FOREWORD

The introduction of differentials by Leibniz and Newton might be con-
sidered as the first appearance of infinitesimals in the mathematics of
modern times, famous also because these objects were soon derided by
Berkeley as ghosts of a highly unsure existence. Infinitesimals, i.e., non-
vanishing positive ‘numbers’ smaller than any given fraction, had still
been very useful for Euler and Cauchy; they became ruled out only later
on, in the wake of the putatively rigorous tendencies which took over
mathematical analysis during the 19th century. Since, the best known
renewal of that venerable concept has been carried out in the preceding
four decades by Abraham Robinson and others, who designed this non-
standard analysis to deal with infinitely small and infinitely large entities
in a truly rigorous manner. Because of making a rather unrestricted use
of classical logic and set theory and, in particular, of the axiom of choice,
Robinson’s theory in its full-fledged form has widely been suspected to
be nonconstructive from the outset. In addition, the nonstandard idea
of discretising the continuum seems to be even less compatible with the
intuitionistic concept of a continuum in the true sense of the word, than
with the classical atomistic notion.

The distance between constructive and nonstandard mathematics,
however, is actually much smaller than it appears to be. Indications
for this are that nonstandard practice often looks rather constructive,
and that very small numbers unknown to vanish are indispensable to
distinguish constructive mathematics from its traditional counterpart.
At least from any naive point of view, it is therefore no wonder that
constructive mathematics eventually proved its capability to tackle also
relatively abstract objects such as infinitesimals. This progress cannot be
thought of without the revival of constructive thinking since the 1960es,
initiated by the work of Errett Bishop, Per Martin-L6f, and others as
well as by the development of digital computers, which has eventually
lead to today’s pragmatic way in which constructive mathematics sees
itself. Some far-reaching approaches to constructive nonstandard math-
ematics have indeed been undertaken quite recently, whence time was
ripe for the first meeting dedicated simultaneously to constructive and
nonstandard mathematics—and, of course, to the reunion of these seem-
ing antipodes.
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Consisting of peer-reviewed articles written on the occasion of such
an event, this volume offers views of the continuum from various stand-
points. Including historical and philosophical issues, the topics of the
contributions range from the foundations, the practice, and the applica-
tions of constructive and nonstandard mathematics, to the interplay of
these areas and the development of a unified theory.
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Abstract: A nonstandard construction of stable type Euclidean random fields via
hyperfinite flat integrals and stable white noise is given. Moreover,
a brief account on an extension of Cutland’s flat integral formula for
(centered) Gaussian measures on the Hilbert space I to the case of
Banach spaces I, 1 < p < 0o, is presented.

Introduction

The aim of this paper is to derive a nonstandard flat integral represen-
tation for certain stable type Euclidean random field measures. In the
case of Gaussian Euclidean random field measures, this was done in [3]
where a flat integral formula for Nelson’s free field measure has been
given. In his seminal paper [6], Cutland studied the nonstandard flat
integral representation of Wiener measure on the classical Wiener space
Co[0, 1], which gives a nonstandard justification of Donsker’s (heuristic)
“flat integral”. He then used such representation to give a fairly simple
1

P. Schuster, U. Berger and H. Osswald (eds.),
Reuniting the Antipodes — Constructive and Nonstandard Views of the Continuum, 1-18.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.
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and intuitive nonstandard proof of a Schilder’s large deviation principle
for the Wiener measure. Furthermore, in [7, 8, 9, 10], he extended such
investigations to various (centered) Gaussian measures, which provides
a shorter (and nonstandard) version of the large deviation principle dis-
cussed in general, for centered Gaussian measures on separable Banach
spaces, in section I11.3.4 of [11]. Let us also mention the interesting work
[19] by Osswald, where he presents a further nonstandard construction
of Brownian motion in abstract Wiener spaces based on [6]. In the last
section of this paper, we will present shortly an extension of Cutland’s
work [9] on flat integral representation for measures on /3 to the case of
the Banach spaces [;,,1 < p < oo.

The study of large deviations for (non Gaussian) Euclidean random
field measures seems delicate but possible. Also, one may expect to be
able to discuss the scaling limits for such random field measures. Te
this purpose, a flat integral formula is apparently useful. Our strategy
is to find an appropriate (hyperfinite) lattice setting and to construct
certain lattice measures via inverse Fourier transform, then utilizing the
fact that the stable Euclidean random field measures are induced by
Fuclidean random fields independent at each point to make a product
measure of all such lattice measures, and finally to use Loeb measure
structure to get the flat integral formula. This idea has been further
utilized in [4] to investigate a functional integral realization for the class
of Euclidean random field models for constructive quantum field theory
developed in recent years in all space-time dimensions by Albeverio,
Gottschalk and Wu.

In this paper, we take for granted the familiarity with the preliminaries
on nonstandard analysis and the Loeb measure construction presented
e.g. in [1], [5] and [18].

1. EUCLIDEAN RANDOM FIELD MEASURES

Let D := C(IRY) be the vector space consisting of all C*-smooth
functions on IR® (d € IN) with compact support endowed with Schwartz
topology and D’ its (topological) dual space. Let B denote the Kol-
mogorov o-algebra on D’ generated by cylindrical sets of D’ (which co-
incides with the topological o-algebras generated by the strong or weak
topologies of D). Let p € (0, 2] be arbitrarily fixed. From [13],

feD e Jralf@P ¢ p(cE)
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is a characteristic functional on the nuclear space D. By the well-known
Bochner-Minlos’ theorem (see e.g. [13]), there exists a unique probability
measure g on (D', B) such that

C(f) = / ei<f7w>du(w) — ¢ Jrd If(il?)fpdx’ feD. (1.1)
DI

Moreover, there is a Euclidean random field! ' : D x (D', B,p) — IR
determined by F(f,w) =< f,w >, f € D,w € D'. We call F a stable
random field and its probability law u a stable random field measure.

Now let m > 0if d =1,2and m > 0is d > 3 and let @ € (0,1). Then
the following stochastic pseudo-differential equation

(—A + m2)aX =F
induces a stable type Euclidean random field X : D x (D', B, ux) —

R via X(f,w) =< f,w >, f € D,w € D', where ux(D) = p((A +
m%)~2D), D € B, whose characteristic functional

Cx(f) = / <S> G (0) = e Trald+m) @)z pop
(1.2)

Let us point out that if p = 2, y and px are Gaussian measures on
D’ supported by certain Sobolev spaces with negative indices (while px
is just Nelson’s free field measure if o = %, which was already studied
using methods of nonstandard analysis in [1] and [3]). Also F introduced
here is an interesting special case of infinitely divisible (Euclidean) ran-
dom fields discussed e.g. in [2] (in the terminology of [13], an infinitely
divisible random field is called “a generalized random process with inde-
pendent value at every point”). Our main aim here is to give a represen-
tation formula for (the non Gaussian measures) p and px. Since there is
no inverse Fourier transform for probability measures on co-dimensional
spaces, we will realize our aim by using nonstandard analysis.

Similar methods will also be used to discuss Gaussian measures on [,
for 1 < p < oo, see Section 3.

2. NONSTANDARD CONSTRUCTION OF pu AND px

Let us first give a hyperfinite representation of D’ by following [14, 15].
Fix a polysaturated nonstandard model. Let N € *IN \ IV be arbitrarily

1By “Euclidean”, we mean that the probability law is invariant under the (proper) Euclidean
transformation group.
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fixed and ¢ := %, an infinitesimal. We set

1 1 1 1

T::{—N,—N-}— ﬁ,...,—ﬁ,o,'ﬁ,...,N N

,N}C*R

and L :=T¢ =T x---xT C *R%d € IN. Let *IR” stands for the
e ——’

d times
internal space of all internal functions from £ into *IR. We set

< frg>=3 8f(t)g(t), f.ge R".

tel

Definition 2.1 (Kepler [15]) f € *IR is called S-continuos whenever
g is infinitesimal in *D(K) for some compact set K C IR? implies that
< f,g > is infinitesimal in *IR. Moreover, f € *IR* is said to be D'-
nearstandard if < f,- > |«p(x) is S-continuous for any compact set
K c R%.

< f,- > being linear on *IR* for f € *IR*, the necessary and sufficient
condition for < f,- > I*D(K) to be S-continuous for any compact set

K C R% is that < f,g > is finite whenever ¢ is finite in *D(K). Thus,
f € *IR* is D'-nearstandard if < f,g > is finite for any compact set
K C R? and for any D(K)-finite g € *D(K) (where g € *D(K) is said
to be D(K)-finite if the internal suprema supye+g|g™ (z)|,n € IN, are
finite).

We denote by Ns(*IR®) the totality of D’-nearstandard functions.
We define the (weak) standard part mapping st : Ns(*IR*) — D’ via
duality:

<st(f),g>=°(< f,"g>), VgeD.

< st(f),- > defines a distribution essentially because of the definition
of the linear induction limit topology. The standard part mapping is
continuous on each D(K) and hence on D. On the other hand, from
[14], every standard distribution g € D’ has a hyperfinite representation
f € Ns(*IR®) : st(f) = g. Therefore st{Ns(*R*)] = D'.

Let us now turn to the construction of p and px. We begin to argue
formally. In the hyperfinite lattice setting, we have f = (fi)ies € *R*
and ¢ = (gs)rec € *IR® as hyperfinite sequences (or vectors). Since
( is the probability distribution of “a generalized random process with
independent value at every point”, we have y = Ht€£ e, Where p; =
Projsp,t € L, the marginal probability distribution of . Taking a hint
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from (1.1), we have for any (fi)iec € *IR“ N *D (i.e., the hyperfinite
segment of * f for f € D),

ei Zte,c 5dftQt d — e~ Etec 5dlftlp
. e (gt)
‘R tel

namely

H/ eiadftqtdﬂt(qt) — He_sdlftlp
*R

tel tel
which further implies that

/ e"‘sdf‘qtd,ut(qt) — e—5d|ft|p )
*R
Setting u(-) == p¢(6%-), then

/ ¢t g (g,) = eV
*R

Remarking that the above equality is a one-dimensional Fourier trans-
form, one can take inverse Fourier transform to get the following ex-
pression for the density of u; (i.e. the Radon-Nikodym derivative with
respect to one-dimensional Lebesgue measure)?

)

dpi (9:) = i/ e"if‘q‘e"sd’ftlpdft7 (f)iec € *IRF N *D
dqt 2r *R

where dg; and df; stand for one-dimensional Lebesgue measure. Clearly

this paves a way for us to construct pu.

Let (€2, A(S?), P) be a given internal probability space. The associated
Loeb space is denoted by (Q2,.A1 (), Pr). Let {n(w) : w € Q}se be an
internal family of independent, identically distributed * IR-valued random
variables on (12, 4(Q), P), each n; : @ — *IR has (internal) density h
given by

1

h(q:) = o /]R e (hat R g, (fo)tec € "R 0D, (¢1)iec € *R”

2 Actually this inverse Fourier transform can be computed explicitly, for instance, by using
the formulae of items 82 and 83 on page 25 of F. Oberhettinger: Fourier Transforms of
Distributions and Their Inverses. A Collection of Tables. Academic Press, New York,
London, 1973. But we do not need it here.



THE CONTINUUM IN
SMOOTH INFINITESIMAL ANALYSIS

John L. Bell

Department of Philosophy, University of Western Ontario
London, Ontario N6A 3K7, Canada

jbell@julian.uwo.ca

Keywords: continuum, smooth infinitesimal analsis, constructive analysis

Abstract: In this paper an investigation is made of the properties of the continuum
in smooth infinitesimal analysis: it is shown that it differs in certain
important respects from its counterpart in constructive analysis.

As presented in [1], smooth infinitesimal analysis, SIA, is a theory formu-
lated within higher-order intuitionistic logic and based on the following
axioms:

Axioms for the continuum, or smooth real line R.  These are
the usual axioms for a(n) (intuitionistic) field expressed in terms of two
operations + and -, and two distinguished elements 0, 1.

Axioms for the strict order relation < on R. These are:
1 a < bandb< cimplies a < c.
2 =(a < a).
3 a < bimplies a+ ¢ < b+ ¢ for any ec.
4 a<band 0 < cimplies a-c<b-c.
5 either 0 < aora< 1.

6 a # b' implies a < bor b < a.

1Here a # b stands for ma = b. It should be pointed out that axiom 6 is omitted in some
presentations of SIA, e.g. those in [3] and [4].

19
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The relation < on R is defined by a < b < —b < a. The open interval
(a,b) and closed interval [a, b] are defined as usual, viz. (¢,b) ={z :a <
z <b}and [a,b] = {z:a <z <b};similarly for half-open, half-closed,
and unbounded intervals.

Write A for the subset {z : 2 = 0} of R; we use the letter € as a
variable ranging over A. Elements of A are called (nilsquare) infinitesi-
mals or microquantities. Since, clearly, 0 € A, A may be regarded as an
infinitesimal neighbourhood of 0. A is subject to the

Microaffineness Principle. For any map g : A — R there exist
unique a,b € R such that, for all €, we have

gle)=a+b-e.

Notice that then a = g(0).

From these three axioms it follows that the continuum in SIA differs
in certain key respects from its counterpart in constructive analysis CA,
which is furnished with an elegant axiomatization in [2].

To begin with, the third basic property of the strict ordering relation
< in CA, given as axiom R2(3) on p. 102 of [2], and which may be
written

(*) “(z<yVy<z)—=z=y

is incompatible with the axioms of SIA. For (*) implies

(**) Ve-(z <0Vv0<z)—z=0.

But in SIA we have by Exercise 1.6 and Thm. 1.1 (i) of [1],
Ve e A=(z <0V 0<z)AA#{0},

which clearly contradicts (**).

Thus in CA the set A of infinitesimals would be degenerate (i.e.,
identical with {0}), while the nondegeneracy of A in SIA is one of its
characteristic features.

Next, call a binary relation S on R stable if it satisfies

VaVy(——zSy — zSy).

In CA, the equality relation is stable, a fact which again follows from
principle R2(3) referred to above. But in SIA it is not stable, for, as
shown in Thm. 1.1 (ii) of [1], there we have Vo € A——z = 0. If = were
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stable, it would follow that Vx € Az = 0, in other words, that A is
degenerate, which is not the case in SIA.

Axiom 6 of SIA, together with the transitivity and irreflexivity of
<, implies that < is stable. This may be seen as follows. Suppose
—=a < b. Then certainly a # b, since a = b — —a < b by irreflexivity.
Therefore a < b or b < a. The second disjunct together with - —a < b
and transitivity gives ——a < a, which contradicts —a < a. Accordingly
we are left with @ < b. As can be deduced from assertion 8 on p. 103 of
[2], the stability of < implies Markov’s principle, which is not affirmed
in CA.?

A subset A C R is indecomposable if it admits only trivial partition-
ings, thatis, if A=UUV and UNV =, then U = @ or V = . Clearly
A is indecomposable iff any map f: A — 2 = {0,1} is constant.

In SIA one also assumes the

Constancy Principle. If A C R is any closed interval on R, or R
itself, and f : A — R satisfies f(a+¢) = f(a) foralla € A ande € A,
then f is constant.

As shown in Thm. 2.1 of [1], it follows in SIA from the Constancy Princi-
ple that R itself and each of its closed intervals is indecomposable. From
this we can deduce that in SIA all intervals in R are indecomposable.
To do this we employ the following

Lemma. Suppose that A is an inhabited subset of R satisfying

(*) for any z,y € A there is an indecomposable set B such that

{z,y} CBCA.

Then A is indecomposable.

Proof. Suppose A satisfies (*) and A = U UV with UNV = 0. Since
A is inhabited, we may choose a € A. Then a € U or a € V. Suppose
a € U; then if y € V there is an indecomposable B for which {a,y} C
B CA=UUV. It follows that B = (BN U)U (BNV), whence
BNU =0 or BNV = 0. The former possibility is ruled out by the
fact that « € BN U, so BNV = ), contradicting y € BN V. Therefore
y € V is impossible; since this is the case for arbitrary y, we conclude

21n versions of SIA that omit axiom 6 neither the stability of <, nor Markov’s principle, can
be derived.



22 JOHN BELL

that V = 0. Similarly, if a € V, then U = , so that A is indecomposable
as claimed.

We use this lemma to show that the open interval (0,1) is indecompos-
able; similar arguments work for arbitrary intervals. In fact, if {z,y} C
(0,1), it is easy to verify that

{z,y} C [ =251 C (0,1).

z+y’ 2—z—y

Thus, in view of the indecomposability of closed intervals, (0, 1) satisfies
condition (*) of the lemma, and so is indecomposable.

Aside from certain infinitesimal subsets to be discussed below, in SIA
indecomposable subsets of R correspond to connected subsets of R in
classical analysis, that is, to intervals. In particular, any puncturing of
R is decomposable, for it follows immediately from Axiom 6 that

R-{a}={z:z>a}U{z:2<0a}.
Similarly, the set R — Q of irrational numbers is decomposable as
R-Q=[{z:2>0}~-QJU[{z:2<0}-Q}.

This is in sharp contrast with the situation in intuitionistic analysis 1A,
that is, CA augmented by Kripke’s scheme, the continuity principle,
and bar induction. For it is shown in [5] that in IA not only is any
puncturing of R indecomposable, but that this is even the case for the
set of irrational numbers (further indecomposabilty results for IA may
be found in [6].) This would seem to indicate that in some sense the
continuum in SIA is considerably less “syrupy”? than its counterpart in
IA.

It can be shown that the various “infinitesimal” subsets of R intro-
duced in [1] are indecomposable. For example, the indecomposability
of A can be established as follows. Suppose f : A — {0,1}. Then by
Microaffineness there are unique a,b € R such that f(¢) = a+b-¢ for
alle. Nowa= f(0)=0or 1;if a =0, thenb-e= f(¢) =0or 1, and
clearly b-¢ # 1. So in this case f(¢) = 0 for all €. If on the other hand
a=1,thenl1+b-¢ = f(¢) =0o0r 1; but 1 +b-¢ = 0 would imply
b-e = —1 which is again impossible. So in this case f(¢) =1 for all .
Therefore f is constant and A indecomposable.

3Tt should be emphasized that this phenomenon is a consequence of axiom 6: it cannot
necessarily be affirmed in versions of SIA not including this axiom.
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In SIA nilpotent infinitesimals are defined to be the members of the

sets
Ak:{weR:zk+1:O},

for k=1,2,..., each of which may be considered an infinitesimal neigh-
bourhood of 0. These are subject to the

Micropolynomiality Principle. For any k > 1 and any g : Ay, = R,
there exist unique a,by,...,br € R such that for all § € Ay we have

g(8) = a +b16 + ba6? + - - - 4 byd*.

Micropolynomiality implies that no Ay coincides with {0}.

An argument similar to that establishing the indecomposability of A
does the same for each Ag. Thus let f: Ay — {0,1}; Micropolynomial-
ity implies the existence of a,by,...,br € R such that f(&) = a + (),
where ((8) = by 6-+b98% 4+ - - +b6F. Notice that ((8) € Ay, that is, ((4) is
nilpotent. Now a = f(0) = 0or 1; if a = 0 then {(6) = f(6) =0 or 1, but
since ((4) is nilpotent it cannot =1. Accordingly in this case f(d) =0
for all § € Ag. If on the other hand @ = 1, then 1 4 ((6) = f(8) =0 or
1, but 14 ¢(6) = 0 would imply ¢(§) = —1 which is again impossible.
Accordingly f is constant and Ay indecomposable.

The union D of all the Ay is the set of nilpotent infinitesimals, another
infinitesimal neighbourhood of 0. The indecomposability of D follows
immediately by applying the Lemma above.

The next infinitesimal neighbourhood of 0 is the closed interval [0, 0],
which, as a closed interval, is indecomposable. It is easily shown that
[0, 0] includes D, so that it does not coincide with {0}.

It is also easily shown, using axioms 2 and 6, that [0, 0] coincides with
the set

I={zeR:-zx=0}.

So Iis indecomposable. (In fact the indecomposability of I can be proved
independently of axioms 1-6 through the general observation that, if A
is indecomposable, then so is the set A* ={z: -~z € A}.)

Finally, we observe that the sequence of infinitesimal neighbourhoods
of 0 generates a strictly ascending sequence of decomposable subsets
containing R — {0}, namely:

R-{0}C (R-{0})U{0}Cc (R-{0HUA, C(R-{0}HUA;C ...
(R—-{0})UD C (R - {0})U[0,0].
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Abstract: The existence of points outside the domain of an unbounded linear map-
ping between normed spaces is investigated constructively.

Introduction

In this paper we begin a constructive investigation of unbounded op-
erators by studying a number of questions about their domains. We
intend this to be the start of a programme to investigate systemati-
cally the constructive theory of unbounded operators, and incidentally
to counter, once and for all, some common misconceptions about the
viability of such a theory (see [10] and [5]).

Since constructive analysis uses intuitionistic, rather than classical,
logic, even at the base level of the theory of unbounded operators there
are problems that are classically trivial but constructively significant.
For example, the obvious contradiction argument, based on the closed
graph theorem, merely shows that the domain of a closed unbounded
operator is not complete; it does not enable us to construct a point
of the initial Banach space at which the operator is not defined. In
the general case we have only managed a partial, weak solution to this
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problem; but in the special case of a closed unbounded operator T on a
Hilbert space, such that both T and T™ are densely defined, we can find
£ € H such that T€ is not defined.

Our setting is Bishop’s constructive analysis (BISH—see [2] or [3]),
which we can regard as mathematics carried out with intuitionistic logic
([14], [15]). At one stage we add Church’s thesis, to enable us to prove
a stronger result in recursive constructive analysis, which is simply one
model of BISH. Further information about BISH and other varieties of
constructive mathematics can be found in [8], [1], and [18].

Let T be a linear mapping between normed spaces X and Y. We say
that T is

= not bounded if it is contradictory that it be bounded;

®» unbounded if there exists a sequence (z,) in X such that
lim, o0 2, = 0 and Va (||Tz,|| > 1).

There is a constructive distinction between these two concepts: whereas
the second clearly implies the first, the converse implication depends on
Markov’s Principle,

If (an) is a binary sequence such that ~Vn (an = 0), then In (an = 1),

This principle, which represents an unbounded search, cannot be de-
rived within, but is consistent with, Heyting arithmetic—that is, Peano
arithmetic with intuitionistic logic; see [8], pages 137-138. For future
reference, note that Markov’s Principle is equivalent to the statement

Vee R(-(z=0)= 2z #0),

where, in the context of a normed space X, ¢ # 0 means ||z|| > 0. We
shall return to the distinction between bounded and not unbounded at
the end of the paper. We say that T is strongly extensional if

Ve,a' € X (Te#£ Tz = #2').

Markov’s Principle implies that every linear mapping between normed
spaces is strongly extensional. Without Markov’s Principle the best we
can prove constructively is that every linear mapping of a Banach space
into a normed space is strongly extensional; see [6], Corollary 2.

1. CONSTRUCTING POINTS OUTSIDE DOMAINS

In this section we examine the problem of finding points outside the
domain of an unbounded linear mapping between normed spaces. Our
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first result is connected with the limited principle of omniscience

(LPO),

If (arn) is a binary sequence, then either a, =0 for all n or else there
exists n such that a, = 1,

a weak form of the law of excluded middle that cannot be derived in
intuitionistic logic (and that is false, even with classical logic, in the
recursive model of BISH—see Chapter 3 of [8]).

Recall that every normed linear space X can be embedded as a dense
subset of a Banach space X, the completion of X.

Proposition 1 Let T be a strongly extensional unbounded linear map-
ping between normed spaces X,Y . Then for each binary sequence (a,)
there exists x € X such that if x € X, then

Vo (a, =0)V3In (a, =1).

Proor. We may assume that (a,) has at most one term equal to
1. For each positive integer n choose a unit vector z,, € X such that
|Tz,|| > n*. Then Y27 a, |T,|| ™" 2, converges to a sum z in the
Banach space X, by comparison with 3% ,n~2. Suppose that z € X.
Then either Tz # 0 or ||Tz|] < 1. In the first case, as T is strongly
extensional,  # 0 and so there exists n such that a,, = 1. In the second,
suppose that there exists N such that ay = 1; then Tz = ||Tzy|[" Tan
and so ||T'z|| = 1, a contradiction; whence a, = 0 for all n. Q.E.D.

Ishihara [11] has shown that in recursive constructive mathematics—
constructive mathematics plus Church’s thesis—every linear mapping on
a Banach space is sequentially continuous and therefore not unbounded;
this result also holds in the intuitionistic model of constructive math-
ematics ([18], page 354, 2.8). Since BISH is consistent with classical
(that is, traditional) mathematics, we cannot hope to prove that recur-
sive/intuitionistic continuity result within BISH. What we can prove,
however, is that the existence of unbounded linear mappings on a Ba-
nach space is essentially nonconstructive.

Corollary 2 If there exists a strongly extensional unbounded linear ma-
pping on a Banach space, then LPO holds.

ProoF. This is an immediate consequence of Proposition 1. Q.E.D.
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A linear mapping 7' : X — Y between normed spaces is said to be
closed if its graph is a closed subset of X x Y'; that is, if

(z,vz€X and Tz, wyeY)=y="Ta.

The constructive closed graph theorem says that if X is complete
and the graph of T is both closed and separable, then T is sequentially
continuous ([12], Corollary 2). The separability hypothesis is not needed
in classical analysis, where the conclusion is the stronger one that T is
bounded.

Proposition 3 If T is an unbounded closed linear mapping, with a
separable graph, of a normed space X into a Banach space Y, then

ﬁ()?:X).

Proor. If X = X, then the closed graph theorem shows that T is
sequentially continuous, a contradiction. Q.E.D.

Let H be a Hilbert space, and 7" a linear mapping of a dense subspace
of H into H; then we say that 7" is a densely defined operator on
H. The adjoint T* of a densely defined operator T on H is defined as
in classical mathematics. Thus the domain of T™* comprises those z € H
for which there exists y € H (which is then uniquely defined by z) such
that

(y,2) = (e, Tz) (2€H),

and for such an z we write T*z = y. In contrast to the classical situation,
T* may not be defined even if T is a bounded operator defined on the
whole space H; see [9].

When dealing with unbounded linear operators on linear subsets of a
Hilbert space, we can obtain substantial improvements upon Corollary 2.
For the first of these we need the constructive uniform boundedness
theorem (a contrapositive of the usual classical version of that result):

If (An) is a sequence of bounded linear mappings from a Banach space
X into a normed space Y, and (zn) 1is a sequence of unit vectors in

X such that ||Anzn|| = 00 as n — oo, then there exists £ € X such
that || Anz|| = oo as n — oo ([16], page 61).

Proposition 4 If H is a Hilbert space, and T is an unbounded densely
defined operator on H with an adjoint, then there exists an element £ of
H such that T is undefined.
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PROOF. Let (z,,) be a sequence converging to 0 in H such that ||Tz,|| —
0o. Applying the uniform boundedness theorem to the linear functionals
z + {(z,Tz,), we obtain a unit vector £ € H such that |(§,Tz,)| = co as
n — oo. If T¢ is defined, then (¢, Tz,) = (T, 2,) — 0, a contradiction.
Hence T€ is not defined. Q.E.D.

If T is an unbounded densely defined operator on a Hilbert space H,
what can we say about its adjoint? It is closed (see [13]), but need not
be unbounded; in fact, it can be 0 even though T is densely defined
(see [17]). Classically, T* is unbounded: for if it were bounded, we
could extend it by continuity to a bounded operator on H whose adjoint
would be bounded; whence T" would have a bounded extension. When'
H is separable, the same result holds constructively, but, of course, with

~a direct proof.

Proposition 5 If T is a densely defined operator on a separable Hilbert
space H such that T* is unbounded, then T is unbounded.

PROOF. Since it is a dense subset of a separable space, the domain
of T is separable; so there exists an increasing sequence (V,,) of finite-
dimensional subspaces whose union is dense in that domain and therefore
in H. Let P, be the projection of H on V,,. Given K > 0, choose a unit
vector £ € H such that ||T*¢|| > K + 1. Then choose n such that

177§ = P T\l = p(T7, Vo) <1
and therefore |P,T*¢|| > K. Setting
2= |PTE ™ BT,
we see that P,z = z, ||z]| = 1, and
K < ||[PTE|| = (PaT7¢,2) = (§, Thu2) = (§,T2) < ||Tz]|. Q.E.D.

Corollary 6 Let T be an unbounded densely defined operator on a Hil-
bert space, such that T* is densely defined. Then there exists £ € H such
that T¢ is undefined.

Proor. Use the preceding two results. Q.E.D.

Returning to the context of Banach spaces, we show how to improve
Corollary 2 under Church’s thesis (that is, in the recursive model of
BISH).
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Abstract:

In a paper appeared in 1990, C.J. Mulvey established a constructive
characterization of completely prime filters on a compact regular locale
L; although proved by intuitionistic logic, the result relies on a notion
of maximality which contains an impredicative second-order quantifi-
cation. In this note we present an alternative concept of maximality,
entirely phrased in first-order terms, and give a predicative characteriza-
tion of the points of a compact regular formal topology (equivalently, we
give a characterization of the points of a compact regular locale which
can be entirely carried out within Intuitionistic Type Theory). This
result is then generalized to locally compact regular formal topologies
(resp. locally compact regular locale).

Introduction

Formal Topology! was conceived with the aim of developing point-free
topology (Locale Theory) in a constructive and predicative foundational
setting, such as Martin-Lo6f’s Intuitionistic Type Theory. Quite recently,
the topological notion of regularity has been predicatively formulated in

*Partially supported by the project “Metodi Costruttivi in Topologia, Algebra e Analisi dei
Programmi” of the Ministero dell’ Universita e della Ricerca Scientifica e Tecnologica.
!Formal Topology was introduced in [15]; a more recent presentation is contained in [16],

[17].
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this framework, and the class of compact regular formal topologies has
shown to have nice and promising properties, particularly from a con-
structive standpoint (cf. e.g. [5], [3] and [14]). In this note we establish
a constructive characterization of the points of a compact regular formal
topology, in which formal points are shown to coincide with particular
subsets of basic neighbourhoods, the mazimal regular ones. The specific
feature of this characterization is that regular subsets will be considered
to be maximal according to an entirely first-order criterion of maximal-
ity.

This result can then be seen to improve a previous characterization
appeared in the context of Locale Theory: in [9] indeed Chris Mulvey in-
troduces a particular formulation of the notion of maximality for regular
filters which allows to prove intuitionistically that the completely prime
filters on a compact regular locale coincide with the maximal regular fil-
ters (cf. [9]). In such a notion of maximality, however, an impredicative
second-order quantification appears which makes the result incompatible
with foundational settings for constructive mathematics such as Martin-
Lof’s Intuitionistic Type Theory and Aczel’s Constructive Set Theory.
A natural relation then exists between Formal Topology and Locale The-
ory (cf. [15]) that allows to give the following reading of our result: a
characterization of completely prime filters on a compact regular locale
by means of maximal regular filters can be obtained intuitionistically
and predicatively, and such a characterization can be entirely carried
out within Intuitionistic Type Theory.

Few modifications allow to generalize this result to locally compact
regular formal topologies (and thus to locally compact regular locales).
Then, in particular, examples of topologies for which these characteriza-
tions are valid are (that giving rise to) the Continuum, Cantor space and
the spaces L(A) of linear functionals of norm < 1 from a semi-normed
space A to the reals?.

1. PRELIMINARIES

We recall the basic definitions of Formal Topology ([15]). The reader
is referred to [15], [16] and [17] for a detailed account (the presentation
we are to adopt appears in [16]). We use a special notation for subsets,

2Endowed with the weak* topology, cf. [4].
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introduced and motivated in [18], which allows to work within Intuition-
istic Type Theory (henceforth simply Type Theory, cf. [8], [13]) with
essentially the usual mathematical formalism: for the present purpose
it will suffice to know that a subset U of a set S is a unary predicate
(dependent type) on S, U(z)(z € §), and that a set-indexed family of
subsets is a binary predicate U(z,i)(z € S,¢ € I) on the sets S and I,
where for each 7, U(z,%)(z € S) is the subset of index ¢ (for simplicity,
we will also use the traditional notations {a € S : U(a)}, to indicate the
subset U, and U;(i € I) for a family of subsets). Finally, we will write
a €U tomean a € S and U(a) true (in the expression a € U the symbol
‘¢’ is used, instead of ‘€’, to recall that we are considering a subset, i.e.
a propositional function, and not a set; cf. [18]).

1.1 A (formal) topology is a triple S = (S, <, Pos) where S is a set,
called the base, < is a relation between elements and subsets of .S which
satisfies the following conditions:

aelU
it
(reflexivity) T
aU UaVv
t twvit
(transitivity) ponY.
. a1U adV
({-right) C ULV
where
UV = Muel)uaV
ULV = {d:5] (Fuel) (da{u}) & (FveV) (da{v})}

and Pos is a subset of S which satisfies

- Pos(a) a<U

t R

(monotonicity) (3 ¢ U)Pos(d)
(positivity) Pos(a) =+ a < U.

aqU

We will write Pos(U) for (Ja € U)Pos(a). The relation < is called cover
and Pos positivity predicate (we pronounce a < U as ‘U covers a’, and
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Pos(a) as ‘a is positive’ ). For simplicity, when a basic neighbourhood a
is covered by a singleton subset {b} we will often write a < b instead of
a < {b}.

One can think intuitively of the elements of S as of indexes for the
basic neighbourhoods of a topological space; the cover relation can then
be seen as a formal description of the inclusion between basic neigh-
borhoods and subsets of S, and the predicate Pos as a positive way to
express that a certain neighbourhood is non-empty. Then, for instance,
‘monotonicity’ has the following intuitive reading: if a non-empty neigh-
bourhood is covered by a family of neighbourhoods (indexed by U) then
there must be at least one member of the family which is non-empty.

An equivalent formulation of positivity (cf. [15]) which we will use in
the following is

adU

aqUY’
where Ut = {b ¢ U : Pos(b)} (that is, only non-empty neighbourhoods
contribute to the cover).

Finally, we recall that given two subsets U,V of S, U =s V means ex-
actly that U<V & V qU, and that for U C S, the (pseudo-)complement
U* of U is given by U* = {b: —~Pos(b | U)}.

1.2 In a formal topology S a formal point is a subset & C S such that

i. (Jda)(a € @) . (aea&bea)—>(Je)(cealb& cea)

aca aU
(36) (beU & b € )

iv. a € @ = Pos(a).

We will denote by Pt(S) the collection of formal points. (Condition 7v.
is actually known to be derivable from i:. and positivity and could thus
be skipped?).

1.3 The relation with Locale Theory can be sketched as follows (a
detailed discussion of this subject is contained in [15], [17]): defining, for

3A proof is recalled in [12]. A generalized definition of Formal Topology can however be
considered in which the positivity rule is not required, cf. [16].



THE POINTS OF REGULAR FORMAL TOPOLOGIES 43

UC S, SU to be the subset {a € S :a<1U}, we say that U is saturated
if U = SU; denoting then by Sat(S) the collection of saturated subset
of §, Sat(S) endowed with the operations

SUANSV =8UNSV =SU V)

and
\/ SUZ' = S(U U,‘)
el el
forms a frame (or locale, or complete Heyting algebra).

From a non-constructive point of view the converse is also valid (that
is, any frame can be obtained as the frame of saturated subsets of a
formal topology &). Finally, the points of a formal topology S are easily
shown to correspond to completely prime filters on Sat(S).

1.4 A formal topology S = (S, <, Pos) is said to be compact if whenever
S <4 U there exists a finite* subset Uy C U such that S < U,.

The notion of regularity have been recently introduced in Formal
Topology as the predicative counterpart of that given in the context
of locales (see for instance [6]): for a,bin S, we say that b is well-covered
by a iff S < aUb*; defining we(a) to be the subset of neighbourhoods &
which are well-covered by a, we(a) = {b: S <aUb*}, a formal topology
S is then said to be regular if for all @ in S, a <t we(a)®. A topology S
will be said to be compact regular if it is compact and regular.

The following lemmas will be used in the following, often without an
explicit mention; they obtain in any formal topology §.

Lemma 1.5. Let V,W, Z be subsets of S, and U;(v € I) be a family of
subsets of S. We have
i) VuUWlZ)=s (VUW) | (VU2Z),

i) (U ULV =UiUi L V).

4Note that here and in the following a set, or a subset, is considered to be ‘finite’ if its
elements can be listed; cf. the notions of finite and sub-finite in [2].

5This definition appeared in [14]; in case of compactness, it is equivalent to the one introduced
in [5], [3].
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Abstract: The embedding of a linear set of bounded operators on a separable
Hilbert space as a dense subset of the dual of its predual is explored
constructively.

In this paper we continue the study of spaces of operators on a Hilbert
space within constructive mathematics, as part of a programme for the
systematic constructive development of the theory of operator algebras
[6, 7].

The constructive framework within which we operate was erected by
the late Errett Bishop [2], under the requirement that “existence” must
be strictly interpreted as “computability” relative to some notion of algo-
rithm. By not specifying formally what he meant by an algorithm, other
than insisting that it must be executable by a finite number of human
beings or computers in a finite time, Bishop enabled his work to have
a variety of interpretations; in particular, all theorems of Bishop’s con-
structive mathematics hold within classical (that is, traditional) mathe-
matics and Brouwer’s intuitionistic mathematics, and under a recursive
interpretation.

Note, incidentally, that Bishop’s algorithmic interpretation of exis-
tence makes no demands about the complexity of the algorithms used;
at present, constructive mathematics addresses questions of computabil-
ity in principle, rather than computability in practice. (See, however,
(1),

The main practical difference between constructive and classical math-
ematics is one of logic. The algorithmic interpretation of existence forces
us to re—examine the interpretation of each logical connective and quan-
tifier, and leads, it seems inevitably, to the use of intuitionistic logic, as
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originally codified by Heyting [11]. We also have to modify the underly-
ing non-logical principles—for example, the axioms for the real line R
[5] or the axioms of Zermelo-Fraenkel set theory [14]—so as to ensure
that one cannot derive from them classical principles, such as the law
of excluded middle, that are independent of intuitionistic logic. Once
these precautions have been taken, we are, to all (non—philosophical)
intents and purposes, working with intuitionistic Zermelo—Fraenkel set
theory using intuitionistic logic. (For additional background material on
constructive mathematics see [1, 2, 3, 5, 9, 15].)

Let H be a Hilbert space (not necessarily separable), B(H) the space
of bounded linear operators on H, and By (H) the unit ball of B(H).
Recall that the weak—operator topology 7, on B(H) is the weakest
topology with respect to which the mapping 17" — (T'z,y) is continuous
for all z,y € H. This topology is determined by the seminorms T
|(T'z,y)|, where z,y run through any dense subset of B1(H). Classically,
Bi(H) is T,—compact; but constructively the most we can say, in general,
is that it is 7,~totally bounded [6].

Let R be a linear subset of B(H), let R1 = RN Bi(H), and let Ry
denote the linear space of all linear functionals on R that are ultra-
weakly continuous—that is, 7,—uniformly continuous on Rq. If Ry is
Tw—totally bounded, then

Al = sup{If(T)]: T € R}

defines a norm on Ry; taken with this norm, Ry is called the predual

of R.

For convenience, we denote by f, ., the ultraweakly continuous func-
tional T — (Tz,y) on B(H). We also recall that the weak* topology
on the dual X™ of a locally convex space is the topology defined by the
seminorms f — |f(z)| (z € X); see [9] and [10].

Theorem 1 Let R be a linear subset of B(H) such that R; is totally
bounded in the weak-operator topology T, and define a mapping ¢ of R
into the dual space Ry of Ry by

HT)(f)=1(T) (TeR).
Then ¢ is one—one and linear, and is uniformly continuous on R;. More-

over, $(R1) is weak*—dense in the unit ball of R}, and the restriction of

¢ to #(Ry1) is uniformly continuous with respect to the weak*—topology
on Ry and the weak-operator topology on Ri.
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Proor. Since ¢ is clearly linear, to prove that it is one-one we need
only show that its kernel is {0}. But if ¢(T') = 0, then we have (T'z,y) =
&(T) (foy) =0 for all z,y € H; whence T' = 0.

For each f € Ry the mapping T' — ¢(T)(f) equals f and so is 7~
uniformly continuous on Ry. It follows immediately that ¢ is uniformly
continuous as a mapping of (R1, 7,) into Ry (with the weak*~topology).
Hence K = ¢(R,) is weak™totally bounded, and therefore located, in
Ry (see [7,10]). Let u be an element of Ry, let {f1,..., fv} be a finitely
enumerable subset of Ry, and let ¢ be a positive number. To prove that
#(R1) is weak*~dense in the unit ball (R}): of Ry, it is enough to show
that K intersects the neighbourhood

V:{ve (R5), : I(u—v) (fi)l < 3¢ (1§k:§N)}

of uin (Rg)l To this end, choose a finite-dimensional subspace G of Ry
such that
inf {||[fe —gll:9€G}<e (1<k<N)

([3], page 308, Lemma (2.5)); foreach k (1 < k < N), then choose gy € G
such that || fx — gk|| < €. The dual space G* of G is a finite-dimensional
Banach space with respect to the usual norm defined by

[lo]/" = sup {lv(g)|: g € G, llgll < 1}
Since K C (Rj)1, and (Rf)1 is a subset of the unit ball of (G*),, we can
regard u and, for each T' € R4, the functional ¢(T) as elements of (G*);.
Now suppose that
inf {||lu—@(T)||' : T € R1} #0. (5.1)

Note that K, being weak*—totally bounded, is located in G;. By Corol-
lary (4.4) on page 341 of [3], there exists a linear functional %, with norm
1, on G* such that

| (w)] > sup {[¢(v)] : v € K}.

Since G is finite~dimensional, v is weak*—uniformly continuous on (G*),;
so, by Corollary (6.9) on page 357 of [3], there exists g € G such that
Y(v) = v(g) for all v € G*. In particular,
lu(g)| > sup{lv(g)] : v € K}
=sup{|¢(T)(9)|: T € Ru}
=sup{g(T): T € Ry}
= llgll»
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which is absurd since u € (Rj);. We conclude that (1) is false, and
hence that

lu — $(To)ll" <

€
M+1
for some Ty € R, where

M = .
 Bax, llgx||

For each k (1 < k < N) we now have
[(u — ¢(T0)) (fi)| < [(u = &(To)) (fi — gr)| + |(u — 6(T0)) (gx)]
< 2|1k = grll + Ilu = (To)ll' gl

€
2 M
< €+M+1

< 3¢;

in other words, ¢(Tp) € V. Since ¢(Tp) € K, this completes the proof
that ¢(Ry) is dense in (R});.

Finally, the uniform continuity of the inverse mapping on K follows
from the identity

|<Ta:,y)|: |¢(T) (fx,y))| (iU,yEH; TERl)v

with reference to the definitions of the weak*— and weak—-operator topolo-
gies, and to Proposition 1.2.8 on page 19 of [12]. Q.E.D.

We proved in [7] (see also [8]) that, under the hypotheses of Theorem 1,
the ultraweakly continuous linear functionals on R extend to ultraweakly
continuous linear functionals on B(H ) and are precisely those functionals
fa mapping T to Trace(T'A), with A a trace—class operator on H. The
norm of f4 on R is

|fallr = sup{|Trace(TA)|: T € R:},
which in the case R = B(H) equals the trace—class norm
JAll, = Trace (A)

of A (see [4]).
Taken with Theorem 1, these observations lead to
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Corollary 2 Let R be a linear subset of B(H) such that Ry is totally
bounded in the weak—-operator topology 7,. Let T(H) denote the set of
trace—class operators on H, taken with the norm '

[[Allr =sup {|Trace(T'A)|: T € R},
Then
®(T)(A) = Trace(TA) (T € R, Ac T(H))

defines a one—one linear mapping ® of R into the dual space T (H)* with
the following properties.

(i) ®(R1) is dense in the unit ball T(H)T of T(H)*.
(ii) @ is uniformly continuous on R;.

(iii) the restriction of ®~! to ®(R1) is uniformly continuous relative to
the weak* ~topology on ®(R;) and the weak-operator topology on
Ry.

Corollary 3 Under the hypotheses of Theorem 1 and Corollary 2, the
following conditions are equivalent.

(i) Ry is weak-operator complete.
(ii) ¢ maps R1 onlo the unit ball of Ry.
(iii) ® maps Ry onto the unit ball of T(H)* relative to the norm ||-|| .

Proor. This is a special case of the following general lemma about
metric spaces, whose straightforward proof we omit. Q.E.D.

Lemma 4 Let X be a metric space, Y a complete metric space, and ¢
a one-one uniformly continuous mapping of X onto a dense subset of Y
such that ¢~ is uniformly continuous on ¢(X). Then X is complete if
and only if p(X) =Y.

Classically, any von Neumann algebra—that is, weak—operator closed
*-subalgebra of B(H) —can be identified, via the mapping ¢, with the
dual of its predual Ry ([12], Vol. 2, page 482). If this were provable
constructively, then we could use Theorem 1 to prove that By (H) is Ty~
complete, which, as mentioned above, we cannot do within constructive
mathematics. Thus Theorem 1 appears to be the best general construc-
tive result of its type.



