that

&r
m

E V
m

E V
l

mr
eff= ± −F

HG
I
KJ

= ± − −
F

H
G

I

K
J

F

H
G

I

K
J

2 2

2

2

2
d i , (2.48)

or simply

dt
dr

m
E V

l

mr

=

− −
F

H
G

I

K
J

2

2

2

2

. (2.49)

Substituting the relation between dt and dθ, Equation 2.37, and we find that
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Consider the case when the potential is of the form V
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Integrating this expression gives
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Inverting this expression gives
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This is usually written in the form
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This is the equation for a conic section having several classes of solutions as
shown below.

1.)  If e > 1, and E > 0, the orbit is a hyperbola.

2.)  If e = 1, and E = 0, the orbit is a parabola.



3.)  If e < 1, and E < 0, the orbit is an ellipse.

4.)  If e = 0, and E
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, the orbit is a circle.

2.2  VARIATIONAL TECHNIQUES

2.2.1  The Calculus of Variations

Consider a function f y y x( , & , )  defined on a path y=y(x) between x1 and x2
where & /y dy dx= .  We wish to find a particular path y(x) such that the integral
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has a stationary value relative to paths differing infinitesimally from the correct
function y(x).  Since J must have a stationary value for the correct path relative
to any neighboring path, the variation must be zero relative to some particular
set of neighboring paths.  Such a set of paths can be denoted by
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A necessary condition for a stationary point is
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It is easily seen that
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From the boundary conditions, the first term on the right hand side vanishes
and Equation 2.60 reduces to
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The fundamental lemma of the calculus of variations states that if
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for all η(x) continuous through the second derivative then M(x) must be
identically zero on the interval.  Thus J is stationary only if
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If f is a function of many independent variables then
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2.2.2  Hamilton's Principle

Hamilton's principle states that the motion, in configuration space, of a system
where all non-constraining forces are derivable from a generalized scalar
potential that may be a function of coordinates, velocities, and time is such that
the integral
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has a stationary value for the correct path of the motion.  That is,
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The integral I is termed the action, and Hamilton's principle states that the
variation in I is zero.  In other words, the action is minimized.  By comparison
with Equation 2.65 it follows that

∂
∂

∂
∂

L

q

d

dt

L

qi i
− =

&

0, (2.69)

which is Lagrange's equation.

2.2.3  Lagrange Multipliers

D'Alemberts principle, and the resulting form of Lagrange's equation, assume
no constraint forces.  Consider a treatment when the equations of constraint can
be put in the form
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where the alk and alt's may be functions of a, t.  For virtual displacements it
follows that
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If this is true, then it must also follow that
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where the λl are undetermined coefficients called Lagrange multipliers.  From
Equations 2.63, 2.68, and 2.69 it is seen that Hamilton's principle is equivalent
to
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By the same process, Equation 2.72 is equivalent to
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We combine these two relations to obtain
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The δqk 's are not necessarily independent, but because the values of the λl's are
undetermined we may choose them such that
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Thes equations, together with Equation 2.70, can be used to determine the
equations of motions for systems with constraining forces.



Example 2.1

Consider the case of a ladder of
length L that is inclined against a
frictionless wall and floor as
shown at right.  Find the equations
of motion.

θ

The position of the center of mass of the ladder, and its orientation, can be
described with the variables x, y, θ.  The motion of the ladder is constrained by
the wall and floor.  We have the two constraints

x
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From Equation 2.60 it follows that these give the constraining relations
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respectively.  By inspection, the kinetic energy is
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so that the Lagrangian is
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From Equations 2.76, 2.79, and 2.80 the equations of motion are
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respectively.  From Equations 2.77 and 2.78 we see that
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When these are combined with Equation 2.86 and simplified we obtain
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2.2  RIGID BODY MOTION

2.2.1  Rotations

A rigid body in space needs 6 independent generalized coordinates to specify its
configuration.  For example, 3 coordinates are needed to specify the location of
the center of mass relative to some external axes and 3 other coordinates are
needed to specify the orientation of the body relative to a coordinate system
parallel to the external axes.  The orientation is specified by stating the
direction cosine of the body axes relative to the external axes.  That is, if the
prime denotes body axes then
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for l = 1, 2, 3.  That is,
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Therefore αijαik = 1,  if j = k, αijαik = 0 otherwise.  In two dimensions
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2.2.1.1  General Properties of Rotations

If 
t t t

G = AF and we transform to a new coordinate system then
t t t t t t t t t t

BG BAF BAB BF= = -1  we say that 
t t t

BAB-1 is the form of 
t

A in the new

coordinate system.  
t t t t

A BAB'= -1 defines a similarity transformation.  In some
coordinate system

t

A'

cos sin

sin cos= −
F

H

G
G

I

K

J
J

φ φ
φ φ

0

0

0 0 1

, (2.104)

so that TrA
t

= +1 2cosφ .  This property holds true in all coordinate systems.



Example 2.2

Find the axis of rotation and compute the angle of rotation for

t

R = −

−

F

H

G
G
G
G
G
G

I

K

J
J
J
J
J
J

3

4

6

4

1

4
6

4

1

2

6

4
1

4

6

4

3

4

.

It can easily be verified that 
t t t

RR IT = , so 
t

R satisfies the requirements of a
rotation matrix.  The axis of rotation can be defined as the direction that any
vector which remains unchanged by 

t

R points.  That is, if 
r

t

r

x Rx= , then 
r

x  is the
axis of rotation.  We must solve

3

4

6

4

1

4
6

4

1

2

6

4
1

4

6

4

3

4

1

2

3

1 2 3−

−

F

H

G
G
G
G
G
G

I

K

J
J
J
J
J
J

F

H

G
G

I

K

J
J

=
x

x

x

x x xb g, (2.105)

which gives the equations

3 6 41 2 3 1x x x x+ + = , (2.106)

− + + =6 2 6 41 2 3 2x x x x , (2.107)

x x x x1 2 3 36 3 4− + = . (2.108)

These three equations can be solved to show that x1 = x3 and x2 = 0.  The

normalized axis of rotation is therefore 
1

2
1 0 1, ,b g .  By examination, Tr 

t

R = 1

+ 2 cos θ = 2, so that θ = 60º.



2.2.2.2  The Euler Angles

Rather than specify the 9 independent elements of the rotation matrix we may
describe the orientation in terms of 3 Euler angles.  For example, rotate the
initial system of axes, xyz, by an angle ψ counterclockwise about z.  This
defines the ξηζ axes.  Next rotate about the ξ axis by an angle θ in the
counterclockwise direction.  This defines the ξ'η'ζ' axes.  Finally rotate
counterclockwise by an angle φ about the ζ' axes.  This defines the ξ'ψ'ζ' axes.
In matrix form

r

t

r

x Ax'= , (2.109)

where

t t t t

A BCD= , (2.110)

and

t

B = −
F

H

G
G

I

K

J
J

cos sin

sin cos

ψ ψ
ψ ψ

0

0

0 0 1

, (2.111)

t

C =
−

F

H

G
G

I

K

J
J

1 0 0

0

0

cos sin

sin cos

θ θ
θ θ

, (2.112)

t

D = −
F

H

G
G

I

K

J
J

cos sin

sin cos

φ φ
φ φ

0

0

0 0 1

. (2.113)

2.2.2.3  The Cayley-Klein Parameters

Consider a general linear transformation in 2 dimensional space

r r r

u u v'= +α β , (2.114)

and



r r r

v'= u + vγ δ , (2.115)

where the transformation matrix is

t

Q =
F
HG

I
KJ

α β
γ δ

. (2.116)

Note that α, β, γ, δ may be complex.  If we require 
t t t

QQ It =  and  
t

Q = +1 we

find that β = −γ* and δ = α*, that is

t

Q =
−

F
HG

I
KJ

α β
β α* *

. (2.117)

Consider a matrix of the form

t

P
z x iy

x iy z
=

−
+ −

F
HG

I
KJ
, (2.118)

such that

t t t t

P Q P Qt'=   . (2.119)

The hermitian property and the trace of a matrix are unaffected by similarity
transformations.  Consequently, 

t

P'  is of the form

t

P
z x iy

x iy z
'

' ' '

' ' '
=

−
+ −

F
HG

I
KJ

. (2.120)

If we let x x iy+ = +  and x x iy− −= , then

t

P
z x

x z

z x

x z
'

' '

' '
=

F
HG

I
KJ

=
F
HG

I
KJ −
F
HG

I
KJ

−
−

F
HG

I
KJ

−

+

−

+

α β
γ δ

δ β
γ α

. (2.121)

In this way, we may define a 9 element rotation matrix in terms of 4 Cayley-
Klein parameters.



2.2.2  The Rate of Change of a Vector

The rate of change of a vector 
r

r  as seen by an observer in the body system of
axes will differ from the corresponding change as seen by an observer fixed in
space.  If the body axes are rotating with angular velocity ω the general
solution is

dr

dt

dr

dt
r

space body

r r

r rF
HG

I
KJ

= F
HG

I
KJ

+ ×ω . (2.122)

We have

r r r r

v v rs b= +ω × , (2.123)

and a successive application of Equation 2.122 gives

r r r r r r r

r

r

a a v r
d

dt
rs b b= × + × × + ×+ 2( ) ( )ω ω ω ω

. (2.124)

If the angular velocity of the body is constant Newton's law is

r

r r
r

r
r r

r

F ma ma m v m rs b b=  + ( ) + ( )= 2 ω ω ω× × × . (2.125)

To an observer in the rotating system it appears as though the particle is
moving under an effective force

r

r

r
r r r r r

F ma F m v m reff b b= = ( ) ( )− × − × ×2 ω ω ω . (2.126)

The second term on the right hand side is called the Coriolis force and the last
term on the right hand side is called the centrifugal force.



Example 2.3

Show that if a particle is thrown up vertically with initial speed vo and reached
a height h, that it will experiment a Coriolis deflection that is opposite in
direction, and four times greater in magnitude, than the deflection it would
experience if it were dropped at rest from the same maximum height.

The rate of rotation of the Earth,
ω, is identical for each scenario.
The difference is the initial
velocity and position of the
particle.  From equation 2.126, the
Coriolis force is 2

r rω × vbb g.

Defining the coordinate axes as
shown, we have ω ωx y= = 0 and

ω ωz = , while vx = 0,
v vy = cosθ , and v vz = sinθ .

xs

ys

zs zb

yb

xb

θ

ω

As a result,

− × = + + +2 2 2 0 2 0
r rω ω θv v i j kbb g b g b g b gcos $ $

$, (2.127)

As a result, the acceleration due to the Coriolis force is simply

&& cosx v= 2ω θ. (2.128)

A body falling under the influence of gravity satisfies the condition

v v gt= −0b g , (2.129)

where v(0) is defined as the velocity at time t = 0.  Substituting this into
Equation 2.128 and integrating gives

& cosx v t gt= −L

NM
O

QP
2 0

1

2
2ω θ b g . (2.130)

Integrating a second time gives

x v t gt= −L

NM
O

QP
2

1

2
0

1

6
2 3ω θcos b g , (2.131)



To solve the problem at hand, we let t be the time it takes for the particle to
complete the trip.  The position of the particle at any time is given by

h t h v t gtb g b g b g= + −0 0
1

2
2, (2.132)

In one case, the particle starts at rest, v(0) = 0, at height h.  From the definition
of the problem, it can be seen that the time required to complete the drop to the
ground is

t
h

g

v

g
o

1
2= = , (2.133)

Consequently, the deflection when dropped from rest at height h is

x g
v

g

v

g
go o

1

3 3

2
1

6

1

3
= −

F
HG

I
KJ

L

N

M
M

O

Q

P
P

= −F
HG

I
KJ
F
HG

I
KJ

ω θ ω θcos cos . (2.134)

If instead, we let t2 be the time it takes to fall from height h, we have vi = vo
and t2 = 2t1.  The deflection is

x v
v

g
g

v

g

v

g
o

o o o
2

2 3 3

2
2

1

2

2 1

6

2 4

3
=

F
HG

I
KJ

−
F
HG

I
KJ

L

N

M
M

O

Q

P
P

= +F
HG

I
KJ

ω θ ω θcos cos . (2.135)

Thus, the deflection when thrown from the ground up is opposite in direction,
and four times greater in magnitude, than then deflection when dropped from
rest.

2.2.3  The Rigid Body Equations of Motion

We have previously seen that the total kinetic energy of a rigid body may be
expressed as the sum of the kinetic energy of the entire body as if concentrated
at the center of mass, plus the kinetic energy of the motion about the center of
mass.  If a rigid body moves with one point stationary, the angular momentum
about the center of mass is



r

r r

L m r vi i i=  ( )× . (2.136)

Since ri is a fixed vector in the body

r r r

v ri i= ω × . (2.137)

Thus

r

r r r r r r r

L m r r m r r ri i i i i i i= ( ( )) = (  ( ))× × − ⋅ω ω ω2 . (2.138)

The x-component is

L m r x m x y m x zx x i i i y i i i z i i i= ( )ω ω ω2 2− − − , (2.139)

or

L I I Ix xx x xy y xz z= + +ω ω ω . (2.140)

We define

I r r x x dVjk jk j k

v

= −zρ δ( )( )
r 2 , (2.141)

to be the inertia tensor so that

r t
r

L I=  ω . (2.142)

The kinetic energy of motion about a point is

T m v m v ri i i i i=
1

2

1

2
2 = ×⋅

r r r

( )ω , (2.143)

or

T
L

I=
r

r

r
t

rω ω ω⋅ = ⋅ ⋅
2

1

2
. (2.144)



The moment of inertia, 
t

I , about
some given axis is related to the
moment about a parallel axis
through the center of mass.  Let
the vector from the origin to the
center of mass be 

r

R and let the
radii vectors from the origin and
the center of mass to the ith

particle be 
r

ri  and 
r

ri ' respectively.
That is

CoM

ri
ri’

R

a b

r

r

r

r R ri i= + '. (2.145)

The moment of inertial about axis a is

I m r n m r na i i i i= (   ) =  [(R + ' )  ]
r

r

r× ×$ $

2 2, (2.146)

or

I M R n m r n m R n r na i i i i=  ( ) +  ( ' + ) + ( )( ' )
r

r

r

r× × ×$ $ $ $

2 2 2 . (2.147)

The last term is 2( ) ( ' )
r

r

R n n m ri i× ⋅ ×$ $ , but m ri i
i

'∑ = 0 and 
t

r

I m r nb i i= ( ' )× $

2 so

t t r

I I M R na b= + (  )× $

2. (2.148)

2.2.3.1  The Euler Equations and Torque-Free Motion

By definition

dL

dt

dL

dt
L N

s b

r r

r
r rF

HG
I

KJ
=

F

HG
I

KJ
+ × =ω . (2.149)

In the body system, using Li = I ii  ωi, we find

I
d

dt
I Ni

i
ijk j k k i

ω
ε ω ω+ = . (2.150)



The Euler equations are

I I I N1 1 2 3 2 3 1&ω ω ω− − ( ) = , (2.151)

I I I N2 2 3 1 3 1 2&ω ω ω− − ( ) = , (2.152)

I I I N3 3 1 2 1 2 3&ω ω ω− − ( ) = . (2.153)

The principle axes of a system are those where the tensor 
t

I  is diagonal.  If this
is the case,

T
L

I

L

I

L

I
= + +1

2

1

2

1

2
1
2

1

2
2

2

3
2

3
. (2.154)

Because T is constant, the relation defines an ellipsoid fixed in the body axes.
Because angular momentum is conserved 

r

L  must be on a fixed sphere defined
by

L L L L2
1
2

2
2

3
2= + + . (2.155)

For the given initial conditions, kinetic energy and angular momentum, the

path of 
r

L  is constrained to be the intersection of the sphere, L2 , and the
ellipsoid, T.  If we have a body symmetrical about the z axis so that I1 = I2 the
Euler equations are, in the absence of torque's,

I I I1 1 1 3 3 1&ω ω ω= ( )  − , (2.156)

I I I2 2 1 3 3 1&ω ω ω= ( )  − − , (2.157)

I 3 3 0&ω = . (2.158)

We have ω3 = constant, and

&ω ω1 = 2−Ω ,  &ω ω2 = 1Ω , (2.159)

where

Ω =
−I I

I
3 1

1
3ω . (2.160)



Thus,

&&ω ω1 1= −Ω , (2.161)

which has solutions ω1 =  A tcosΩ  and ω2 =  A tsinΩ .  Hence, the total angular

velocity  is constant in magnitude but precesses with frequency Ω about the ζ-
axis.  We may solve for A and ω3 by noting that

T I A I= +1

2

1

21
2

3 3
2ω , (2.162)

and

L I A I2
1
2 2

3
2

3
2= + ω . (2.163)

2.2.3.2  The Heavy Symmetrical Top

Consider a heavy top with a symmetry axis taken to be the z-axis of the
coordinate system fixed in the body as shown.  The 3 Euler angles are: θ =
inclination of the z-axis from the vertical, φ = azimuth of the top about the
vertical, and ψ = rotation angle of the top about its own z-axis.  The kinetic
energy is

T I I= + +1

2

1

21 1
2

2
2

3 3
2( )ω ω ω , (2.164)

or

T I I= + + +1

2

1

21
2 2 2

3
2( & & sin ) ( &

& cos )θ φ θ ψ φ θ . (2.165)

The potential energy is

V mgl= cosθ , (2.166)

so that the Lagrangian is given by



L I I mgl= + + + −1

2

1

21
2 2 2

3
2( & & sin ) ( & & cos ) cosθ φ θ ψ φ θ θ . (2.167)

We have

p
L

I I I aψ ω
∂
∂ψ

ψ φ θ= = + = =
&

( &

& cos )3 3 3 1 , (2.168)

p
L

I I I I bφ ψ
∂
∂φ

θ θ φ θ= = + + =
&

( sin cos )& cos&1
2

3
2

3 1 , (2.169)

and

E T V I I Mgl= + = + + +1

2

1

21
2 2 2

3
2

3
2( & & sin ) cosθ φ θ ω θ . (2.170)

Combining these first two expressions gives

&

cos

sin
φ θ

θ
= −b a

2
, (2.171)

and

& cos
cos

sin
ψ θ θ

θ
= − −I a

I

b a1

3
2

. (2.172)

2.3  OSCILLATORY MOTION

2.3.1  Oscillations

Consider a system that is subjected to a potential that is only a function of
coordinates.  If we expand the coordinates qi about their equilibrium position
according to

q qi io i= + η , (2.173)

and then perform a Taylor series expansion on the potential we obtain



V q V q
V

q

V

q qi io i o
i

i j
o

i j( ) = ( ) +
∂
∂

η
∂

η η∂

∂

F

HG
I

KJ
+

F

H
G

I

K
J +

1

2

2
K (2.174)

The first term on the right hand side may be redefined to be zero by shifting the
zero potential to be the equilibrium value.  Similarly, if the generalized forces
are zero the second term is also zero.  As a result, the potential can be
approximated by the matrix relation

V q
V

q qi
i j

o

i j( ) ≈
F

H
G

I

K
J

1

2

2∂

∂∂
η η . (2.175)

Similarly, we can define

T m q q m Tij i j ij i j ij i j= = =1

2

1

2

1

2
& &

& & & &η η η η , (2.176)

so that the Lagrangian is

L T Vij i j ij i j=
1

2
& &η η η η−d i . (2.177)

The equations of motion are given by

T Vij j ij j +  =&&η η 0. (2.178)

If we try a solution of the form η ω
i

i tC= ai exp−  we find that

V a T aij j ij j   =− ω 2 0, (2.179)

which is equivalent to

V T− ω2   = 0. (2.180)

Example 2.4



Two particles move in one
dimension at the junction of three
springs as shown.  The springs all
have unstretched length a and
force constants as shown.  Find the
frequencies of the normal modes of
oscillation.

x1
x2

m1 m2

We define the coordinates x1 and x2 to describe the displacement of the two
blocks, relative to the left attachment point.  In these coordinates

T mx mx= +1

2

1

21
2

2
2

& & . (2.181)

Expanding about equilibrium, we define x1 = a + η1, x2 = 2a + η2.  Equation
2.181 is equivalent to

T m m Tij i j= + =1

2

1

2

1

21
2

2
2

& & & &η η η η , (2.182)

where

T
m

mij =
F
HG

I
KJ

0

0
. (2.183)

Similarly,

V k x a k x x a k a x= − + − − + −1

2

1

2
3

1

2
21

2
2 1

2
2

2b g b g , (2.184)

or

V Vij i j= 1

2
η η , (2.185)

with

V
V

x xij
i j

a

=
F

H
G

I

K
J

∂
∂ ∂

2
. (2.186)



By examination

∂
∂
V

x
k x a k x x a

1
1 2 13= − − − −b g b g , (2.187)

∂
∂

2

1
2

3 4
V

x
k k k= + = , (2.188)

and

∂
∂

V

x
k x x a k a x

2
2 1 23 2= − − − −b g b g , (2.189)

∂
∂

2

2
2

3 4
V

x
k k k= + = . (2.190)

Likewise, the cross terms are

∂
∂ ∂

∂
∂ ∂

2

1 2

2

2 1
3

V

x x

V

x x
k= = − , (2.191)

so that

V
k k

k kij =
−

−
F
HG

I
KJ

4 3

3 4
. (2.192)

The secular equation is

V T
k m k

k k m
− = − −

− −
=ω ω

ω
2

2

2
4 3

3 4
0, (2.193)

which reduces to

4 9 8 7 02 2 2 4 2 2k m k m km k− − = − + =ω ω ωe j . (2.194)

From the quadratic equation, this has solutions



ω1 = k

m
, (2.195)

and

ω2
7= k

m
. (2.196)

2.4  HAMILTON'S EQUATIONS

2.4.1  Legendre Transformations and Hamilton's Equations of Motion

Consider a function f of two variables such that

df udx vdy= + , (2.197)

where u
f

x
= ∂

∂
 and v

f

y
= ∂

∂
.  We wish to change from the variables x, y to the

variables u, y.  We define a function

g f ux= − . (2.198)

We have

dg df dux udx vdy xdu= − − = − , (2.199)

so that x
g

u
= − ∂

∂
 and v

g

y
= ∂

∂
.  This is an example of a Legendre transformation.

It is frequently used in thermodynamics.

Recall that Lagrange's equations are

d

dt

L

q

L

qi i

∂
∂

∂
∂&

F

HG
I

KJ
− = 0, (2.200)

where L L q q ti i= ( , & , ) , and the conjugate momenta are



p
L q q t

qi
i i

i
=

∂
∂

( , & , )
&

. (2.201)

We can transform from the variables ( ,& , )q q ti i  to the variables ( , , )q p ti i  by the
use of

H q p t q p L q q ti i i i i i( , , ) & ( , & , )= − , (2.202)

where H is called the Hamiltonian.  We have

dH
H

q
dq

H

p
dp

H

t
dt

i
i

i
i= + +∂

∂
∂
∂

∂
∂

. (2.203)

However, from the definition

dH p dq q dp
L

q
dq

L

q
dq

L

t
dti i i i

i
i

i
i= + − − −& &

&

&

∂
∂

∂
∂

∂
∂

, (2.204)

or simply

dH q dp
L

q
dq

L

t
dti i

i
i= − −&

∂
∂

∂
∂

. (2.205)

Comparing the two expressions for dH we obtain Hamilton's equations

∂
∂

∂
∂

H

q

L

q
p

i i
i= − = − & , (2.206)

∂
∂
H

p
q

i
i= & , (2.207)

∂
∂

∂
∂

H

t

L

t
= − . (2.208)

If the equations defining the generalized coordinates don't depend on time
explicitly, and if the forces are derivable from a conservative potential V, then

H T V E= + = . (2.209)



If we define a column matrix 
r

η  with 2n elements such that ηi iq= , ηi n ip+ = ,
for i n≤ , then

∂
∂η

∂
∂

H H

qi i

F

HG
I

KJ
= , (2.210)

and

∂
∂η

∂
∂

H H

pi n i
r

+

F

HG
I

KJ
= . (2.211)

If we define 
t

J =
F
HG

I
KJ

0 1

1 0
, then Hamilton's equations may be written in the form

r t

r
&η ∂

∂η
= J

H
. (2.212)

This is called symplectic notation.

Example 2.5

The Lagrangian for a simple spring is given by

L mx kx= −1

2

1

2
2 2

& .  

Find the Hamiltonian and the equations of motion using the Hamiltonian
formulation.  Identify any conserved quantities.

From the definition of pi we have

p
L

x
mxx = =∂

∂ &

& . (2.213)

From the definition of the Hamiltonian, equation 2.227, we see that

H x mx mx kx= − +& & &b g
1

2

1

2
2 2, (2.214)



or simply

H
m

p kxx= +1

2

1

2
2 2. (2.215)

From Hamilton's equations we have

∂
∂
H

q
kx p

i
x= = − & , (2.216)

∂
∂
H

p

p

m
x

i

x= = & , (2.217)

∂
∂
H

t
= 0. (2.218)

The first equation is the equation of motion in one dimension,

mx kx&&+ = 0, (2.219)

the second equation is the definition of momentum, and the last equation is the
statement of conservation of energy.

2.5.2  Canonical Transformations

If a generalized coordinate qi has constant conjugate momenta it is said to be
cyclic.  If this is the case, then pi = 0, which tells us that the Hamiltonian is
independent of that pi.  If all coordinates qi are cyclic the conjugate momenta
can be defined by pi = αi.  Consequently,

&q
H

i
i

i= =∂
∂α

ω , (2.220)

or

q ti i i= +ω β . (2.221)

A problem is often easier to solve if we can find a system where the number of
cyclic coordinates is maximum.  How do we transform to this set of



coordinates?  We need a new set of coordinates Qi, Pi, where Q Q q p ti i i i= , ,b g,

P P q p ti i i i= , ,b g .  We require Qi, Pi to be canonical coordinates.  Therefore,

some function K K Q P ti i= , ,b g exists such that

&Q
K

Pi
i

= ∂
∂

, (2.222)

and

&P
K

Qi
i

= ∂
∂

. (2.223)

If Qi, Pi are canonical coordinates they must satisfy a modified Hamilton's
principle that can be put in the form

δ PQ K Q P t dti i i i

t

t

& ( , , )− =z d i
1

2

0 , (2.224)

because the old coordinates satisfy

δ p q H q p t dti i i i

t

t

& ( , , )− =z b g

1

2

0. (2.225)

Both requirements can be satisfied if we require a relation

λ p q H PQ K
dF

dti i i i&

&− = − +b g , (2.226)

where λ = constant and F is any function of the phase space coordinates
continuous through the second derivative.  λ is related to a scale
transformation.  If λ = 1 the relation defines a canonical transformation.  The
function F is termed the generating function.  It may be a function of qi, pi, Qi,
Pi, t and defines the transformation.

2.5.3  Symplectic Transformations and Poisson Brackets



Recall that Hamilton's equations can be written in the from

r
t

r
&η ∂

∂η
= J

H
. (2.227)

If we have a canonical transformation from η ξ ξ η→ = ( ) , then

&

&ξ
∂ξ
∂η

ηi
i

j
j= . (2.228)

In matrix form,

r t r& &ξ η= M , (2.229)

where Mij
i

j
=

∂ξ
∂η

.  We have

r t t

r
&ξ ∂

∂η
= MJ

H
, (2.230)

also

∂
∂η

∂
∂ξ

∂ξ
∂η

H H

i j

j

i
= , (2.231)

and

∂
∂η

∂
∂ξ

H
M

H
r

t

r= % . (2.232)

Consequently,

r t t t
r

t
r

& %ξ ∂
∂ξ

∂
∂ξ

= =MJM
H

J
H

. (2.233)

Therefore, a transformation is canonical if

t t t t

MJM J
% = . (2.234)



The Poisson bracket of a function is defined by

u v
u

q

v

p

u

p

v

qPB
i i i i

, = −∂
∂

∂
∂

∂
∂

∂
∂

. (2.235)

We have

r r
t

η η, PB J= , (2.236)

and

r r

r

r

t

r

r

t t t t

ξ ξ ∂ξ
∂η
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,
%

%

PB
J MJM J= = = . (2.237)

In other words, the fundamental Poisson brackets are invariant under canonical
transformations.  We also have
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u

q
q

u

p
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u

ti
i

i
i= + +∂

∂
∂
∂

∂
∂

& & , (2.238)

or

du

dt
u H

u

tPB
= +,

∂
∂

. (2.239)

Similarly,

& ,q q Hi i PB
= , & ,p p Hi i PB

= . (2.240)

2.6  CONTINUOUS SYSTEMS

2.6.1  The Transition from a Discrete to a Continuous System

Consider an infinitely long elastic rod that can undergo small longitudinal
vibrations.  We approximate this by an infinite chain of equal mass points a
distance a apart and connected by uniform massless springs having force
constraints k.  The kinetic energy is



T m i
i

= ∑1

2
2

&η , (2.241)

where m is the mass of each particle and ηi is the location of the ith particle.
The potential energy is

V k i i
i

= −+∑1

2 1
2η ηb g . (2.242)

We have

L m ki i i
i

= − −L
NM

O
QP+∑1

2
2

1
2

&η η ηb g , (2.243)

or
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. (2.244)

The equations of motion are

m

a
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i i i i
&&η

η η η η
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2

1
2

0 . (2.245)

We have m/a = µ = mass/unit length.  Hooke's law states that the extension of a
rod/unit length is proportional to the force, i.e.

F Y= ξ , (2.246)

where ξ
η η

=
−F

HG
I
KJ

+i i

a
1  is the extension/unit length.  The force necessary to

stretch the string by an amount x is

F k ka
ai i

i i= − =
−F

HG
I
KJ+

+η η
η η

1
1b g . (2.247)

Consequently, ka = Y = Young's modulus.  Note that



η η η η ηi i

a

x a x

a

d
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+ −

= + − →1 ( ) ( )
, (2.248)

as a → 0.  Also as a → 0 the summation over the particles becomes an integral
and Equation 2.244 becomes

L Y
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dx= − F
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I
KJ
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2
2

2

µη η
& . (2.249)

The equation of motion is

µ η ηd

dt
Y

d

dx

2

2

2

2
0− = . (2.250)

This is a wave equation with wave propagation velocity v
Y=
µ

.  Equation

2.249 is said to define a Lagrangian density
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d

dt
Y

d
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HG
I
KJ

− F
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I
KJ

µ η η2 2

. (2.251)

2.6.2  The Lagrangian Formulation

Consider a Lagrangian density

% % , , , ,L L
d

dx

d

dt
x t= F

HG
I
KJ

η η η
. (2.252)

Hamilton's principle is

δ δI Ldxdt= =zz % 0

1

2

. (2.253)

We choose value of η such that

η α η αξ( , ; ) ( , ; ) ( , )x t x t x t= +0 , (2.254)



where η(x,t;0) is the function that satisfies Hamilton's principle.  We have
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where
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This expression may be simplified as follows.  First,
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plus a boundary term that goes to zero.  Also,
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plus another boundary term that goes to zero.  Therefore,
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and
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Similarly for other Lagrangians.

2.6.3  Noether's Theorem

A formal description of the connection between invariance or symmetry
properties and conserved quantities is contained in Noether's theorem.  We
consider transformations where

x x x xµ µ µ µδ→ = +' , (2.261)

η η η η δρ µ ρ µ ρ µ ρ µx x x xd i e j d i d i→ = +' ' , (2.262)
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' ' 'L x x x L x x xη η η ηρ µ ρ ν µ µ ρ µ ρ ν µ µd i d ie j e j e j→ F

H
I
K . (2.263)

We make three assumptions:

1.) 4-space is Euclidean,

2.) The Lagrangian density has the same functional form after
transformation,

3.) The magnitude of the action integral is invariant under the
transformation.

From assumptions 2, 3 we have

% , , % , ,'
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,L x dx L x dxη η η ηρ ρ ν µ µ ρ ρ ν µ µe j e j

Ω Ω
z z− = 0. (2.264)

xµ
'  is a dummy variable, so let x xµ µ

' →  to obtain
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Under the transformations the first order difference between the integrals
consists of two parts, one is an integral over Ω and the other is an integral over 
Ω' – Ω.  For example, in one dimension,
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To first order, the last two terms are
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The difference between integrals is
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Consequently, for the Lagrangians we have
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or
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To first order,
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The invariance condition is
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We define

δ εν νx Xr r= , δη ερ ρ= r rΨ , (2.274)
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we have
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Equation 2.305 reduces to
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The result is Noether's theorem, which states that
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