
2
Capability Maturity Model

Organization of the CMM
The CMM developed by the Software Engineering Institute (SEI) has
been explained in great detail in different publications. Some of you have
probably already read about it, gone through CMM training, or been
trained on how to conduct a software capability evaluation (SCE).

CMM is a conceptual framework that represents process manage-
ment of software development. CMM contains five maturity levels or
stages [1].

1. Level 1, initial: The software process is characterized as ad hoc,
chaotic, and heroic. Few processes are defined or followed, and
project success depends on individual effort. There is no formal
management control over software development.

2. Level 2, repeatable: This level provides an introduction to the
formal, documented process. Basic management processes are

9



established to control cost, scheduling, and functionality. The
necessary process discipline is in place to repeat previous suc-
cesses on projects with similar applications. Elevation from Level
1 to Level 2 means that the organization has established project
management control, established a software engineering process
group (SEPG), and formally introduced software engineering
methods and techniques.

3. Level 3, defined: This level provides a foundation for continuous
process improvement by establishing the necessary process man-
agement functions to control process parameters. The software
process for both management and engineering activities is docu-
mented, standardized, and integrated into a standard software
process for the organization. All projects use a tailored version of
the organization’s standard software process for developing and
maintaining software.

4. Level 4, managed: Detailed measures of the software process
and product quality are collected. Both the software process and
products are quantitatively understood and controlled.

5. Level 5, optimized: Continuous process improvement is enabled by
quantitative feedback from the process and from piloting innova-
tive ideas and technologies.

These five maturity levels define an original scale for measuring the
maturity of an organization’s software process and for evaluating its soft-
ware process capability (Figure 2.1). Each maturity level indicates the
level of process capability.

Levels 2 through 5 are decomposed into 18 key process areas (KPAs)
as shown in Figure 2.2. Each KPA is organized into five sections, called
common features.

1. Commitment to perform: Describes the actions that must take place
within the organization to ensure that the process is established
and will function. The commitment to perform feature usually
involves developing organizational policies and senior manage-
ment sponsorship.

10 Software Process Improvement With CMM



2. Ability to perform: Describes the preconditions that must exist in
the project or organization to implement the software process
competently. It usually includes resources, training, organiza-
tional structures, and tools.

3. Activities performed: Describes the roles and procedures necessary
to implement a key process area. This feature typically involves
establishing plans and procedures, performing the work, tracking
it, and taking corrective actions as necessary.

4. Measurement and analysis: Describes the need to measure the
process and analyze the measurements. The measurement and
analysis feature typically includes examples of the measurements
that could be taken to determine the status and effectiveness of
the activities performed feature.

5. Verifying implementation: Describes the steps to ensure that the
activities are performed in compliance with the process that has

Capability Maturity Model 11

Initial
level 1

Repeatable
level 2

Defined
level 3

Managed
level 4

Optimized
level 5

The SEI maturity framework

Figure 2.1 SEI maturity framework.



12 Software Process Improvement With CMM

1.
Re

qu
ire

m
en

ts
m

an
ag

em
en

t
2.

So
ft

w
ar

e
qu

al
it

y
as

su
ra

nc
e

3.
So

ft
w

ar
e

co
nf

ig
ur

at
io

n
m

an
ag

em
en

t
4.

So
ft

w
ar

e
pr

oj
ec

t
tr

ac
ki

ng
an

d
ov

er
si

gh
t

5.
So

ft
w

ar
e

pr
oj

ec
t

pl
an

ni
ng

6.
So

ft
w

ar
e

su
b-

co
nt

ra
ct

m
an

ag
em

en
t

1.
Or

ga
ni

za
ti

on
al

pr
oc

es
s

de
fi

ni
ti

on
2.

Or
ga

ni
za

ti
on

al
pr

oc
es

s
fo

cu
s

3.
Tr

ai
ni

ng
pr

og
ra

m
4.

So
ft

w
ar

e
pr

od
uc

t
en

gi
ne

er
in

g
5.

Pe
er

re
vi

ew
6.

In
te

rg
ro

up
co

or
di

na
ti

on
7.

In
te

gr
at

ed
so

ft
w

ar
e

m
an

ag
em

en
t

1.
Qu

an
ti

ta
ti

ve
pr

oc
es

s
m

an
ag

em
en

t
2.

So
ft

w
ar

e
qu

al
it

y
m

an
ag

em
en

t

1.
Pr

oc
es

s
ch

an
ge

m
an

ag
em

en
t

2.
Te

ch
no

lo
gy

ch
an

ge
m

an
ag

em
en

t
3.

De
fe

ct
pr

ev
en

ti
on

Re
pe

at
ab

le
De

fi
ne

d
M

an
ag

ed
Op

ti
m

iz
ed

Fi
gu

re
2.

2
CM

M
le

ve
ls

an
d

KP
A

s.



been established. Verifying typically means reviews and audits by
management and software quality assurance.

The practices in the activity performed common feature (item 3 above)
describe what must be implemented to establish a process capability.

Key practices (CMM has 316 suggested) describe the infrastructure
and activities that contribute to the effective implementation and institu-
tionalization of the key process area. The key practices describe “what”
should be done, but do not mandate “how” it is to be done. They do not
require a specific model of the software life cycle such as a waterfall or
spiral. They do not demand a specific organizational structure. They do
not judge a technical approach to product implementation or the devel-
opment tools used. They merely suggest; that is, they do not mandate.
Instead they leave the “how” up to each individual organization. The
CMM is a management model. It gives you a guideline on how to manage
a software process and does not judge the technical aspects of the product
development or the performance of the developers.

The software process improvement and level achievements of the SEI
CMM are very similar in nature and have the same objective: to improve
how software is developed. Software process improvement is a general
issue, the specifics of which are addressed in CMM. Three main issues are
related to software process improvement and software project manage-
ment: (1) cost, (2) scheduling, and (3) quality.

These issues often become big, pathological problems, which end up
making the whole organization dysfunctional. These issues are not tech-
nical issues. These issues are issues of management—the issues of how to
manage and identify the impact of present or potential problems. How do
we prevent an issue from becoming a problem?

The improvement in the term software process improvement refers to an
improvement in management techniques! That is what most companies
had not realized earlier. This is where both the nature of conflict (us ver-
sus them) and inconsistency in organizational goals arise. “All too often,
proactiveness is reactiveness in disguise. If we simply become more
aggressive fighting the enemy out there, we are reacting—regardless of
what we call it. True proactiveness comes from seeing how we contribute
to our own problems. It is a product of our way of thinking, not our emo-
tional state” [2].

Capability Maturity Model 13



I was told this story: Once upon a time, a big company invited a very
famous consultant to its headquarters for a discussion about CMM and
software process improvement. The company published a memorandum
requiring the participation of all software managers in the meeting. The
first thing the consultant said was that “the cause of poor quality is poor
management.” Right there, the management immediately lost any inter-
est, and after the break, the room was almost empty. The company never
invited the consultant back.

The five CMM levels
Now we take a look the five CMM levels in a little more detail.

Level 1: initial
The first question I ask new clients is this: “When was your last reor-
ganization?” Why do I ask that question? Because I need a starting
point.

Unfortunately, the initial level processes are the most practiced
processes in the software business. Companies develop these processes
over time and develop ownership. To some degree, they represent the
reality of the software development organization: pressures, crises, and
limitations. As the processes grow, more and more software developers
get involved. A particular process can became so complex that nobody
knows exactly how and why it works. The Level 1 processes constantly
change, just as organizations change. Processes are not documented so
people cannot really understand them. The success of Level 1 organiza-
tions in product development comes not from the project management
function but from the efforts of individuals performing their specific tasks
without a clear understanding how the process works. I like to compare
the Level 1 organization with a typical John Wayne movie, in which
the main character is a hero who always saves the new settlers from the
bad guys.

One of the interesting characteristics of the Level 1 organization is
that management’s presence is very strong, but very inefficient due to the
lack of communications. As a result, the quality and the delivery schedule

14 Software Process Improvement With CMM



of the product is unpredictable. At this point, the management and man-
agement decisions become very unpopular among the practitioners [3].

At Level 1, management’s remedy to improve a process is to reorgan-
ize. They believe the process is okay, but the way in which management
executes the process is wrong. In the first few months after a reorganiza-
tion the productivity of the employees usually increases; fear drives
them, fear of management. The productivity of the department increases
not because the process has been improved by the reorganization, but
because extra hours are spent at the terminal.

What is the next step to address symptoms not problems? Another
reorganization!

Level 2: repeatable
At this level, basic project management processes are established to track
costs, schedules, and functionality. The necessary process discipline is in
place to repeat earlier successes on projects with similar applications [1].

A repeatable process is a documented process. The process should be
communicated on all levels with the help of documented procedures. (By
the way, if your organization does not have documented procedures, you
failed the assessment.)

At Level 2 the project managers shift their attention from technical
issues to organizational and managerial issues. Therefore, they should
have two basic abilities: (1) the ability to determine and communicate the
status of a project as accurately as possible and (2) the ability to estimate
the impact of past decisions and document and review them in terms of
scheduling, effort, and product quality.

You start your continuous process improvement at the repeatable
level by listening to your software practitioners and by documenting
the process with formal procedures. These procedures will be used
across the organization and continuously improved. Everybody wants
action—discussions take time. Level 2 is about listening, communicating, and
documenting [3].

Level 2 is concerned primarily with how the organization estimates,
defines, and determines the status of a project and with the impact of
decisions in terms of costs, scheduling, and quality. The following issues
are very important at the repeatable level:

Capability Maturity Model 15



■ Impact of changed commitments to the customer;

■ How the software requirements baseline has been modified, how
extensive the changes are, and how changes are controlled and
communicated;

■ Impact of the work effort (how the resources are planned in
order to implement the customer’s requirements and allocated to
accommodate the modifications);

■ Impact of the schedule (how the schedule is modified based on
changed commitments);

■ Impact of costs (determining the cost implications of the modifica-
tions).

Because these project management issues are interdependent, CMM sug-
gests ways to control the process and suggests the metrics approach for
qualifying and quantifying the impact of modifications.

The repeatable process enables organizations to integrate the histori-
cal analysis of past performance into documented procedures to improve
continually. With the use of measurement, a historical analysis of previ-
ous projects (procedures, interpretations, and knowledge base required)
can take place, providing management with information about design,
scheduling, quality, and costs. This information helps management make
qualified decisions before contractual obligations are made. Historical
analysis is a technique that allows organizations to “adjust future conduct based on
past performance.”

Historical analysis of previous projects is necessary to establish and
understand the pattern of how the organization develops the product.
Project history data fall into three major categories: software develop-
ment, operational data, and maintenance data. Software development data
and operational data describe the characteristics of the project (e.g., prod-
uct, process, and resources) and form the foundation for developing esti-
mation and prediction models. Software maintenance data describe the
behavior of the product (e.g., its successes/failures and modifications
history).

The approach is to determine systematically answers to the following
questions when looking at historical analyses:

16 Software Process Improvement With CMM



■ What is known about the past project?

■ What is unclear?

■ What is assumed?

■ In what ways are past project implementations similar?

■ In what ways are past project implementations different?

Each question demands a factual answer, and these can only be obtained
through analysis and investigation. If objective answers are obtained, then
the decision is much less likely to be faulty.

Level 3: defined
The software process for both management and engineering activities is
documented, standardized, and integrated into an organization-wide
software process. All projects use a documented and approved version of
the organization’s process for developing and maintaining software [1].

Level 3 supports projects by institutionalizing and expanding the
main principles of Level 2 across the entire organization. At Level 3 tasks
are being formally defined and documented. Level 3 shifts the emphasis
from the project itself to organizational support of the project. Level 3 is
built on the project management foundation of Level 2. If the repeatable
level defines what to do and who should do it, the defined level specifies
when to do it and how to do it (Figure 2.3).

Level 3 establishes a common understanding of the process across
the organization and also provides flexibility in terms of how to change

Capability Maturity Model 17

What Who When How

L2 L3

Figure 2.3 Transition from Level 2 to Level 3.



the process and relate it to ongoing activities. It provides the foundation
for the quality of management decisions.

At maturity Level 3, the organization not only defines its process in
terms of software engineering standards and methods, it also makes
a series of organizational and methodological improvements. These
improvements include design and code reviews, training programs
for developers and review leaders, and increased organizational focus
on software engineering. The establishment of a software engineering
process group is considered to be one of the major improvement of this
phase, and it focuses on the software engineering process and the ade-
quacy with which it is implemented.

A process cannot be defined if we do not know how the process flows
throughout the organization.

Level 4: managed

In Level 4, detailed measures of the software process and product quality
are collected. Both the software process and products are quantitatively
understood and controlled using detailed measures [1]. The KPAs of
Level 4 are probably the most misunderstood requirements in the entire
structure of CMM because the directions about how to move from
Level 3 to Level 4 are very fuzzy.

The managed level is not merely about measurements; if it were, it
would be called the measured level. Instead, Level 4 is about seeing and
understanding the process as a whole by identifying interrelationships
between subprocesses and managing them as they change. If Levels 2 and
3 are just a foundation for successful process management building,
Level 4 provides a vision for the organization to control and finish con-
struction of the building. Level 4 is an integration stage for all policies,
procedures, and measurement practices implemented in the previous
levels. Implementation of Level 4 KPAs allows management to predict
not only the quality of the product, but the quality of its decisions.

Consider the story of three masons. A pedestrian asked three masons
working on a construction project what they were doing. The first mason
said, “I am laying bricks”; the second mason said, “I am building a wall”;
and the third mason said, “ I am building a temple to worship God.”

18 Software Process Improvement With CMM



Level 4 involves a dynamic set of subprocesses that is organized and
internally directed toward certain goals. What are your goals? How pro-
ductive have you been in achieving these goals? The process parameters
should be defined first and measured second. The key elements of such a
process include the following:

■ Setting of subgoals that are instrumental to the achievement of
higher level goals;

■ Implementation of planned actions designed to coordinate the
behavior of the process and its subprocesses to move them toward
established goals;

■ Management and monitoring of process performance so corrective
actions can be taken if necessary.

Moving to Level 4 is very difficult and very time consuming, unless
the organization starts implementation of measurement and metrics at
the very beginning of the software process improvement.

Level 5: optimized
Continuous process improvement is enabled by quantitative feedback
from the process and from testing innovative ideas and technologies [1].
In Level 5, the organization moves from the process improvement stage
into the process management stage. Changes are monitored closely,
using the measurement system, and the process is refined as needed. The
organization operates at peak performance.

The keyword for Level 5 is feedback. It is not only a keyword, it is a
concept. Management and its actions are part of the feedback process.
Everybody shares responsibility for the problems associated with the
process. No one person can be blamed.

You have to be very careful, though, with the feedback process. Why?
It can limit your growth or push you back to the chaotic stage. The feed-
back should be goal oriented and balanced, otherwise you will fall into the
trap of managing the changes that are wrong for your organization from
the very beginning, and the process will feed itself with faulty
information.

Capability Maturity Model 19



In the Level 5 organization, cycles are as regular as a daily commute.

Commuter—one who spends his life
In riding to and from his wife;
A man who shaves and takes a train
And then rides back to shave again.

E. B. White

Benefits of the CMM approach
Do you remember the story of the Knights of the Round Table? The circle
of the Round Table united its members with a set of common goals, ideas,
and ethics—a common bond. After knights spent time at the Round
Table, each of them went his own way, killing dragons and saving
women, but their paths met, crossed, and intertwined [2].

CMM unites the software development organization and provides the
following navigation and leadership tools with which management can
improve the way in which they manage software projects:

■ A clear understanding by software developers of what is expected
of them. (“I have no idea what the customer really wants.” “No one
asked me if it is possible to implement this.”)

■ Clarity of work procedures and sufficiency of resources, skills, and
knowledge. (“I do not have the training, the tools, the proper
resources, or the time to do this job right.”)

■ Cross-functional processes that affect customer quality are
defined. (“All I do is fix bugs.”)

■ Opportunities for improving the organization, process, and prod-
uct quality. (“Hey, I tested my change, and it worked just fine in my
environment.”)

Common features of key process areas
The CMM’s concept of common features is not really a new concept. In
1931, Walter Shewhart recognized that the outputs of manufacturing

20 Software Process Improvement With CMM



processes are subject to some types of variation, variations that cause
excessive quality problems [4]. No two items going through a production
line turned out exactly the same. The variations occurred as a result of
imprecisions on the part of the machinery or the material or because of
the skills of different machine operators. Shewhart called these common
causes of variations and viewed them as a natural phenomenon in the pro-
duction process. He developed methods for measuring variations and
provided managers and workers the tools for determining whether their
processes were operating smoothly or needed attention in order to
improve quality.

On top of that, he recommended a course of action for each case. As a
result, manufacturing personnel were able to identify the variations in a
process and find ways to reduce them. This became known as the She-
whart cycle, and later reappeared in Japan under the name kaisen (con-
tinuous improvement). Don’t you remember “Plan, Do, Check, and Act”?

Let’s use the example of the Shewhart cycle as an analogy for our
cause. CMM provides a structure for KPAs. This structure contains com-
mon features; is composed of goals, commitments, abilities, activities,
measurements, and verification; and can serve as the main structure for
software process improvement.

Goals

The goals stated in CMM are linked directly to the problems and oppor-
tunities of the software development organization.

For example, one CMM goal is the following: System requirements
allocated to software are controlled to establish a baseline for software
engineering and management use. Can you relate that goal to your busi-
ness situation? Of course, you can. The requirements management prob-
lem is one of the most common problems in a software engineering
community. In many companies the requirements are not controlled at
all. They change all the way through the software development cycle,
including the beta test.

Try to relate the KPA’s goals to your business case. Very soon, you
will realize that the problems you experience with your software devel-
opment are the results of missing goals. Examples of typical problems
include the following:

Capability Maturity Model 21



■ Product delivery is late.

■ The size and costs of the project keep increasing.

■ The project is out of control.

■ The product does not meet requirements.

■ The performance of software subcontractors is poor.

This list, however, is endless.

Commitment to perform
This common feature usually involves establishment of organizational
policies and requires senior management support. The key to this feature
is to be able to establish a relationship between senior management and
the actual people doing software process improvement using CMM as
a guide.

Software process improvement is successful when the commitment
of senior management is successfully tested. When senior management
supports and encourages the members of a SEPG team, and gives them a
good review from time to time, the effort of process improvement is
going to succeed. If management’s commitment is not truly strong, all
improvement efforts are going to fall apart at the first sign of problems.
The software improvement effort will die a slow death if management
does not share commitment. As an example, I would like to quote one
software development manager.

We are not going to mandate the requirements management tool for
this release. Instead, individual engineering managers can choose to use
it if it helps them to meet their deliverables. If a manager believes the
tool will aid in delivering on time with quality, he or she can use it and
then demonstrate it to the rest of the organization for use on future
products.

The degree of commitment of senior management is equal to the
degree of risk the organization will take once it is committed to improv-
ing its processes and staying competitive in the marketplace. It is time for
the top management to ask themselves a few questions.

22 Software Process Improvement With CMM



■ Does the organization have a vision, mission, goals, and objectives
for the process improvement effort?

■ How are they communicated?

■ Are they written down?

Any attempt at software process improvement needs a stated goal. If
there is no stated goal, the project will have no focus. In addition, a devel-
opment organization with few policies and procedures will show incon-
sistent performance. This organization will go into the crisis mode at the
first sign of a problem.

Policy statements generally refer to a written, organizational policy
for the practices of that key process area. The policy should define
responsibilities and authorities. The typical situation in most companies
that are just beginning their software improvement efforts is that respon-
sibilities are clear and authorities are not.

The policies and procedures handbook, if you choose to create one,
should be a living document. This document is needed for short- and
long-term planning. It will help to test the ideas, gain experience, and
continuously improve the process.

Ability to perform
The ability to perform common feature describes the precondition that
must exist in the project or organization to implement the software
process competently. This simply means that you should have the abilities
to do what you have planned and committed to do.

The level of detail of a documented procedure can vary significantly,
from a handwritten individual desk procedure to a formal organizational
standard operating procedure. The formality and level of detail depends
on who will perform the task or activity (e.g., individual or team) and
how often it is performed.

A documented procedure is usually needed so that the individuals
responsible for a task or activity are able to perform it in a repeatable way
and so that others with general knowledge of the area will be able to learn
and perform the task or activity in the same way. This is an important
aspect of institutionalizing a process.

Capability Maturity Model 23



Have you created the organizational structure to support project
needs and software process improvement needs? One of the very impor-
tant points that management needs to understand is that the organization
should function and be managed as a system, not as a collection of inde-
pendent subfunctions. Some organizations have unlimited funds for
process improvement (I would love to see such a company). They can buy
any tools for their “engineering sandbox.” They can hire the best instruc-
tors in the world to teach their people new technology, but that organiza-
tion will still be unable to improve anything without proper training of
management in how to integrate individual performance goals into the
overall organizational process of software development.

Activities performed
One hundred-and-fifty key practices fall under the activities performed
common feature, representing almost half of the total number of key
practices specified by CMM.

CMM is a descriptive not a prescriptive model. Activities performed
vary from one organization to another. The implementation activities are
different because the level of details, organizational focus, and need for
planning and documentation are different. The focus of the CMM activi-
ties is on the software development process flow and requires procedures
describing results to be accomplished.

Another important aspect of the CMM implementation is that you
structure the activities around the tasks—not around the people. Your
goal is to build a system that will allow continuous process improvement
and be independent from any organizational changes involving people.
Some companies that struggled through CMM implementation for some
time found themselves in the situation of going down from Level 4 to
Level 2 because the process improvement infrastructure was based on the
effort and skills of individuals. The performed activities must be viewed
and managed from a systems standpoint, not just management of an indi-
vidual unit or function. What does it mean to manage activities from a
system standpoint? It means that management should understand the
relationship of their function in the software development life cycle to
the total picture and define the entry and exit criteria for their part
of the cycle.

24 Software Process Improvement With CMM



Measurement and analysis
How do you know your development organization is doing things right?
How are you measuring progress? How will you know how productive
you are in achieving your goals or desired phase?

If your goals and objectives are specific and measurable, you can
define measurements and metrics as a standard you can measure yourself.

Measurement and analysis is another common feature of KPA that
describes the need to measure the process and analyze the measurements.
The measurement and analysis section of CMM usually includes exam-
ples of the measurements that could be taken to determine the status and
effectiveness of the activities performed.

The key practices in the measurement and analysis common feature
describe basic measurement practices that are necessary to determine
status related to the activities performed. The core suggested measures
are in the areas of size, effort, schedule, and quality.

Verifying implementation
The verifying implementation common feature describes the steps to
ensure that the activities are performed in compliance with the process
that has been established. This common feature generally contains key
practices that relate to oversight by senior management, project manage-
ment, and software quality assurance.

The primary purpose of periodic reviews by senior management is to
provide awareness of, and insight into, software process activities at an
appropriate level of abstraction and in a timely manner. The time
between reviews should meet the needs of the organization and may be
lengthy, as long as adequate mechanisms for exception reporting are
available.

The scope and content of senior management reviews depends in
large part on which senior manager is involved in the review. Reviews by
the senior manager responsible for all software project activities of an
organization are expected to occur on a different schedule, and address
different topics, in comparison with a review by the senior executive of
the entire organization. Senior management reviews would also be
expected to cover different topics, or similar topics at a higher level of
abstraction, than project management oversight reviews.

Capability Maturity Model 25



Main process concepts of CMM

Software process definition
Software process definition is fundamental if higher levels of maturity are
to be achieved. A fundamental concept of process definition in CMM is
the organization’s standard software process. An organization’s standard
software process is the operational definition of the basic process that
guides the establishment of a common software process across the soft-
ware projects in the organization. It describes the fundamental software
process elements that each software project is expected to incorporate
into its defined software process. It also describes the relationships
(e.g., ordering and interfaces) between these software process ele-
ments. It establishes a consistent way of performing the software activi-
ties across the organization and is essential for long-term stability and
improvement [1].

At the organizational level, the organization’s standard software
process needs to be described, managed, controlled, and improved in a
formal manner. At the project level, emphasis is on the usability of the
project’s defined software process and the value it adds to the project.
A project’s defined software process is the operational definition of
the software process used by the project. The project’s defined soft-
ware process is a well-characterized and understood software process,
described in terms of software standards, procedures, tools, and meth-
ods. It is developed by tailoring the organization’s standard software
process to fit the specific characteristics of the project.

Process definition concepts
A fundamental concept that supports the approach taken by the SEI in
its process definition work is that processes can be developed and
maintained in a manner similar to the way in which products are devel-
oped and maintained. Requirements include a definition of the process
to be described, an architecture and a design, implementation of the
process design in a project or organizational situation,validation of the
process description via measurement, and deployment of the process into
widespread operation within the organization or project for which the
process is intended.

26 Software Process Improvement With CMM



Using the analogy of product development, a framework for software
process development and maintenance has evolved that translates these
concepts into ones that are more specific to the process development dis-
cipline (similar to the specificity of terminology used for developing
real-time embedded systems versus management information systems) [1].

Organization’s standard software process

An organization’s standard software process is the operational definition
of the basic process that guides the establishment of a common software
process across the software projects in the organization. It describes
the fundamental software process elements that each software project
is expected to incorporate into its defined software process. It also
describes the relationships (e.g., ordering and interfaces) between these
software process elements. It guides the establishment of a common soft-
ware process across the software development and maintenance projects
in the organization.

The relationship between software process elements is sometimes
referred to as a software process architecture.

The organization’s standard software process forms the basis for a
project’s defined software processes. It provides continuity in the organi-
zation’s process activities and is the reference for the measurements
and long-term improvement of the software processes used in the organi-
zation [1].

Software process architecture
The software process architecture is a high-level (i.e., summary) descrip-
tion of the organization’s standard software process. It describes the
ordering, interfaces, interdependencies, and other relationships between
the software process elements of the organization’s standard software
process. It also describes the interfaces, dependencies, and other rela-
tionships to other external processes (e.g., system engineering, hard-
ware engineering, and contract management) [1].

Software process element
A software process element is a constituent element of a software process
description. Each process element covers a well-defined, bounded,

Capability Maturity Model 27



closely related set of tasks (e.g., software estimating element, software
design element, coding element, and peer review element). The descrip-
tions of the process elements may be templates to be filled in, fragments
to be completed, abstractions to be refined, or complete descriptions to
be modified or used unmodified.

A software life cycle is the period of time that begins when a software
product is conceived and ends when the software is no longer available for
use. The software life cycle typically includes a concept stage, require-
ments stage, design stage, implementation stage, test stage, installation
and checkout stage, operation and maintenance stage, and, sometimes, a
retirement stage.

Concepts related to the project’s defined
software process

Description
The description of a project’s defined software process is the operational
definition of the software process used by the project. The project’s
defined software process is a well-characterized and understood process,
described in terms of software standards, procedures, tools, and meth-
ods. It has to be tailored to a standard software process that is accepted
within the organization to fit specific characteristics of the project. This
tailoring includes selecting a software life cycle model from the models
already approved by the organization and modifying the organization’s
standard software process to fit the specific characteristics of the project.

The project’s defined software process provides the basis for plan-
ning, performing, and improving activities of the managers and technical
staff assigned to the project. It is possible for one project to have multiple
defined software processes (e.g., for the operational software and for the
test support software) or to have one defined software process for two or
more similar projects.

Within the context of process definition, a task is a well-defined com-
ponent of a defined process. All tasks can be considered activities, but not
all activities are defined well enough to be considered tasks (although an
activity may include a task). Because of this, use of the word task in the

28 Software Process Improvement With CMM



Level 2 key practices is avoided and the less rigorous term activity is used.
An activity is any step taken or function performed, both mental and
physical, toward achieving some objective. Activities include all of the
work the managers and technical staff do to perform the tasks of the proj-
ect and organization.

The results of activities and tasks consist primarily of software work
products. A software work product is any artifact created as part of
defining, maintaining, or using a software process, including process
descriptions, plans, procedures, computer programs, and associated
documentation, which may or may not be intended for delivery to a cus-
tomer or end user. Work products become inputs to the next step in the
process or provide archival information on the software project for use in
future projects.

Examples of software work products include plans, estimates, data
on actual efforts, corrective action documentation, and requirements
documents. The subset of software deliverables is referred to as software
products [1].

Software products

The software products are the complete set, or any of the individual items
of the set, of computer programs, procedures, and associated documen-
tation and data designated for delivery to a customer or end user. All soft-
ware products are also software work products. A software work
product that will not be delivered to a customer or end user is not, how-
ever, a software product.

The description of the project’s defined software process will usually
not be specific enough to be performed directly. Although the descrip-
tion typically identifies such things as roles (i.e., who performs a task) and
types of software work products needed to perform a task, it does not
specify the individual who will assume the roles, the specific software
work products that will be created, nor the schedule for performing the
tasks and activities.

The project’s software development plan, either as a single document
or a collection of plans collectively referred to as a software development
plan, provides the bridge between the project’s defined software process
(what will be done and how it will be done) and the specifics of how the

Capability Maturity Model 29



project will be performed (e.g., which individuals will produce which
software work products according to what schedule). The combination
of the project’s defined software process and its software development
plan makes it possible to actually perform the process [1].

Key practices and the CMM
The key practices are not meant to limit the choice of a software life cycle.
People who have extensively used one particular software life cycle may
perceive elements of that life cycle in the organization and structure of the
key practices. However, there is no intent either to encourage or pre-
clude the use of any particular software life cycle.

The term stage is used to refer to a defined partition of the software
project’s effort, but the term should not be tied to any specific soft-
ware life cycle. As it is used in the key practices, stage can mean rigidly
sequential stages or overlapping and iterative stages.

The key practices neither require nor preclude specific software tech-
nologies, such as prototyping, object-oriented design, or reuse of soft-
ware requirements, design, code, or other elements.

The key practices describe a number of process-related documents,
each one covering specific areas of content. The key practices do not
require a one-to-one relationship between the documents named in
the key practices and the actual work products of an organization or proj-
ect; nor is there an intended one-to-one relationship to documents
specified by the U.S. Department of Defense or to standards such as
DOD-STD-2167A or IEEE software standards. The key practices require
only that the applicable contents of these documents be part of the organi-
zation’s or project’s written work products.

Collection and analysis of process data
The key practices for the collection and analysis of the process data evolve
across the maturity levels.

At Level 2, the data are primarily related to the size of the project’s
work products, effort, and schedule, and are defined, collected, and

30 Software Process Improvement With CMM



stored separately by each project. The data are shared between projects
via informal procedures [1].

At Level 3, each project has a defined software process tailored from
the organization’s standard software process. Data related to each pro-
ject’s defined software process are collected and stored in the organiza-
tion’s software process database. The data collected and stored may be
different for each project, but the data are well defined within the organi-
zation’s software process database [1].

At Level 4, the organization defines a standard set of measurements
based on the organization’s standard software process. All projects col-
lect this standard set of measurement data, as well as other project-
specific data, and store them in the organization’s software process data-
base. The data are used by the projects to quantitatively understand and
stabilize the process performance of the project’s defined software
processes. They are also used by the organization to establish a process
capability baseline for the organization’s standard software process [1].

At Level 5, data are used to select areas for technology and process
improvements, to plan these improvements, and to evaluate the effects of
these improvements on the organization’s process capability [1].

Applying professional judgment
To provide a complete set of valid principles that apply to a wide range
of situations, some of the key practices are intentionally stated to allow
for flexibility. Throughout the key practices, nonspecific phrases like
“affected groups,” “as appropriate,” and “as necessary” are used. The use
of such nonspecific terms is generally minimized in the key practices,
with examples provided in many cases, at least for the first use of the
term. These phrases may have different meanings for two different
organizations, for two projects in a single organization, or for one project
at different points in its life cycle. Each project or organization must clar-
ify these phrases for its specific situation.

Clarifying these phrases requires the organization to consider the
overall context in which they are used. The pertinent question is whether
the specific interpretation of one of these phrases meets the goals of the

Capability Maturity Model 31



KPA. Professional judgment must be used to determine whether the
goals have been achieved.

Professional judgment must also be used when interpreting the key
practices and how they contribute to the goals of a key process area. In
general, the KPAs describe a fundamental set of behaviors that all
software organizations should exhibit, regardless of their size or their
products.

The key practices in the CMM, however, must be interpreted in light
of a project or organization’s business environment and specific circum-
stances. This interpretation should be based on an informed knowledge
of both the CMM and the organization and its projects. The goals of the
KPAs provide a means for structuring this interpretation. If an organiza-
tion’s implementation of a key process area satisfies the goals, but differs
significantly from the key practices, the rationale for the interpretation
should be documented. A documented rationale will help assessment and
evaluation teams understand why certain practices are implemented the
way they are.

Applying professional judgment leads to the issue of the “goodness” of
the software process. The CMM does not place “goodness” requirements
on the software process, although it does establish minimal criteria for a
“reasonable” process in many software environments. The objective of
process management is to establish processes that are used and can act as a
foundation for systematic improvement based on the organization’s busi-
ness needs.

References
[1] Paulk, M. C., et al.,The Capability Maturity Model: Guidelines for Improving the

Software Process, Reading, MA: Addison-Wesley, 1995.

[2] Senge, P., The Fifth Discipline, New York: Currency Doubleday, 1990, p. 21.

[3] Hansen, G. A., Automating Business Process Reengineering, Englewood Cliffs, NJ:
Prentice Hall, 1997.

[4] Shewhart, W., Economic Control of Quality of Manufactured Product, 1931.

32 Software Process Improvement With CMM


	2 Capability Maturity Model
	Organization of the CMM
	The five CMM levels
	Benefits of the CMM approach
	Common features of key process areas
	Main process concepts of CMM
	Concepts related to the project’s defined software process
	Key practices and the CMM
	Collection and analysis of process data
	Applying professional judgment


