
2
An Introduction to Conceptual
Modeling of Information Systems

Antoni Olivé

2.1 The Functions of an Information System

The concept information system began to emerge around 1960. Even though
it may be considered an old concept, it is still difficult to define what an IS is.
Part of that difficulty is because ISs can be analyzed in at least three distinct
and complementary perspectives [1]:

• The contribution they provide;

• Their structure and behavior;

• The functions they perform.

From the first perspective, ISs are defined as means for wider systems to
achieve their objectives. That kind of definition emphasizes that ISs are sub-
systems of wider systems, to which they contribute. An IS does not exist for
itself. Examples of that kind of definition would be: �An IS is a system
designed to support operations, management, and decision-making in an
organization� or �An IS is a system that facilitates communication among
its users.�

25

For our purposes, the main problem with that kind of definition is that
it does not give a clear characterization of ISs. The wider system of which an
IS is part may require means that are not ISs to achieve its objectives. Fur-
thermore, other things can provide the same type of contribution, without
being an IS. For example, there are various ways to facilitate communication
among users, including working physically close to each other or participat-
ing in meetings.

Even if it is difficult to define ISs in terms of the contribution they pro-
vide, it is important to realize that this perspective is essential during their
development. The requirements of an IS are determined from the objectives
of the organization for which the system is designed and built.

From the second perspective, definitions emphasize the structure and
the behavior of the physical and abstract elements that make up an IS. Both
structure and behavior can be characterized at different levels of detail.

For the purposes of conceptual modeling, the most useful definitions
are those based on the functions performed by ISs, that is, definitions that
emphasize what ISs do, abstracting from why and how they do it.

Within this third perspective, the classical definition says that �an IS is
a system that collects, stores, processes, and distributes information.� That
definition is commonly accepted for both its simplicity and its generality.
However, some comments may be in order to make it more precise.

First, in IS engineering, we should restrict the definition to designed
systems, that is, systems an engineer designs and builds [2]. The restriction is
needed because natural systems that perform information-processing func-
tions are beyond the scope of our study. For example, in cognitive science the
human mind is viewed as a complex system that receives, stores, processes,
and distributes information.

Second, the definition is too general with respect to the kind of infor-
mation an IS may deal with. In fact, the definition poses no constraint on the
kind of information, with the result that it encompasses systems that many
people would not consider ISs. For example, a fax could be considered an IS
according to that definition, because it can be seen as a system that receives
documents (which contain data representing some information), stores them
(even if only for a short time), translates them (i.e., changes the representa-
tion of the information), and sends the result through the phone.

The usual constraint on the kind of information handled by an IS is
that it must be about the state of some domain (also called object system
or universe of discourse). The nature of this domain is irrelevant to the defi-
nition of IS. For many systems, its domain is an organization, but the

26 Advanced Database Technology and Design

definition does not exclude other, different domains, such as a vehicle, the
atmosphere, or a chess game. According to that definition, a fax machine is
not an IS. A fax does not consider the documents it sends as information
about the state of some domain. To a fax, documents are just uninter-
preted data.

Thus, we define an IS as a designed system that collects, stores,
processes, and distributes information about the state of a domain. It is easy
to agree on those functions, but the problem is that they are too general and
are not related to the purpose for which the IS exists. For those reasons, many
authors prefer a more specific definition of the functions, one that captures
more neatly the nature of ISs.

To that end, it is considered that an IS has three main functions
(Figure 2.1) [3]:

1. Memory function, to maintain a representation of the state of a
domain;

2. Informative function, to provide information about the state of a
domain;

3. Active function, to perform actions that change the state of a
domain.

An Introduction to Conceptual Modeling of Information Systems 27

Domain

Action

Query
Answer

Represents Changes

Information
system

Figure 2.1 The functions of an IS.

2.1.1 The Memory Function

The memory function is needed by the other two functions. Its objective is
to maintain internally a representation of the state of the domain. Moreover,
the representation must be correct and complete [4].

The memory function can be performed in two execution modes: on
request or autonomously. In the first mode, the system memorizes the state
because a user explicitly tells the system the state and orders (normally
implicitly) the system to memorize it. For example, a system knows custom-
ers� addresses because any time a customer changes addresses, a user tells the
IS the new address and expects the system to remember it. The IS has no
way to know customers� addresses except by a user explicitly telling it that
information.

In the second mode, autonomously, the system memorizes the state of
the domain without an explicit request from a user. This mode has two vari-
ants. In the first variant, the system is able to observe autonomously the state,
for example, a system that periodically reads a device that gives the tempera-
ture of a building. In that case, the system can maintain a representation of
the temperature because it gets it directly from the environment. The second
variant is related to the active function and will be described later.

The memory function is considered to be passive, in the sense that it
does not perform anything that directly affects users or the domain. How-
ever, it is required by the other functions and constrains what they can
perform.

2.1.2 The Informative Function

With the informative function, the system provides users with information
about the state of the domain. Often, the state of the domain is observable
directly in the domain, and at the same time it is represented in the IS. For
example, the quantity of a given product in the shelves of a retail store may
be observed when necessary, and at the same time it can be represented in the
IS. In those cases there is a redundancy, but it is a desired one, because it may
be easier to ask the system than to observe the domain.

In other cases, the state is represented only in the IS, and it is not possi-
ble (or difficult) to observe it directly in the domain. For example, in a retail
store it is not possible to observe how many units of some product have been
sold up to a given moment. As another example, in the banking domain,
consider balances of accounts. The balance of an account at a given instant
cannot be known by observation of the owner of the account or the bank
office where the account was created. The only place where balances are

28 Advanced Database Technology and Design

represented is inside the IS. In those cases, the IS is the only source of infor-
mation about the state, and the system becomes indispensable to its users.

To perform the informative function, the system needs an inference
capability, allowing it to infer the required information from the memory. In
the most frequent case, users pose a query, and the system answers it. Both
query and answer are in a language understood by the users and by the
system.

Queries may be extensional (the most frequent case) or intensional. An
extensional query asks information about the state of the domain (either the
current state or some previous one), and the system gives an extensional or
intensional answer. An extensional answer, which is the usual case, consists of
more or less elaborated information about the state of the domain. Examples
of simple extensional answers are:

• Joan takes the Algebra course.

• Eighty students take the Programming course.

Some extensional answers must be much more elaborated and may require
a statistical analysis, a simulation or the execution of a decisional model.
Examples of such answers are:

• Ninety percent of customers that buy books also buy CDs.

• No customer has bought more than 200 books.

Less frequently, the answer to an extensional query may be intensional.
An intensional answer characterizes the state of the domain, but it does not
describe the state explicitly [5]. For example, to the question �Who earns
more than $100,000?� the system might answer, �The managers.�

Intensional queries ask about the kinds of information the system
knows, rather than particular information [6], for example,

• What do you know about students?

• What is the maximum number of courses a student may take
simultaneously?

• What is a student?

An Introduction to Conceptual Modeling of Information Systems 29

The informative function also admits the two execution modes. The most
frequent case is the on request mode: Users get information when they ask it
explicitly. In contrast, in the mode autonomously, users define a condition on
the state of the domain and order the system to inform them when that con-
dition is satisfied. For example, the condition might be �the temperature is
over 40°C� and users expect that the system will issue some signal when that
condition is satisfied.

The informative function does not change the state of the domain. The
system merely provides the information requested by users. It is the users
who will take actions that change the domain, if they want to do so.

2.1.3 The Active Function

With the active function, the system performs actions that modify the state
of the domain. To perform the active function, the system must know the
actions it can take, when those actions can be taken, and their effect on the
state of the domain.

The active function also has the two execution modes. In the on request
mode, users delegate to the system the taking of some action that may
modify the state of the domain. For example, users may ask the system to cal-
culate the interests to be paid to bank accounts and charge them to the
accounts� balances.

In the mode autonomously, users delegate to the system the taking of
some action that may modify the state of the domain, when some condition
is satisfied. The system will monitor the state of the domain, and when the
condition is fulfilled, it will perform the delegated action.

The nature of actions that may be delegated to the system (in both exe-
cution modes) are varied. It may be a simple and well-defined action or one
for which only the objectives are defined, leaving autonomy to the system on
how to achieve those objectives.

The classical example of active function, with mode autonomously,
is the automatic replenishment of a store. Users define, for each product, a
reorder point and a quantity to order. The system maintains the quantity on
hand of each product, and users delegate to it to issue orders to suppliers
when the quantity on hand is below the reorder point. It is assumed that
orders to suppliers are part of the domain and, thus, the state of the domain
changes when a new order is issued.

It is interesting to note that, in the preceding example, if the orders
were not part of the domain, then the automatic replenishment would not be
an example of the active function. It would be an example of the informative

30 Advanced Database Technology and Design

action. Outputs from the system could be a requirement for action to the
users, but the state of the domain would not be altered.

Given that the active function may change the state of the domain
without the direct intervention of users, it is a function that calls the memory
function, in the execution mode autonomously.

Table 2.1 summarizes the examples of the three functions and the two
execution modes.

2.1.4 Examples of ISs

All conventional ISs perform a memory function and some informative func-
tion. We will not describe any concrete examples, since they are well known,
and identification of the functions they perform is simple. However, it may
be worthwhile to comment on some particular classes of systems and to see
that, even if one might doubt whether they are ISs, they in fact perform the
functions we have seen in this section.

Example 2.1

Assume a chess-playing system that can play against either a human or a
machine. We are going to see that this system may be considered an IS.

The domain consists of the board, the pieces and their position on the
board, the player, and the rules of the game. At any moment, the domain is
in some state, which is time varying. The rules of the game, however, are
fixed. The system has to maintain a representation of the state of the domain;
otherwise, it would not be able to play. When a move is completed, the sys-
tem must somehow know that in order to update the state representation.
This is a simple example of the memory function of an IS.

The system has to visualize on the screen the state of the game continu-
ously. When a game starts, the system shows the initial distribution of pieces.

An Introduction to Conceptual Modeling of Information Systems 31

Table 2.1
Examples of Functions and Execution Modes

Functions Execution Modes

On request Autonomously

Memory Change of a customer�s address Reading of temperature

Informative Courses a student takes Signal when temperature is over 40°C

Active Pay interests to accounts Automatic replenishment

After every move, the system must show the new distribution. It is therefore
an example of the informative function, in the mode autonomously.

Once the player has made a move, it is expected that the system will
think about the available alternatives to achieve its objective (using the cur-
rent state of the game and the knowledge the system may have) and that,
after a while, it will make its own move. In making the move, the system
changes the state of the domain. Therefore, this is a complex example of the
active function.

If the system were naive enough to offer sincere advice on the next
move to the player, that would be an example of the informative function, in
the mode on request.

Example 2.2

Let us consider an e-mail system. The domain consists of users, who can send
or receive messages, distribution lists, active messages, folders created by
users to organize their active messages, and so on. Each message has a con-
tent, a subject, a sender, a date, and one or more receivers. Normally, the
content and the subject of a message are uninterpreted data for the system.

The memory function consists of maintaining a representation of the
state of the domain. The main part of the state will be represented only
within the system, and it is not directly observable in the domain. The state
changes when a user issues a message, receives a message, creates or deletes a
folder, puts a message in a folder (or removes a message from it), and so on.

Among other things, the informative function allows users to visualize
their active messages (at different levels of detail), as well as the contents of
their folders.

The active function consists of sending messages issued by users to their
receivers. The effect is that the sent message is put in the input folder of each
receiver. This function is performed in the mode on request.

Example 2.3

This last example is not a concrete system, but a class of systems: real-time
systems. There is not a consensus on what real-time systems are, but they
tend to be identified by means of a set of common characteristics [7].

First, a real-time system monitors and controls an environment (i.e., it
issues controlling commands that change the environment). Using our ter-
minology, monitoring the environment is a memory function, and control-
ling it is an active function. Second, real-time systems interact with users
for whom they perform a needed function. Such functions may be either
informative or active. Real-time systems frequently have various sensors and

32 Advanced Database Technology and Design

intersystem interfaces that provide continuous or periodic input. These are
the mechanisms by which the system knows the state of the environment, for
the memory function. Finally, a real-time system has a set of actuators or
intersystem interfaces that must be driven periodically. They correspond to
the mechanisms by which the system sends to the environment the output
form, the active function.

A real-time system has other characteristics that do not refer to the
essential functions that must be performed but to how they must be per-
formed, for example, sampling intervals of sensors, response time, concurrent
processing of multiple inputs, high reliability, resource (main or secondary
memory, processor capacity, etc.) limitations, and so on. These characteris-
tics are important, but they do not change the fact that real-time systems may
be seen as ISs.

2.2 Conceptual Modeling

Section 2.1 reviewed the main functions of an IS. To be able to perform
those functions, an IS requires some knowledge about its domain. The main
objective of conceptual modeling is the elicitation and formal definition of
the general knowledge about a domain that an IS needs to know to perform
the required functions.

This section describes the kinds of knowledge required by most ISs.
The line of reasoning we will follow is this:

• If the memory function of an IS has to maintain a representation of
the state of the domain, then we must define which is the concrete
state that must be represented.

• The state of most domains is time varying, which requires defining
the causes of changes and the effects of those changes on the state.

• The representation of the state in the IS must be consistent; there-
fore, it is necessary to define what it means to be a consistent
representation.

• Many times, answering queries posed by users requires some infer-
ence capability on the part of the IS. This capability uses derivation
rules, which must be defined.

An Introduction to Conceptual Modeling of Information Systems 33

This section develops that line of reasoning. Along the way, we intro-
duce informally the terminology and give an intuitive idea of the basic
concepts.

2.2.1 Conceptual Schema of the State

The objective of the memory function of an IS is to maintain a consistent
representation of the state of its domain. The state of a domain consists of a
set of relevant properties.

The question of which exactly are the relevant properties of the domain
of an IS depends on the purpose for which the IS is built. We have already
mentioned that an IS is always a means for a wider system to achieve its
objectives. The relevant properties are determined by the functions of those
objectives and of the expected contribution of the IS to them. We focus
here on what are relevant properties rather than how to determine them.
That, of course, does not mean that the latter aspect is less important than
the former one.

In the IS field, we make the fundamental assumption that a domain
consists of objects and the relationships between those objects, which are
classified into concepts. The state of a particular domain, at a given time,
consists, then, of a set of objects, a set of relationships, and a set of concepts
into which those objects and relationships are classified. For example, in the
domain of a company, we may have the concepts of Customer, Product, and
Sale. Those concepts are usually stable. On the other hand, at a given instant,
we have objects classified as customers, objects classified as products, and
relationships between customers and products classified as sales.

That fundamental assumption is also shared by disciplines such as
linguistics, (first-order) logic, and cognitive science. Unfortunately, those
disciplines have not yet arrived at an agreement in the terminology, the defi-
nitions, the concepts, and the mechanisms to distinguish among objects and
relationships in a domain. The result is that we do not have at our disposal a
solid theoretical basis, and, as is often the case in the IS field, we must adopt a
humble and eclectic attitude.

The assumption that a domain consists of objects, relationships, and
concepts is a specific way to view the world (domain). At first sight, it seems
an evident assumption. Reality, however, is far from that. Other views are
possible, views that may be more adequate in other fields. As a simple and
well-known example in propositional logic, one assumes that domains con-
sist of facts, which may be either true or false. The study of the nature and

34 Advanced Database Technology and Design

the organization of the real world is the subject of the branch of philosophy
called ontology.

When we assume that a domain consists of objects, relationships, and
concepts, we commit ourselves to a specific way of observing domains. The
term used in ontology to designate such commitments is ontological commit-
ment. In the IS field, the term conceptual model is the commitment corre-
sponding to viewing domains in a particular way. In principle, the same
conceptual model can be applied to many different domains, and several
conceptual models could be applied to the same domain.

The set of concepts used in a particular domain is a conceptualization of
that domain. The specification of that conceptualization, in some language,
is called an ontology of that domain [8, 9]. There may be several conceptuali-
zations for a given domain and, thus, several ontologies. An ontology is also a
concrete view of a particular domain. Therefore, it is also an ontological
commitment for the persons that observe and act on that domain. In the IS
field, ontologies are called conceptual schemas, and the languages in which
they are written are called conceptual modeling languages.

As we will see, conceptual models of ISs are much more complex than
simply assuming that a domain consists of objects and relationships. A con-
ceptual model assumes that a domain includes other �things,� and also that
objects, relationships, and concepts have several properties that must be dis-
tinguished. On the other hand, a conceptual model includes a view of how a
domain changes.

There is a great diversity in conceptual models, which make them more
or less useful in particular situations or for particular purposes. However, all
of them share the fundamental assumption we have mentioned and that we
will make precise.

We begin trying to establish the distinction between concept and
object. According to the dictionaries, a concept is �an abstract or generic idea
generalized from particular instances� or �an idea or mental picture of a
group or class of objects formed by combining all their aspects.�

Those definitions fit our purpose. A concept, then, is something that
we have formed in our mind through generalization from some instances. A
concept has an extension and an intension. The extension of a concept is the
set of its possible instances, while the intension is the property shared by all
its instances.

As human beings, we use the concepts we have to structure our percep-
tion of a domain. In that sense, concepts are like eyeglasses with which we
observe a domain. Concepts allow us to classify the things we perceive as

An Introduction to Conceptual Modeling of Information Systems 35

exemplars of concepts we have. In other words, what we observe depends on
the concepts we use in the observation.

Classification is the operation that associates an object with a concept.
The inverse operation, instantiation, gives an instance of a concept. The set
of objects that are an instance of a concept at some time is called the popula-
tion of that concept at that time.

An entity type is a concept whose instances are individual and identifi-
able objects. Objects that are instances of an entity type are called entities.
Figure 2.2 shows a simple example of entity and entity type.

All entities are instances of some entity type, but an entity may be an
instance of more than one entity type. For example, in Figure 2.2 the entity
shown could also be an instance of Doctor.

If there is a �thing� in which we are interested, but we are not able to
classify it in any of the concepts we have, then we have to form a new concept
of which that �thing� could be an instance. In contrast, there may be con-
cepts without instances in the usual domains. The typical example is Uni-
corn. In conceptual modeling, we do not show interest in concepts without
instances.

Some concepts are associative, in the sense that their instances relate
two or more entities. Relationship types are concepts whose instances are rela-
tionships. Figure 2.3 shows an example of relationship type Reads between
Person and Book.

A particular case of relationship is the reference relationship. In princi-
ple, each entity in the domain must have at least one name that allows us to
distinguish among entities. A name is a linguistic object that we use to refer
to an entity. Names are also entities and, therefore, instances of some entity

36 Advanced Database Technology and Design

PersonConcept/
entity type

entity

instance of

Figure 2.2 Entities as instances of concepts.

type, that we call lexical entity types. Examples of lexical entity types are
String, Number, Bar code, ISBN code.

The correspondence between an entity and its name is established by
means of a relationship. That relationship is also an instance of some rela-
tionship type, sometimes called a reference relationship type. There may be
more than one reference relationship type, for example,

• The relationship type between Person and String;

• The relationship type between Book and ISBN code;

• The relationship type between Book and Number (in a library).

The set of entity and relationship types used to observe the state of a domain
is the conceptualization of that state. The description, in some language, of
that conceptualization, as well as other elements we will see in a moment, is
called the ontology of the state, or the conceptual schema of the state. The set
formed by the conceptual schema of the state and the conceptual schema of
the behavior, which will be described later, is called the conceptual schema.
Languages used to define conceptual schemas are called conceptual modeling
languages.

Not all entities and relationships in a domain need to be represented in
the IS. That leads us to distinguish between conceptual schema of a domain
and conceptual schema of an IS. The former describes the conceptualization
of the domain, without regard to which entities and relationships will be rep-
resented in the IS. In contrast, the latter describes only the fragment of the

An Introduction to Conceptual Modeling of Information Systems 37

PersonConcept

entity

BookReads

instance of

Figure 2.3 Relationships as instances of concepts.

conceptualization such that its entities and relationships are represented in
the IS.

2.2.2 Information Base

An information base is a description of the entities and relationships of a
domain that are represented in the IS [10]. In principle, this description
could be done in any language, but usually it is done in a logic-based lan-
guage. Sometimes, the description of an entity or a relationship is called a
fact, and we say that the information base contains the facts about a domain.

For example, if we use the language of first-order logic as the modeling
language, we could have a schema formed by predicates Person, Book, and
Reads, which represent entity types Person and Book and relationship type
Reads. The information base might contain, at some time, the facts Per-
son(A), Book(B), and Reads(A,B).

Figure 2.4 illustrates the relationship between a conceptual schema and
an information base. The conceptual schema of the domain includes the
concepts from Figure 2.3 and two other concepts, Town and Lives. However,
we want to represent in the IS only the entities and relationships shown in
the conceptual schema of Figure 2.3. The conceptual schema is described in
a graphical language, in which rectangles correspond to entity types and lines
to relationship types. The information base contains three facts, described in
the language of first-order logic. Predicates correspond to entity and relation-
ship types.

The information base does not exist physically. It is only an abstract
description we use to reason about a schema and to exemplify particular
situations in a domain. Naturally, the IS must maintain an internal

38 Advanced Database Technology and Design

Person BookReadsTown Lives Person reads Book

Person (A)
Book (B)

Reads (A,B)

Conceptual schema of
the information system

Information base

domain

Conceptual schema of the domain

Figure 2.4 Conceptual schema and information base.

description (e.g., in a DB) of the entities and relationships in a domain, but
this description is at a very low level in order to be efficiently processable by
the processors used. The information base is a description close to the con-
ceptual schema and is not meant to be an internal description.

Unfortunately, the term conceptual model is not always used with the
same meaning in the literature. Besides the meaning we have given to it,
other meanings we may find are these:

• Conceptual model = conceptual schema

• Conceptual model = conceptual schema + information base

We have chosen to use three distinct terms (conceptual model, conceptual
schema, information base) to distinguish three different concepts. The same
distinction is well established in the DB field, where we distinguish clearly
among data model (for instance, relational data model), DB schema (in some
data models), and DB (instance of a schema).1

2.2.3 Conceptual Schema of the Behavior

Most IS domains change through time, at two levels: conceptual schema and
state. Changes at the conceptual schema level are less frequent than those at
the state level, and their origin is due to changes in users� interests: For what-
ever reason, users lose interest in the representation of some entities and rela-
tionships or they want other entities and relationships to be represented in
the IS.

The most frequent changes (and the only ones we consider here) occur
at the state level. It is easily observable that the state of most IS domains
changes through time. In consequence, if the information base is a truthful
representation of that state, then the facts of the information base will need
to change through time.

An Introduction to Conceptual Modeling of Information Systems 39

1. The term information base may be confused with the term knowledge base, used in the de-
ductive DB�s field, as well as in artificial intelligence. A knowledge base is a set of repre-
sentations of knowledge about a domain [11]. Normally, the language used to represent
this knowledge is the language of first-order logic. The knowledge may be simple facts,
which are represented as atomic formulas, or general knowledge about a domain, which
is represented as complex formulas. In conceptual modeling, the general knowledge
about a domain is represented in the conceptual schema, while simple facts are repre-
sented in the information base. Therefore, the correspondence is knowledge base = con-
ceptual schema + information base.

We say that there is a change in the state of the domain at time t if the
entities or relationships that exist at t are different from those existing at the
previous time. In other words, a state change is a change in the population or
one or more entity or relationship types between two states: the new state
(corresponding to t), and the old state (corresponding to t − 1).

Any change in the population of an entity (relationship) type can
always be decomposed into a set of one or more elementary changes of the
following types:

• Insertion of entity (relationship). This change happens when there is
an entity (relationship) in the new state that did not exist in the old
state.

• Deletion of entity (relationship). This change happens when there
was an entity (relationship) in the old state that does not exist in the
new state.

The causes of the changes are the events [3, 12]. A domain does not change
its state if no event happens. An event is any circumstance that happens at a
given instant and whose effect is a change in the domain state. Normally,
these circumstances are actions (or decisions) performed by human beings
that act on a domain (e.g., hiring an employee or making a move in a chess
game), but they also may be the result of physical processes (e.g., dropping
some amount of liquid into a tank or the rising of the sun).

It is usually assumed that events are instantaneous, that is, they do not
have duration. It is also assumed that an event causes a transition in the
domain, from an old state to a new one, without any noticeable intermediate
state. In many cases, those assumptions do not pose any particular problems.
For example, the process of hiring a new employee takes some time, but it is
likely that we are interested only in the outcome of that process: From that
moment on, the person will be an employee, which he or she was not at the
previous time.

In some cases, however, events have duration. To handle those cases in
conceptual models that require instantaneous events, it may be necessary to
refine the conceptual schema of the domain or the event itself. For example,
assume the domain includes the relationship type Is at between persons
and places. In principle, it seems natural to consider that persons are at some
place at any moment. Let us consider now the event corresponding to the
move of a person from an origin to a target. If we assume that the event
is instantaneous, then the person will continue to be at some place at any

40 Advanced Database Technology and Design

moment. But if we assume that a move is not instantaneous, then there will
be a temporal interval during which we will not know where a person is. If
we want to take into account that fact, we will need to do the following:

• Refine the conceptual schema of the domain: now there will be
some times when we do not know where a person is.

• Transform the move event into two events: the beginning and the
end of a move.

• Consider that the effect of the beginning of a move is that we enter a
state in which we do not know where the moving person is.

• Consider that the effect of the end of a move is that there is a rela-
tionship between the moving person and the target place.

For the designer, it is important to distinguish between external and gener-
ated events. An event is external if it occurs independently of the IS. If the IS
is computer-based, external events happen even if the system is out of service.
Such events are called external because they happen outside the control of the
system. The system will need to be notified of the events (to update its infor-
mation base), but the system itself has not produced the events. Many events
are external, for example, the hiring of an employee or the sunrise.

A system may know external events either by direct observation or by
users� communication:

• In direct observation, the system has some mechanism that allows it
to detect the occurrence of events. For example, a system may have a
sensor that detects the arrival of a car in a toll station.

• In users� communication, the users tell the system of the events
when they occur. For example, when a company changes the price
of a product, the system is also notified of the change.

As mentioned in Section 2.1, an IS may also have an active function. In the
active function, the users may delegate to the system the generation of some
events that change the state of the domain when some conditions hold. A
generated event is an event induced directly by the IS. Without the partici-
pation of the system, the event would not be generated, and, therefore, the
domain would not change. The system may generate an event as a response
to an explicit request from users, when it detects that the state of the domain

An Introduction to Conceptual Modeling of Information Systems 41

satisfies some condition, or because it considers the event necessary to
achieve an objective defined by the users.

Example 2.4

Assume an IS that controls an elevator. At each floor there is a button that
users can press to request the elevator. Pressing one of the buttons is an exter-
nal event. The system responds immediately by turning on the light associ-
ated with the button (to inform users that the system is aware of their
request). Turning on and off light buttons are generated events. Taking into
account the current position of the elevator, as well as the pending requests,
the system issues several commands to start or stop the motor. Those com-
mands are also generated events.

Events, either external or generated, are also instances of concepts. An
event type is a concept whose instances are events. Events may have relation-
ships with other entities. In particular, all events have a relationship with an
entity that is a time instant, which corresponds to the time when the event
happens. Figure 2.5 shows an example of the event type change of residence.
Events of this type are related with a person (who changes), a town (new resi-
dence), and a date (occurrence time).

The set of event types that exist in a domain is part of the conceptual
schema of events. The description, in some language, of that schema, as well
as other elements described next, is called the conceptual schema of the
behavior.

To be able to update the information base, the IS must know not only
the events that have happened but also their effect on the information base.

42 Advanced Database Technology and Design

Change of
residence

Person
Who

Date When

Town

Event

Where

Figure 2.5 Event type and instance.

The definition of that effect, in some language, is also part of the conceptual
schema of the behavior.

In conceptual modeling, there are several distinct ways to define the
effect of events. The most usual way consists of defining, for each event type,
an effect function that gives the new state for any old state and any instance
of the event type. For example, the effect function corresponding to the
event type change of residence, shown in Figure 2.5, might be (informally)

If an event of type change of residence, of person p and town c, occurs on
date d, then in the new state, corresponding to date d, person p will not
live any longer where she lived before, and she will be living in town c.

In the example, the effect of the event is quite limited, and the effect function
is simple. In practice, however, it is not so easy to define the effect, because
there are many event types, and some of them have a complex effect
function.

For generated events, the conceptual schema of the behavior includes
the definition of the generating conditions, that is, when the events must be
generated.

Example 2.5

Assume an IS that monitors the level of water in a tank. The system has a
sensor that detects the level of water at any time. It is expected that the sys-
tem will keep the input valve open when the water level is below a desired
minimum and closed when the level is above a desired maximum. Generated
event types are the opening and the closing of the valve. The generation con-
dition of the former could be �when the current level is below the minimum
and the valve is not open already� and that of the latter, �when the current
level is above the maximum and the valve is not closed.�

2.2.4 Integrity Constraints

The information base is a representation of the state of the domain. An IS
obtains and updates the information base from messages received through
the input interface or by direct observation of the domain.

In a perfect world, the information base would be an exact representa-
tion of the domain. Input messages would always be correct, and the system
would receive all relevant messages. Furthermore, the direct observation of
the domain would always be faithful. In a perfect world, the representation
would always be correct (or valid) and complete.

An Introduction to Conceptual Modeling of Information Systems 43

Unfortunately, in the real world it is likely that some received messages
are incorrect, in the sense that they communicate something that is not true.
Also, the direct observation of the domain may be distorted. In such cases,
some of the facts in the information base may not be valid. It is also likely
that the system does not receive all relevant messages; then the information
base may not be complete.

Validity and completeness are the two components of the integrity
of an information base [13]. We say that an information base has integrity
when all its facts are valid and it contains all relevant facts. Integrity is an
important property of an information base. Lack of integrity normally has
negative consequences, which in some cases may be serious.

In most systems, total integrity can be achieved only by human inter-
vention. In many cases, it is necessary to check the facts in the information
base against the domain. For example, many retail stores need to check peri-
odically that the products they have on shelves correspond to their records in
the IS. It is not difficult to see that in some cases the cost of integrity is high
and hardly avoidable.

However, it is possible to build mechanisms in the IS that auto-
matically guarantee some level of integrity. We can define conditions on the
information base such that, if satisfied, we can have some level of confidence
on its integrity. These conditions, called integrity constraints, are defined in
the conceptual schema. An integrity constraint is a condition that might not
be satisfied under some circumstances, but it is understood that the IS will
include mechanisms to guarantee its satisfaction at any time.

Example 2.6

Assume that a conceptual schema has a relationship type Assigned to, involv-
ing entity types Employee and Project. Suppose that in the domain all employ-
ees are always assigned to one or more projects. An integrity constraint might
be �all employees are assigned to some project.� Once defined in the concep-
tual schema, we can assume that all states of the information base will con-
tain for each known employee at least one relationship with a project. The
constraint, however, does not guarantee total integrity (e.g., the information
base could have wrong assignments), but its satisfaction is a necessary
condition.

We say that an information base is consistent if it satisfies all defined
integrity constraints. We also say that a constraint is violated when the infor-
mation base does not satisfy it. When a constraint is violated, the system
must produce some response to maintain consistency. The most frequent
case is when a violation is caused by the arrival of some erroneous message,

44 Advanced Database Technology and Design

and the response is usually the rejection of the message, asking for its
correction.

Most integrity constraints refer to facts of the information base, and
then they are part of the conceptual schema of the state. Some constraints,
however, refer to events; then they are part of the conceptual schema of the
behavior. An example of the latter, which refers to events of type Birth, could
be �a person cannot be parent of himself.�

2.2.5 Derivation Rules

By means of the informative function, an IS provides information about the
state of the domain to users, either when they request it or under predefined
circumstances.

If an IS does not have any inference capability, it can provide only
information collected from the environment. In some cases, that may be all
that is required, but in most cases users expect that systems have some capa-
bility to infer new facts from the ones they know. A simple example is total-
ing. If we give to the system a sequence of numbers, we normally assume the
system will at least be able to compute their total.

Most ISs have some inference capability, which requires two main
components: derivation rules and an inference mechanism. Derivation rules
are defined in the conceptual schema. The inference mechanism uses deriva-
tion rules to infer new information. How the inference mechanism works
may vary from one IS to another, and it is considered to be part of the inter-
nal structure of the system; therefore, it is not specified in the conceptual
schema.

A derivation rule is an expression that defines how new facts may be
inferred from others. The concrete form of this expression depends on the
conceptual modeling language used. Often, the expressions are formulas in
a logic style, but nothing prevents the use of conventional algorithms. For
example, assume we want to define the derivation rule corresponding to the
concept grandparent from the concept parent. An expression in logic style
would be �a person gp is grandparent of person gc if gp is a parent of a person
p and p is a parent of gc.�

An equivalent algorithmic expression that gets the four grandparents of
person gc could be:

1. Get the two parents p1 and p2 of gc.

2. Get the two parents gp1 and gp2 of p1.

An Introduction to Conceptual Modeling of Information Systems 45

3. Get the two parents gp3 and gp4 of p2.

4. The grandparents of gc are gp1, gp2, gp3, and gp4.

Derivation rules may be specific of a given domain (e.g., a bank), applicable
to all domains of a certain class (e.g., banking), or domain independent (e.g.,
statistical concepts). The conceptual schema must include all derivation rules
that can be used in a particular system, but we should explicitly define only
those rules that are specific to our domain. The other derivation rules could
be shared by all conceptual schemas for domains of the same class or by all
conceptual schemas.

In practice, most derivation rules infer new facts of the information
base, and then the rules are included as part of the conceptual schema of the
state. However, nothing prevents the inference of events from other events,
and then the corresponding derivation rules are part of the conceptual
schema of the behavior. For example, a derivation rule referring to events of
type Travel could define Long travels as those travels such that the distance
traveled is greater than 1000 km.

2.3 Abstract Architecture of an IS

Section 2.2 presented conceptual schemas. This section shows the essential
role these schemas play in the architecture of ISs. By architecture, we mean
the main components and their relationships. In principle, there are many
possible architectures, and choosing the most convenient for a particular IS
depends on many factors, including the preferred architectural style and the
hardware and software platform on top of which it must work. However, we
do not need to take such diversity into account here. For our purposes, it will
suffice to consider the ANSI/SPARC abstract architecture proposed in the
ISO report [10] (Figure 2.6).

To illustrate this architecture and the role played by conceptual sche-
mas in it, we will use the example of a chess-playing system that can play with
persons or with other systems.

The conventional representation of the state of a chess game is a draw-
ing like the one shown in Figure 2.7. However, not everybody uses exactly
the same representation; different icons can be used to denote the same
piece. Some users may prefer other graphical representations (e.g., the three-
dimensional view), and in some cases text-based representations may be
preferred (e.g., in machine-machine communication).

46 Advanced Database Technology and Design

An external schema is a form of representation of the state of the
domain used in the domain, and an external DB is the representation of the
state of the domain in that external schema. Figure 2.7 can be considered an
external DB. External DBs are virtual, in the sense that they do not have a
physical and persistent existence within the system.

Besides a form of representation, external schemas also include aspects
of manipulation of this form, like the language used to ask queries or to

An Introduction to Conceptual Modeling of Information Systems 47

External
schema

Internal
schema

Conceptual
schema

Message
External

processor
Internal

processor
Information
processor

Information
base

External
database

Internal
database

Figure 2.6 ANSI/SPARC architecture.

Figure 2.7 A representation of the state of a chess game.

communicate external events. In the example, we again find some diversity.
There are several textual (official) and graphical ways to represent a move
(e.g., as a string, like the string �D71,� or by dragging a piece to the desired
place).

The result is that in general there are several external schemas for a
given domain and it is not possible to single out one that satisfies all possible
users and all possible uses. Therefore, the system must deal with several exter-
nal schemas. To do that, the system needs to know the meaning of the repre-
sentations used and the meaning of the allowed manipulations.

Figure 2.8 shows a simplified conceptual schema of the example. In the
figure, entity types are represented by rectangles and relationship types by
lines connecting the involved entity types. The name of the relationship type
is placed near the line, with a small filled triangle that shows the way to read
the name.

Each piece is of some type (king, queen, bishop, etc.), has a color (black
or white), and is located at some square. Squares also have a color. For clarity,
we will call board square (or just square) to a square that is part of the board,
and representation square to a square drawn in the representation of the
board (external schema). A board square is located at a row and a column,

48 Advanced Database Technology and Design

IsLocatedAt

IsLocatedAt

IsOf

Has

Has

Contains

Column

HasNumber

HasNumber

IsLocatedAt

RowInteger

Color

Piece PieceType

Square

Board

Figure 2.8 Conceptual schema of the chess-playing example.

which define its position in the board. Rows and columns have a number
(integer).

The conceptual schema might also include a derivation rule defining
that a board square is free if there is not a piece located at it; otherwise, it is
occupied.

There is a single conceptual schema and there may be one or more
external schemas. External schemas are defined in terms of the conceptual
schema. For instance, the correspondence between the conceptual schema in
Figure 2.8 and the external schema used in Figure 2.7 is as follows:

• The board is represented by a (large) square, subdivided into 64
smaller representation squares corresponding to the board squares.

• Representation squares are painted with the same color as the corre-
sponding board squares.

• Each piece has a different icon, depending on its type and color.

• If a piece p is located at a board square s, then the icon correspond-
ing to p is put over the representation square corresponding to s.

The correspondence between manipulations and the external events is
defined similarly. For example, when the user drags a piece to a representa-
tion square, the conceptual meaning is a move of that piece to the board
square where it is released.

The external processor is the architectural component that interacts with
users. In principle, there is an external processor for each external schema.
The external processors receive the messages from users (in the language of
the external schema), translate them into the language of the conceptual
schema, and forward them to the information processor.

The information processor is the component that handles the (concep-
tual) messages originated by the users and performs the active function that
may be delegated to the system. In particular, if a message communicates an
external event, then the information processor has to apply the correspond-
ing effect function and check that the resulting state is consistent. In the case
of the example, if a new move is received, the information processor has to
check whether the move is valid and, if so, to update the state of the game.

To perform those tasks, the information processor needs to access and
manipulate the state of the domain. It cannot use an external representation
because, in general, they may be partial, and, on the other hand, they include
aspects that do not have any relationship with the nature of the domain.

An Introduction to Conceptual Modeling of Information Systems 49

For example, if the system had to use the representation shown in
Figure 2.7 to check whether the move of the black queen to column 1, row 5
is valid, the information processor should check, among other things, that
the representation square in column 2 and row 6 does not have any icon over
it. Neither �representation square� nor �icon� is a relevant concept in the
domain. It is much better that the information processor may ask questions
like �Is the board square of column 6 and row 2 free?� where both board
square and free are defined in the conceptual schema. For similar reasons,
which will be explained, the information processor cannot use an internal
representation.

What is most natural for the information processor is to use a represen-
tation based on the conceptual schema, which is the information base. How-
ever, the information base is virtual, because it does not exist physically
within the system. When the information processor asks itself questions like
�Is the board square in column 6 and row 2 free?� it behaves as if the infor-
mation base really existed. In reality the question will be sent to the internal
processor, which will answer it using the physical DB.

The representation of the state that the system has to maintain internally
must allow, among other things, an efficient execution. That means the design
of the internal representation must take into account technical factors. We call
internal schema the representation form of the state of the domain used inter-
nally by the system, and internal DB the state representation in that schema.
The internal DB is the only one that has a physical existence. The internal
schema also includes the set of operations that can be invoked on the DB.

An internal schema for the system example that would be almost optimal
from the point of view of the amount of space used (although not from other
technical points of view) could be a file with the following record structure:

PieceType, Color, Row, Column

where PieceType could use one character (with a K for king, Q for queen,
R for rook, etc.), Color one bit (0: white, 1: black), and Row and Column
a single byte (number 1…8). Internal schemas, like the external ones, are
defined with respect to the conceptual schema. In the example, the corre-
spondence might be:

• The file has a record for each piece that is on the board.

• The first field indicates the piece type, the second its color, the third
the row number of the board square where the piece is located, and
the fourth the column number.

50 Advanced Database Technology and Design

• The color of the board square is not represented explicitly. The
external processor may infer it by adding the numbers of the row
and the column: If the result is even, the board square is black;
otherwise, it is white.

Using that internal schema, the partial contents of the internal DB corre-
sponding to Figure 2.7 would be

R 1 8 2

R 1 8 4

K 1 8 7

Q 1 7 3

……

The internal processor receives the commands issued by the information
processor and executes them, possibly accessing the internal DB. For exam-
ple, if the internal processor receives the command (or, as in this case, ques-
tion) �Is the board square of column 6 and row 2 free?� it will check whether
there is a record, in the above file, such that Row = 2 and Column = 6. If
there is not such a record, the answer to the question will be positive, and
negative otherwise. To perform its task, the internal processor needs to know
the internal schema, including its correspondence with the conceptual
schema.

Modern architectures of ISs are layered, with three logical layers: pres-
entation, domain, and data management. The equivalent to the external
processors is located in the presentation layer, the information processor in
the domain layer, and the internal processor in the data management layer.

2.4 Requirements Engineering

Section 2.3 discussed the role of conceptual schemas in the architecture of
ISs. Now, we are going to see their role in the development of the systems.

Conceptual schemas are the common base for external and internal
schemas, as well as for their processors. Therefore, it is clear that it is not pos-
sible to design the architecture of an IS without the conceptual schema. Con-
ceptual modeling must precede system design.

An Introduction to Conceptual Modeling of Information Systems 51

It is important to realize that it is impossible to design a system without
knowing its conceptual schema. The only available options are either to
define explicitly the schema or to have it in the minds of the designers.
Unfortunately, sometimes the latter option is taken.

The stage that precedes system design is called requirements engineering
[14]. Its objective is to capture the requirements that must be satisfied by the
system. Normally, requirements engineering is a complex process, because
the many persons (users, designers, managers, etc.) involved in it may have
different views, needs, and interests.

Requirements engineering consists of three main phases, which can be
performed iteratively:

• Requirements determination;

• Requirements specification;

• Requirements validation.

During requirements determination, the future users of the system and the
designers analyze the problems, the needs, and the domain characteristics.
On the basis of that analysis, they decide the changes to be introduced in the
domain and the functions that should be performed by a new IS. Require-
ments determination is a crucial phase, because it determines a significant
part of the final success or failure of the whole project. In this phase, it is
decided how the future system will be, and an error in the decision often
implies that users eventually will get an inadequate system.

During this phase, a conceptual schema of the existing domain may be
elaborated, if it is considered necessary to achieve a common understanding
of the domain. A conceptual schema of the desired domain can also be elabo-
rated, without determining yet the part that will correspond to the new IS.

In the requirements specification phase, the functional and nonfunc-
tional requirements of the new system are defined. The result is a set of docu-
ments (called specifications) that describe exactly the system that the users
want and that the designers have to design and build. Functional require-
ments describe what the system must do, while nonfunctional requirements
describe global properties of the system, like, for example, response time or
portability.

The conceptual schema of an IS is the specification of the functional
requirements of the system. The conceptual schema specifies all functions
(memory, informative, and active) that must be performed by the system

52 Advanced Database Technology and Design

and, together with the nonfunctional requirement specification, corresponds
to the system specification.

During requirements validation, specifications are checked with respect
to users� needs. In this phase, it must be ensured that users get a complete
understanding of how the future system will be before it is built. This is
also a crucial phase that can be done well only if requirements have been
described explicitly.

Validation can be performed in two main ways:

• By presenting the conceptual schema and in general the specifica-
tions in a language and form that is easily understood by users. If the
conceptual modeling language used is not completely understand-
able by the users, it will be necessary to provide either some help
for its interpretation or translation to more familiar languages (not
excluding natural language). When the conceptual schema is large,
as is often the case, its structuring in fragments or views may be
mandatory.

• By building (partial) prototypes of the system. If the conceptual
modeling language used is formal, then prototypes may be generated
automatically. This form of validation is usually more effective than
the other form, but in general it is more expensive.

In summary, conceptual schemas are elaborated during the require-
ments engineering stage and are the basis for the next stage, system design.

For further details on how these activities can be facilitated by comput-
ers, see Chapter 13.

2.5 Desirable Properties of Conceptual Schemas

Now that we have seen what the conceptual schemas are and their role in the
architecture of the system and during the development process, this section
describes which properties should have these schemas in order to play those
roles effectively [15�17].

A well-known property of conceptual schemas is the 100% principle, or
completeness, which states that

All relevant general static and dynamic aspects, i.e., all rules, laws, etc.,
of the universe of discourse should be described in the conceptual

An Introduction to Conceptual Modeling of Information Systems 53

schema. The information system cannot be held responsible for not
meeting those described elsewhere, including in particular those in
application programs [10].

The justification for the 100% principle is that a conceptual schema is the
definition of the general domain knowledge the IS needs to perform its func-
tions; therefore, the conceptual schema must include all required knowledge.
If we had a �compiler� able to generate a system from the conceptual schema,
then it would be obvious that the system could not contain anything not
included in the schema. A conceptual schema is complete if it satisfies this
property.

An important conclusion from the 100% principle is that the concep-
tual modeling language used must allow the description of all relevant aspects
of a domain.

The correctness property is complementary to the completeness prop-
erty: A conceptual schema is correct if the knowledge that defines it is true in
the domain and relevant to the functions the IS must perform. For example,
in our chess-playing system the fact that players have an address is probably
irrelevant.

The Venn diagram in Figure 2.9 shows graphically the relationship
between completeness and correctness. The left circle, A, represents the
domain knowledge the IS needs to know to perform its functions. The right
circle, C, represents the knowledge defined in the conceptual schema. In a
complete conceptual schema, A is a subset of C. In a correct conceptual
schema, C is a subset of A. In a complete and correct conceptual schema,
A = C.

54 Advanced Database Technology and Design

A B C

Required
knowledge

Conceptual
schema

Figure 2.9 Completeness and correctness.

Correctness and completeness of a conceptual schema are checked dur-
ing the requirements validation phase.

Another property that has become popular is the principle of conceptu-
alization, which states that

A conceptual model should only include conceptually relevant aspects,
both static and dynamic, of the universe of discourse, thus excluding
all aspects of (external or internal) data representation, physical data
organization and access as well as aspects of particular external user rep-
resentation such as message formats, data structures, etc. [10].

The justification is similar to the previous one: If a conceptual schema
is the basis for system design, then it should not include any design aspect,
thus leaving freedom to designers to decide on all those aspects. On the other
hand, when a schema focuses only on conceptual aspects, it is simpler and,
therefore, easier to be understood by users. A conceptual schema that satisfies
this principle is called design independent.

Conceptual schemas are described in some conceptual modeling lan-
guage. This language will have a set of rules that must be respected. A con-
ceptual schema is syntactically valid (or just valid) if it respects all the rules of
the language in which it is written. Syntactic correctness of a schema is inde-
pendent of the domain.

Sometimes, the same piece of knowledge about a domain may be
expressed in two or more ways in a given language. The property of simplicity
states that simple schemas must be preferred, that is, schemas that use fewer
language constructs or less complex constructs.

Closely related to the simplicity property is the property of ease of
understanding. A conceptual schema should be easily understandable by the
persons involved in the development of the IS, particularly its future users.
Section 2.4 mentioned the importance of this property during requirements
validation.

Finally, we mention the property of stability, also called flexibility,
extensibility, or modifiability. A conceptual schema is stable if small changes
in the properties of the domain or in the users� requirements do not imply
large changes in the schema.

There are some proposals of metrics for evaluating these properties in
a conceptual schema (see Chapter 14). A representative example is [18].
However, this is an issue where more work needs to be done to be fully
practical.

An Introduction to Conceptual Modeling of Information Systems 55

References

[1] Langefors, B., �Information Systems,� Proc. IFIP �74, North Holland, 1974,
pp. 937�945.

[2] Checkland, P., Systems Thinking, Systems Practice, New York: Wiley, 1981.

[3] Boman, M., et al., Conceptual Modelling, New York: Prentice-Hall, 1997.

[4] Wand, Y., and R. Weber, �An Ontological Analysis of Some Fundamental Informa-
tion Systems Concepts,� Proc. 9th. Intl. Conf. on Information Systems, Minneapolis,
MN, Dec. 1988, pp. 213�225.

[5] Motro, A., �Intensional Answers to Database Queries,� IEEE Trans. on Knowledge and
Data Engineering, Vol. 6, No. 3, June 1994, pp. 444�454.

[6] Papazoglou, M. P., �Unraveling the Semantics of Conceptual Schemas,� Comm.
ACM, Vol. 38, No. 9, Sept. 1995, pp. 80�94.

[7] Ellis, J. R., Objectifying Real-Time Systems, New York: SIGS Books, 1994.

[8] Uschold, M., and M. Gruninger, �Ontologies: Principles, Methods, and Applica-
tions,� Knowledge Engineering Review, Vol. 11, No. 2, 1996, pp. 93�136.

[9] Mylopoulos, J., �Information Modeling in the Time of the Revolution,� Information
Systems, Vol. 23, No. 3/4, 1998, pp. 127�155.

[10] ISO/TC97/SC5/WG3, Concepts and Terminology for the Conceptual Schema and the
Information Base, J. J. Van Griethuysen (ed.), Mar. 1982.

[11] Russell, S., and P. Norvig, Artificial Intelligence: A Modern Approach, Englewood
Cliffs, NJ: Prentice-Hall, 1995.

[12] Cook, S., and J. Daniels, Designing Object Systems: Object-Oriented Modelling With
Syntropy, New York: Prentice-Hall, 1994.

[13] Motro, A., �Integrity = Validity + Completeness,� ACM Trans. Database Systems,
Vol. 14, No. 4, 1989, pp. 480�502.

[14] Loucopoulos, P., and V. Karakostas, System Requirements Engineering, New York:
McGraw-Hill, 1995.

[15] Bubenko, J. A., Jr., �Validity and Verification Aspects of Information Modeling,�
Third Intl. Conf. on VLDB, Tokyo, Oct. 1977, pp. 556�565.

[16] Davis, A. M., Software Requirements: Objects, Functions, and States, Englewood Cliffs,
NJ: Prentice-Hall, 1993.

[17] Lindland, O. I., G. Sindre, and A. Solvberg, �Understanding Quality in Conceptual
Modeling,� IEEE Software, Mar. 1994, pp. 42�49.

[18] Moody, D. L., �Metrics for Evaluating the Quality of Entity Relationship Models,�
Proc. 17th Intl. Conf. on Conceptual Modeling, Singapore, Nov. 1998, LNCS 1507,
Springer, pp. 211�225.

56 Advanced Database Technology and Design

Selected Bibliography

Batini, C., S. Ceri, and S. B. Navathe, Conceptual Database Design: An
Entity-Relationship Approach, Redwood City, CA: Benjamin/Cummings,
1992.

This book is devoted to conceptual modeling but focuses on DBs.

Nijssen, G. M., and T. A. Halpin, Conceptual Schema and Relational
Database Design, New York: Prentice-Hall, 1989.

Chapter 2 of this book (along with Chapter 4 of [14]) is an appropriate
general introduction to conceptual modeling.

Borgida, A., S. Greenspan, and J. Mylopoulos, �Knowledge Representation
as the Basis for Requirements Specifications,� IEEE Computer, Apr. 1985,
pp. 82�91.

This article emphasizes principles with reference to languages.

Loucopoulos, P., �Conceptual Modeling,� in Conceptual Modeling, Data-
bases, and CASE: An Integrated View of Information Systems Development, P.
Loucopoulos and R. Zicari (eds.), New York: Wiley, 1992, pp. 1�26, and
Rolland, C., and C. Cauvet, �Trends and Perspectives in Conceptual Model-
ing,� pp. 27�48 in the same book, provide a complete picture of conceptual
models and conceptual modeling languages, including many references.

Falkenberg et al., �A Framework of Information System Concepts: The
FRISCO Report,� IFIP WG 8.1 Task Group FRISCO, Dec. 1996.

This report is a recent in-depth treatment of IS concepts.

Boman, M., et al., Conceptual Modeling, Upper Saddle River, NJ: Prentice-
Hall, 1997.

This is one of the very few books that deals entirely with conceptual mod-
eling of information systems.

Mylopolous, J., �Information Modeling in the Time of the Revolution,�
Information Systems, Vol. 23, No. 3/4, 1998, pp. 127�155.

This article gives a modern view of the field.

An Introduction to Conceptual Modeling of Information Systems 57

	2 An Introduction to Conceptual Modeling of Information Systems 25
	2.1 The Functions of an Information System 25
	2.2 Conceptual Modeling 33
	2.3 Abstract Architecture of an IS 46
	2.4 Requirements Engineering 51
	2.5 Desirable Properties of Conceptual Schemas 53
	References 56
	Selected Bibliography 57

