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Payment cards for debit and credit have proven to be a huge
business success for the retail financial industry. The mag-
netic stripe technology is cheap enough to make the cost of
cards small. Moreover, the payment network and the terminals
at the point of service have been in place for years now. There-
fore, there is no further need to invest in infrastructure. Mean-
while, the operation of debit and credit cards increases year
after year, both in the number of issued cards and in the
geographical coverage. Consequently, profit has increased, so
there is no apparent cause for concern.

The first section of this chapter lists several causes of con-
cern that should encourage payment system operators, issuers,
and acquirers to consider the migration from magnetic stripe to
chip. We believe that this motivation could help a chip solution
vendor make his business case when talking to skeptics about
switching from the magnetic stripe technology to chip.

The second section reminds the reader of the essentials of
chip card technology. In this book the terms ICC and chip card
are used interchangeably to refer to one and the same device,
which not only stores data in its permanent memory but is also
able to process data. Therefore, it would be more accurate to
refer to these cards as microprocessor chip cards, to clearly dis-
tinguish them from the memory chip cards, which can store
data but cannot process it. For the fluency of presentation,
however, we will refer to the microprocessor chip cards as sim-
ply chip cards or ICCs. In Section 3.2.1 we give an overview of
the hardware and software structure of a chip card, as well
as the life cycle of the chip card. We then make a diagonal
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presentation of the ISO/IEC 7816 standard, which dominates the world of
ICC with contacts. The emphasis is only on few topics from Part 4 of the
ISO/IEC 7816 standard. We briefly review the basics about a card file system
and the methods of referencing files (Section 3.2.2). Then, the formats of
the commands/responses sent to and returned from the card, as well as the
most common commands, are briefly presented (Section 3.2.3). This is the
minimum amount of knowledge someone would need to be able to under-
stand the rest of this book. For an extensive introduction to chip card
technology, the reader should refer to [1]. At the end of the section,
we present the concepts of terminal application and card application, and
their interactions in a client server model when performing a transaction
(Section 3.2.4).

After these foundations of the ICC technology are revisited, two possible
chip migration paths are outlined: closed proprietary payment applications
and open interoperable payment applications. We analyze some of the fea-
tures of a payment application that allows interoperability (Section 3.4).
These features contrast with the homologue features of a proprietary appli-
cation (identified in Section 3.3), and thus emphasize the price one pays for
open design and interoperability.

A business case for chip migration

A cause of concern against keeping in place the magnetic stripe technol-
ogy is the increase of abuses in magnetic stripe payment cards reported
worldwide. Attackers have great insight about the design details of these
cards, which helps them to identify security weaknesses that could lead
to fraud.

In face-to-face payment transactions, counterfeiting the magnetic stripe
has become a dangerous threat [2, 3]. This threat combined with sophisti-
cated methods of monitoring the cardholder’s PIN cause significant damages
to financial institutions issuing such card products (see Section 2.6).

Card associations and payment system operators are concerned with
decreasing the amount of fraud. In this context, the migration of actual pay-
ment card products from implementations using the magnetic stripe as a
storage medium to a chip is seen as a necessary security improvement. The
term “chip” designates the integrated circuit embedded in the plastic card.
For the purpose of this book, we consider only those chips that offer protec-
tion against probing their resources. A chip providing this feature is referred
to as tamper-resistant. The reduction of fraud becomes possible because of
several factors:
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» Itis very hard to clone chip cards, particularly the secret cryptographic
parameters they contain, unless the tamper resistance of the chip is
overtaken. Even though more and more papers report methods of
subverting the tamper resistance of chip cards, the attacks are far too
complicated for common attackers to mount.

» Through its processing power, the chip card is actively involved in the
risk management at the point of service. The chip card becomes a
remote agent of the issuer that is able to correctly intervene in a local
authorization process performed at a terminal that is not connected
on-line to the payment network. The chip can enforce the proper poli-
cies for an optimal trade-off between the availability of the retail finan-
cial service provided to the cardholder and the security of the issuer
against fraudulent transactions.

» The chip improves the process of determining counterfeit cards,
through implementing the card authentication method with dynamic
authentication mechanisms. It also provides greater protection of the
cardholder against fraudulent transactions through the off-line verifi-
cation of the PIN in the card, for transactions authorized off-line.

The cost of the chip migration is impressive. Integrated circuit cards are
much more expensive to issue than magnetic stripe cards. This entails sig-
nificant costs for the issuers. New terminals are needed at the point of serv-
ice, which are equipped with integrated circuit card readers. This entails
high costs for the acquirer. The host computers of issuers and acquirers as
well as the payment network must be adapted for chip migration.

These economic factors have caused many financial institutions to ques-
tion whether it is cheaper to continue to support the loss due to fraud or to
change the whole infrastructure. This is mainly the case for financial institu-
tions located in developed countries, where the existing payment infrastruc-
ture is huge. Moreover, their losses are kept reasonably low, considering
that the majority of the transactions, if not all, are authorized on-line, which
decreases the risk of fraudulent transactions. In developing countries with
large territories, however, where the payment infrastructure is poor, the
payment transaction is assessed off-line in the majority of situations. In
these cases it makes sense to invest in a chip solution from the beginning,
since the security protection is clearly better.

Card associations and/or payment system operators have adopted new
operating rules for their chip card products, which has motivated issuers and
acquirers to perform the chip migration. Thus, the policy of decreasing the
interchange fees for acquirers that do not adapt their terminals to accept
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chip cards can be a good reason for acquirers to implement the chip technol-
ogy. At the same time, both issuers and acquirers could be encouraged to
adopt the chip, through a right liability policy. This policy could stipulate
that issuers and acquirers that have not accomplished the chip migration
assume the entire risk in case of fraud when making a transaction with an
acquirer/issuer that has performed the chip migration.

There is still another strong reason for chip migration. Instead of think-
ing in terms of reducing fraud, maybe it is better to think in terms of increas-
ing revenue streams as a consequence of chip migration:

1. Because of better decision-making by the chip at the point of service,
it is possible to improve authorization controls at a lower cost. This
means that communication costs related to the on-line authoriza-
tion of a transaction can be reduced in situations where the card risk
management together with the terminal risk management decides
that authorization can be granted locally. This improves the effi-
ciency of debit/credit cards in a segment of payments, which were
previously judged too small.

2. Since the chip has computation power, the payment card becomes
“smart.” Card applications can provide far more flexible financial
services and better answer the rapid changes in the retail financial
market. The same chip can accommodate several card applications,
which provides the multiapplication dimension of the chip cards.
This allows issuers to reduce the investment cost per card application
and better combine several payment instruments that satisfy differ-
ent payment behaviors. For example, the same chip card can accom-
modate a national debit scheme used for domestic payments, an
international credit scheme suitable for relatively important pay-
ments made while travelling abroad, and a cross-border electronic
purse for paying per byte for information on demand bought from
Internet providers. Thus, the flexibility of customizing the financial
service provided to each cardholder on an individual basis further
strengthens the relationship between the cardholder and his or
her bank.

3.2 An overview of the chip card technology

This section presents a quick overview of the chip card technology. The
functionality of an ICC is based on the standard ISO/IEC 7816, “Identification
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cards—Integrated circuit(s) card with contacts” [4-7]. First, we look at the
hardware and software structure of a chip card. Second, we review the
basics about a card file system and the methods of referencing files. Third,

the format of the command/response pairs sent to and returned from the
card as well as the most common commands are briefly presented. Finally,

the concepts of terminal application, card application, and their interaction

in a client server model are presented.

Hardware and software structure of chip cards

3.2.1

The chip card is a plastic card that incorporates an integrated circuit, which
is a single-chip computer. This computer contains a microprocessor that can
access read-only memory (ROM), electrically erasable programmable mem-

ory (EEPROM), and RAM. The memory management unit (MMU) controls
the access to these memories. The hardware structure of the single-chip

computer is shown in Figure 3.1.

Figure 3.1 Integrated circuit card
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The ROM is masked in the chip and cannot be changed during the whole
lifetime of the chip card. The EEPROM permanently stores data that can be
read but also modified during the lifetime of the card. The RAM is volatile
memory that keeps data needed for the processing performed by the chip’s
microprocessor during one card session.

The chip is connected to the outside world through five contacts, which
are assigned as follows:

» [/0: The chip has only one input/output serial line for communicating
with the outside world. The universal asynchronous receiver trans-
mitter (UART) serializes both commands coming from and responses
going to the terminal. Among the protocols that can be implemented
at the transmission level between the chip card and the terminal, we
mention only two protocols known as T=0 and T = 1 [4], since they
are the only transmission protocols accepted by the EMV™ cards.

» V,.and GND: The electrical power for the chip is provided by the termi-
nal on these two contacts.

» CLK: The execution of all the processing in the chip is synchronized
with a clock that is received from the terminal.

» RST:This contact receives the electrical reset signal from the terminal,
which brings the chip to an initial status (see Section 3.2.4).

The single-chip computer is a slave depending on the terminal, which
can be regarded as a master. The chip does not take initiative, but is simply
driven by the terminal. Figure 3.2 shows two possible software architectures
of a chip card, which can be regarded as a pile of software packages.

The left side of Figure 3.2 shows a proprietary software organization that
does not allow for the portability of card applications. It can be seen that the
card application makes direct calls to either a proprietary application pro-
gramming interface (API) or to the card’s operating system. Since each ICC
producer has its own operating system and its own proprietary API, the card
application is not portable from one chip card to another. Every time an
issuer changes the chip card producer, the card application has to be rewrit-
ten. Regarding the mapping of hardware resources to the software architec-
ture, it must be noted that a large diversity of possibilities exists, depending
on the memory capacity allocated for ROM and EEPROM. The operating
system and proprietary API are masked in the ROM, whereas the card
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Figure 3.2
Two software
architectures
for chip cards.
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application can reside either in the ROM or in the EEPROM. In the majority
of the proprietary card implementations, however, the card application
physically resides in the ROM and is logically integrated in the operating
system instead of being on top of the operating system. The card file system
that contains the data structures needed during the processing performed by
the card application is always kept in the EEPROM, since both read and
write operations must be available on the permanently stored data.

In the right side of Figure 3.2 the software organization of a Java card [8]
is presented. In this software architecture the code of the card application is
isolated from specific hardware and operating system libraries through the
Java virtual machine (JVM). The JVM interprets the byte code correspond-
ing to the Java source of the card application and translates it into instruc-
tions that are executable by the hardware and native operating system. Each
chip hardware platform has its own JVM, which allows the card application
to be independent of the hardware and the native operating system of the
card. One of the big benefits of this platform, which can justify its higher
price, is the reduced time to get new applications to the market. They also
support the downloading of “cardlets,” which is the term sometimes used
for the applets downloaded to a chip card, even when the card is already in
its utilization stage. Last but not least, the applications written for one chip
card can be ported to other chip cards, provided they have the same Java
card API, which is actually standardized as Java Card 2.1.1 [9]. Thus, this
software organization guarantees the interoperability of card applications
written for different chip card platforms.

The actual competitor of the Java card is the MULTOS operating system
for chip cards, whose specifications are created by the MAOSCO consortium
[10]. Card applications are coded in the MULTOS executable language
(MEL), which is an interpreted language that is hardware-independent.
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Therefore, similar to the Java card, the MULTOS architecture bases its func-
tionality on a MEL interpreter, which can be regarded as a virtual machine,
and an application loader. Generally there is a distinction between off-card
and on-card virtual machines. In contrast to the Java card, the MULTOS vir-
tual machine is completely realized on-card. This allows implementing fire-
walls between the applications, which provides a suitable security level for
multiapplication environments. The application loader ensures the possibil-
ity of secure loading and deletion of card applications to and from the
EEPROM, even during the utilization life stage of the card.

It is important to note that the software configuration and the file system
loaded in the card are dependent on the life stage of the chip card. Table 3.1
presents each life stage of the card, along with the most important opera-
tions performed by a certain role in that stage.

3.2.2 Card file system and file referencing

The operating system of the chip card manages a file system that stores the
data needed by each card application. ISO/IEC 7816-4 [5] supports two
categories of files: dedicated files (DFs) and elementary files (EFs). They are
organized in a hierarchical tree, with DF as branches and EF as leaves. A
typical organization of the card’s file system is schematized in Figure 3.3.

3.2.2.1 Master file and dedicated files

The highest DF in the hierarchy, which is the root of the tree, is also called
the master file (MF), which is the only mandatory DF in the file organiza-
tion. In the example presented in Figure 3.3, the MF contains one leaf, the
elementary file EF1, and two branches, the dedicated files DF1 and DF2.
Data that is used for all the applications in the card (e.g., administrative and
general security information such as the ICC serial number, access control
keys, card’s general PIN, as well as data concerning the management of the
card’s life cycle) are stored in elementary files at the MF level. This informa-
tion can be used by the operating system for creating another DF at the MF
level.

The dedicated file DF1 contains four leaves. The first three of them
(EF11, EF12, and EF13) are working EFs, while EF14 is an internal EF.
We will later see the difference between working and internal elementary
files. The semantic of the information in DF1 and its elementary files will
be explained in Section 3.3. The dedicated file DF2 contains only two
leaves, which are the working elementary files EF21 and EF22. Each dedi-
cated file can further contain other hierarchically inferior dedicated files. In
Figure 3.3, DF2 contains one subdedicated file DF21.
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Life Stage

Operation

Role Involved

1C fabrication

ICC fabrication

Prepersonalization

Personalization

Utilization

End life

The integrated chip (IC) is produced, with
the operating system in the ROM mask. For
a proprietary card, this mask can contain
the card application. For a Java card, the
ROM contains the Java virtual machine. A
unique ICC serial number is assigned to
each chip.

The integrated chip is embedded in the
plastic card.

The file system of the card is created. The
data that is specific to the payment system
and is common to all chip cards
participating in the same scheme is also
written during this stage.

For a proprietary card, if the card
application is resident in the EEPROM, the
application software is loaded. For the Java
card all the card applications that are
foreseen in the standard configuration of
the card are loaded.

The data specific to each cardholder is
tilled in the appropriate files of the card.

The card is operated according to the
business goals of each application.

For Java cards, card applications can be
dynamically added in the EEPROM during
the utilization stage. The only restriction is
that the corresponding byte code originates
from an application provider agreed upon
by the card issuer and there is enough
EEPROM space. Card applications can be
also dynamically deleted from the
EEPROM, according to the preferences of
the cardholder.

When the validity of the card expires, the
card is disaffected by the card issuer, which
can for example block the entire card.

IC manufacturer

Card
manufacturer

Card
manufacturer

Card issuer

Cardholder

Card issuer

A dedicated file can be seen as a container of data belonging to one card
application. Several data elements of the card application that are semanti-
cally related are stored in the same elementary file. Application control
information and cardholder’s financial data are stored in the elementary
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Figure 3.3
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files encompassed in the same DF. Each DF may contain cryptographic keys
for implementing various security services, and each may have its own
application PIN, which can be used to refine the access control mechanism
of a multiapplication card.

The referencing of a DF in the card’s file system, which corresponds to
the possibility of selecting a card application from the terminal’s side, can be
performed in two distinct ways:

1. Referencing with a fixed file identifier (FID), which consists of 2 bytes (4 hexa-
decimal digits). For example, the MF always has the FID equal to 3F00,
while DF1 has the FID equal to 7F01 and DF2 has the FID equal to
7F02, and so on. In order to be able to select a card application with
its FID, the terminal application must know beforehand the file
organization in that card. For example, in order to select DF21 start-
ing from the MF level as the current directory, the terminal must first
select DF2 with its FID, and only after this selection is successful can
it select DF21 with its corresponding FID.

2.  Referencing with an application identifier (AID), which consists of up to 16
bytes. The encoding of the AID is detailed in the ISO/IEC 7816-5 [6].
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The AID comprises either the registered application provider identi-
fier (RID), which optionally is concatenated with the proprietary
application identifier extension (PIX), or the proprietary application
identifier. The referencing of card applications with registered appli-
cation provider identifiers has the advantage that the terminal does
not have to know in advance the FID of the DF that stores the appli-
cation or its position in the card’s file system. Moreover, since the
RID is unique worldwide, several applications can be stored in the
card with no danger of referencing conflicts.

It will become obvious in Section 3.3 that referencing a DF with its FID is
suitable for closed design proprietary card applications. In Section 3.4 we
show that the open design interoperable card application uses DF referenc-
ing through the AID.

3.2.2.2 EFs

The data elements of a card application are encoded in elementary files. The
elementary files of a card application can be further subdivided into working
EF and internal EF:

» A working EF stores data that is not interpreted by the card applica-
tion, but rather used by the terminal application exclusively during
the execution of a protocol with the card.

» An internal EF stores data managed only by the card application for
management and control purposes. Cryptographic parameters used
for security services provided by the card as well as the cardholder’s
witness PIN or other cardholder verification codes (CHVs) are stored
in internal EFs.

Two referencing methods for elementary files are used:

1. Referencing with an FID, which consists of 2 bytes (4 hexadecimal digits).
The same FID referencing mechanism as that described for the DF
can be also used for the EF. The disadvantage of this referencing
mode is that before a file management command can be applied on
an EF, the terminal must explicitly select this EF inside the DF corre-
sponding to the card application. Examples of file management
operations are the reading of some bytes from a transparent EF or the
writing of a record in a linear fixed EF. Another disadvantage is that
the terminal must know beforehand the FID of all the elementary
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files inside the card application’s DF. The advantage of this referenc-
ing mode, however, is that the selection of either a DF or EF in the
card is done uniformly, which simplifies the card’s implementation.
This referencing mode of EF is suitable for closed design proprietary
card applications (see Section 3.3).

2.  Referencing with a Short File Identifier (SFI), which consists of a number
between 1 and 30 that can be encoded on 5 bits. This referencing method
has the advantage that the SFI can be used as a file handler, which
can be given as an input parameter to a file management command.
This means that there is no need of executing an explicit selection of
an EF inside the DF before calling a read/write command from/to an
EF. Moreover, the SFI of all the working EFs in the card’s application
DF can be easily listed in a kind of DF table of contents. This helps the
terminal learn by itself the publicly available working EF(s) existing
in a DF. Therefore, this referencing method of EFs is preferred in
open design interoperable card applications (see Section 3.4).

The structure of an EF depends on its intended use. As explained in
ISO/IEC 7816-4 [5] one can distinguish among four basic types of EF struc-
tures. Transparent files consist of a sequence of bytes. A linear fixed file con-
sists of a number of records, all having the same length. A linear variable file
consists of a number of records, each with a variable length. The cyclic files
contain records of fixed length organized in a ring structure. After all the
records are written, the oldest entry in the file will be overwritten by the
current entry to be stored. Figure 3.4 schematizes the four types of file
structures.

The file header of each EF stores information about the type of EF file
structure and the size of the file. It also stores the possible actions to be per-
formed on the file (read, write, invalidate, rehabilitate, increase) as well as
the access conditions under which a terminal application can perform that
action (card’s general PIN or application PIN, authentication with a symmet-
ric key, access always permitted or access never permitted).

byte 1 || Record 1 Record 1 |

byte 2 | | Record 2 Record 2|

byte 3 | | Record 3 Record 3 |

iAo Record 4 Record 4 | \

Transparent Linear fixed Linear variable Cyclic file
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Figure 3.5
Command/
response pair
(C-APDU/
R-APDU).

3.2.3 Command and response format

In accordance with the OSI 7-layer model, the information transaction
exchanged between the card and the terminal can be divided into three pro-
tocol sections:

1. Thephysicallayer protocol (layer 1) corresponds to the electrical sig-
nals on the I/0 contact of the card.

2. Data transmission protocols (layer 2) correspondto T=0and T = 1
protocols [4]. They are both asynchronous, half-duplex protocols.
T =0 is a byte-oriented transmission protocol of the first-generation
chip cards when the computing power and the RAM on the chip was
limited. It does not allow the transmission of data both in the com-
mand and in the response. T =1 is a block-oriented protocol, which
better respects the OSI reference model and allows transmission of
data both in the command and in the response. The data is handled
in blocks and the error checking is carried out on an entire block of
data rather than on 1 byte.

3. Application protocols for command and response data (layer 7). A
step in an application protocol consists of sending a command appli-
cation protocol data unit (C-APDU) from the terminal application to
the card application. The latter processes it and sends back the
response application protocol data unit (R-APDU) to the terminal
application. A schematized picture of a C-APDU/R-APDU pair is
given in Figure 3.5.

The C-APDU consists of a mandatory header of 4 bytes and an optional
body of a variable length. The header includes the class of instructions to
which the command belongs (CLA), the instruction code (INS) determin-
ing the command inside of a class, and the parameters of the instruction

Header Body

CLA INS P1 P2 | [L.field] [Data field] [L, field]

C-APDU

Body Trailer

[Data field] SW1SwW2

R-APDU
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[parameter 1 (P1) and parameter 2 (P2)]. The meaning of these parameters
is dependent on the instruction code. The body of the command is optional
and may contain the following fields:

» L:This field (of 1 or 3 bytes) can contain the number of bytes present
in the data field of the command.

» Data field: This field (of L, bytes) contains the string to be sent as input
data to the card application.

» L, This field (of a variable length up to 3 bytes) can contain the maxi-
mum number of bytes expected in the data field of the response
returned by the card.

The R-APDU contains a conditional body of variable length L _that can be
less than or equal to L. The R-APDU includes the trailer, which is a manda-
tory field of 2 bytes containing the status words (SW1, SW2). The status
words inform the terminal application about the result of executing the
command in the card application.

The ISO/IEC 7816-4 [5] standard defines only the basic commands. They
can be grouped in file selection, read data, modify/delete data, generate
data, compare data, and authenticate through cryptographic functions. In
addition to these standardized commands, each card operating system or
each card application defines private use commands. For example, the
EMV™™ debit/credit card application defines its own commands beside those
in ISO/7816-4 (e.g., the GET PROCESSING OPTIONS, and GENERATE AC).
The commands for the creation and personalization of files in the card’s file
system and the commands for blocking either an application or the entire
card are further examples of private use commands. One can understand
why even if chip card operating systems have been implemented according
to the ISO/IEC 7816 standard, it does not necessarily mean that they are
compatible with each other [11].

3.2.4 Cazrd application and terminal application

The terminal at the point of service is a card acceptor device (CAD)
equipped with a chip card reader, which is often referred to as the Interface
Device (IFD). The terminal interacts with an ICC according to the client
server model.

» A client application runs in the terminal. This client application is
referred to as the terminal application.
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» A server application runs in the ICC. This server application is referred
to as the card application.

The terminal application sends commands as a client to the card applica-
tion, which responds as a server.

To easily explain the processing performed by both the terminal applica-
tion and the card application, as well as their interaction in the client server
model, it is convenient to represent them as algorithmic state machines
(ASM). For an ASM the next state depends on the actual state and the event
that triggers the transition from one state to another. The state of the ICC
consists of a set of data elements and cryptographic parameters. The crypto-
graphic parameters are organized in the card’s file system. From this point of
view the ICC can be seen as a permanent storage medium. Compared to a
magnetic stripe card, which was a passive storage medium, the ICC has
computational power provided by its own microprocessor. The event that
triggers the transition of the ICC from one state to another is a command
with parameters received from the terminal. As a consequence of this tran-
sition the ICC performs an action. First, the action consists of updating the
value of the data elements and cryptographic parameters stored in the ICC
(i.e., the state of the ICC), according to the requirements of the command
and the accompanying parameters. Second, the action computes a response
that is returned to the terminal. The response can contain the value of one
or more data elements stored or computed in the card and a status word,
which describes whether or not the command was successfully completed in
the card. In case of failure, the status word indicates the source of error. The
response received from the card represents the event that triggers the transi-
tion of the terminal from one state to another.

The terminal brings the ICC from an initial state S, to an operational state
S, through an electrical reset. The action performed by the card following
the reset is to prepare and send back to the terminal an answer to reset
(ATR) response, which contains enough information to allow the commu-
nication subsystem of the terminal to synchronize with the communication
subsystem of the card. Once this initial handshake is performed, the termi-
nal can send C-APDU to and receive R-APDU from the card. The client-
server relationship established between the terminal and the card is pre-
sented in Figure 3.6.

The set of commands and responses exchanged between the terminal
and the ICC in the framework of a transaction is called a transaction profile.

A card application in the ICC contains a set of data elements that can be
accessed by the terminal after a successful selection of the application. A
data element is the smallest information unit that can be identified by a
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Figure 3.6
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application and
card application
in a client server
configuration.
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name, a description of its logical content, and a format. Data elements are
mapped onto data objects, which are encoded according to a certain format
(e.g., fixed length format, BER-TLV format, and others).

The terminal application consists of the sequence of commands, which
are launched by the terminal to trigger the transition of the card application
from one state to another. This determines the processing in the card
according to the functionality of the card application. The terminal applica-
tion also processes the data objects received in the responses from the card
and the status words reported at the end of each command.

Several issues are identified in relation to the design of a card and termi-
nal application, indifferent to whether it is a proprietary or interoperable
solution:
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1.  One has to define the encoding of data elements into data objects in
the card and the terminal application.

2. The organization of these data objects in a file system stored in the
card and the referencing of files in this system must be defined. If sev-
eral card applications reside in the same card, it is necessary to specify
the separation of files corresponding to each application.

3. The set of commands supported by the card and the possible
responses elaborated towards the terminal must be also defined.

4. The underlying cryptographic technology used for implementing
the necessary security protections in both the card and the terminal
must be chosen.

The possible solutions to these issues are restricted to the framework
provided by the ISO/IEC 7816. The next two sections show how the afore-
mentioned issues are solved in the case of a proprietary and closed payment
application and in the case of an interoperable and open payment applica-
tion, respectively.

3.3 Proprietary payment application

The approach described in this section outlines an oversimplified proprie-
tary design solution, which can be adopted by payment system operators
migrating from magnetic stripe cards to integrated circuit cards. The purpose
is to show the shortcoming of this approach, in case open design and
interoperability are business requirements.

Let us assume that a payment system operator provides a proprietary
payment application, which consists of both a card and a terminal applica-
tion. It is intended for the purpose of a dedicated business goal—for exam-
ple, a national debit scheme for POS payments. The proprietary application
is completely controlled by the payment system operator, who has designed
and specified it according to its business requirements.

The card application is instantiated in chip cards of cardholders who are
clients of an issuer. The issuer has established a business agreement for
implementing the card application, which is provided by the payment sys-
tem operator. The issuer has no freedom to customize the card application
to its specific business needs. An ICC carrying the proprietary card appli-
cation is accepted with terminals managed by an acquirer that has also
established a business relationship with the payment system operator. The
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acquirer agrees to implement the terminal application, which is provided by
the payment system operator. The acquirer has no freedom in customizing
the terminal application specified by the payment system operator.

Let us assume that the card application stores the financial information
characterizing the cardholder. This information consists of the following
data elements:

» Application Preferred Name: This is the name associated with the appli-
cation running in the card. This name is printed on the display of the
POS terminal for informing the cardholder about the application that
is currently selected in the card.

» Application Version Number: This is the version number of the software
implementation of the card application.

» Application Expiration Date: This data element represents the date after
which the card application expires.

» Application PAN: This is the information that uniquely identifies the
account of the cardholder and the issuer that keeps this account.

» Cardholder Name: This represents the name of the cardholder to be
printed on the sale slip produced at the point of service.

» Issuer’s operator, first number: This is a telephone number displayed on
the man-machine interface of the shopkeeper if the processing at the
point of sale performed by the terminal determines that a voice referral
is necessary.

» Issuer’s operator, second number: This is a second telephone number the
shopkeeper can call for the voice referral in case the first number is
congested.

When the terminal sends an INTERNAL AUTHENTICATE C-APDU, with
a body containing a random number and data elements characterizing the
business environment at the point of service (amount, terminal ID, date,
and time), the card computes a dynamic authenticator on this data. This
authenticator is computed with a MAC-based dynamic data authentication
(DDA) mechanism, like that presented in Appendix D, Section D.7.1. The
card sends an R-APDU, which contains the dynamic authenticator in its
body, back to the terminal. More details about the computation by the card
of the dynamic authenticator and its verification by the terminal are pro-
vided in Section 3.3.4.
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3.3.1 Encoding data elements with a fixed format

A convenient and simple method of encoding the data elements can
be obtained with a predefined fixed format, where each data element is
mapped into a data object consisting of a fixed number of bytes. This
number represents the maximal length of the object. If the representation of
data is smaller than the maximal length, then data is justified right or left in
that field and the remainder of the field is padded accordingly. For the data
elements listed above, an example of their encoding is given in Table 3.2.

The definition of data elements can be proprietary to the payment sys-
tem operator, but it can also be a subset of the interindustry data elements
defined in ISO/IEC 7816-6 [7].

The data objects are not explicitly identified in the card application, but
they are identified implicitly. This implicit identification is obtained through
their location in one elementary file or another of the card’s file system, and
through their position in that file. This mapping of data objects into the
card’s file system is totally at the discretion of the payment system operator
that decides which data object goes to which elementary file, and in which
relative position of that file. A possible mapping is shown in Figure 3.7.

Table 3.2

Encoding with Fixed Format of Data Elements

Name Format Length

Application Preferred an 16 (alphanumeric on 16 bytes—maximum.

Name maximum 16 characters) Right justified, left padded
with blanks

Application Version b (binary) 2 bytes

Number

Application Expiration n6 (YYMMDD) (numeric on 3 bytes

Date 6 digits, in the order: year,
month, day)
Application PAN cn 19 (numeric on 19 10 bytes—maximum
digits) Right justified, left padded
with zeros
Cardholder Name ans 26 26 bytes—maximum
Right justified, left padded
with blanks
Issuer’s operator, phone nlé6 (numeric on 16 digits) 8 bytes
number
MAC-based dynamic b 8 bytes
authenticator
Application Transaction b 2 bytes

Counter
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In this example, all the data objects present in the card application are
mapped in three elementary files as follows:

EF11, which is a transparent file, stores the Application Preferred
Name and the Application Version Number in this order. It has a
total of 18 bytes, of which the first 16 bytes store the Application Pre-
ferred Name and the last 2 bytes store the Application Version
Number.

EF12, which is also a transparent file, stores the following data
objects: the Cardholder Name in the first 26 bytes, the application
PAN in the next 10 bytes, and the Application Expiration Date in the
last 3 bytes.

EF13, which is a linear fixed file, contains two records of the same
length. They store the first phone number and the second phone
number of the issuer’s operator. These are phone numbers where
the POS operator can call the issuer if any suspicions appear about
the current transaction or cardholder.
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3.3.2 Fixed file system organization

The file system of the card hosting the proprietary debit application is out-
lined in Figure 3.3.

After resetting the card, the current referenced DF is the MF, which rep-
resents the default entry in the card file system. The MF in this example has
one single EF as a leaf (EF1). This elementary file keeps the ICC serial
number, which is a data element that is uniquely assigned by each card
manufacturer. There are two DFs that are branches of the MF. Each DF is an
entry point to another card application. For example, DF1 is the entry point
for the national debit card application, while DF2 is the entry point of a
dedicated electronic purse scheme. Note that the payment system operator
providing the first application is not necessarily the same as the payment
system operator providing the second application.

The DF1 contains four leaves. Three of them are the working elementary
files EF11, EF12, and EF13 presented above. The fourth leaf is an internal
elementary file EF14, which contains a symmetric key for computing the
dynamic authenticator. This key, which is denoted K, and is unique for each
card, is derived from the issuer master key (IMK). The IMK is managed by
the issuer for the computation of dynamic authenticators. The key K, is
obtained with the formula K, = F,(IMK)[PAN], according to the principles
explained in Appendix E, Section E.5. The diversification information Diver-
sification_Info consists of the PAN assigned to the cardholder. F, is a one-way
function, like a MAC based on a 64-bit length block cipher (see Appendix E,
Section E.4). The issuer computes the key K, and writes its value in the EF14
of the DF1 during its personalization stage. The terminal application in the
POS, as well as any other agent except the card application itself, have no
access to the content of EF14, which should remain secret during the whole
lifetime of the card.

The terminal application uniformly references the DF1 and the elemen-
tary files EF11, EF12, and EF13, using their FID on 2 bytes. In Figure 3.3 the
file identifiers are listed next to each file in the system.

3.3.3 Preestablished command and response formats

In a proprietary payment scheme, the terminal application is aware of the
encoding of data elements into data objects, the mapping of data objects into
elementary files, and the organization of the dedicated/elementary files in
the card. All these design details are fixed beforehand by the payment sys-
tem operator and are implemented in the same form by all the participants
in the system.
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Therefore, the format of the commands and responses is fixed. The set of
data objects that is transmitted within the body of each C-APDU is always
the same. The set of data objects that is returned in the body of each
R-APDU is also preestablished.

Moreover, the transaction profile is fixed, since the sequence of com-
mands in the terminal application is predetermined and is not negotiable
between the card and terminal. The steps below describe this transaction
profile:

» Step 1: The terminal application selects DF1, which contains the debit
application.

» Step 2: The terminal selects EF11 and reads its binary content.
» Step 3: It repeats the same sequence of commands for EF12.
» Step 4: It selects the linear fixed file EF13 and reads its two records.

» Step 5: The terminal prepares a message MI containing a random
number R, and some data about the business environment. This busi-
ness environment data includes the amount of the transaction (which
is typed in the terminal’s keypad by the POS operator), the identifier
of the terminal TerminallD, and the time/date when the transaction
took place TimeDate. The message MI is the body of the INTERNAL
AUTHENTICATE C-APDU, which is sent to the card. This C-APDU trig-
gers the computation of the MAC-based dynamic authenticator in the
card, the value of which is denoted mac_card. A more detailed look at
the computation performed by the card is postponed to Section 3.3.4.
The value mac_card together with the Application Transaction
Counter (ATC) is returned in the body of the R-APDU. The R-APDU
body is always 10 bytes, where the first 8 bytes contain the value of
mac_card and the last 2 bytes contain the ATC.

In each step of the transaction profile described above, the terminal
sends a set of commands and processes the received responses. The process-
ing performed by the terminal on these responses can be described as
follows:

» After reading the content of the elementary files EF11, EF12, and
EF13, the terminal application identifies the data elements of the card
application according to their predetermined position in an elemen-
tary file. Thus, the first 16 bytes of EF11 are identified as being the



3.3 Proprietary payment application 75

Application Preferred Name, the next 2 bytes are the Application Ver-
sion Number, and so on.

» The terminal displays the Application Preferred Name to inform the
cardholder about the card application that is currently effective. The
terminal application performs some checks. For example, the Applica-
tion Version Number in the card must be equal to the Application Ver-
sion Number of the terminal application. The Application Expiration
Date read from the card must be smaller than the current date in the ter-
minal (card not expired). If all these verifications are passed, the termi-
nal continues processing; otherwise the card session is aborted.

» The terminal creates a message M0 containing the cardholder’s finan-
cial information stored in the card. The Cardholder Name, the PAN, and
the Application Expiration Date of the card are concatenated in M0.

» If the transaction amount is less than a threshold limit imposed as a
security parameter by the acquirer, the transaction is processed off-line,
without the intervention of the IH. Thus, the transaction is accepted if
the value of the MAC-based dynamic authenticator produced by the
card (mac_card) is correct. More details of this assessment process is
postponed until Section 3.3.4. The validity of the dynamic authentica-
tor proves the authenticity of the card and the fact that the card is not
counterfeit, which obviously is a big step forward compared to mag-
netic stripe cards.

» When the transaction amount is above a threshold limit, the terminal
sends on-line to the IH the financial data captured from the card (M0),
the data characterizing the business environment of the POS terminal
(M1), the ATC, and the dynamic authenticator computed by the card
mac_card. The TH checks whether the dynamic authenticator is valid
or not in the same way that this checking is performed off-line by the
terminal. The IH, however, can perform supplementary verifications
compared to the off-line case, which increase the security of the
authorization process. Thus, the issuer can verify whether the balance
of the account indicated by the PAN has enough funds for supporting
the transaction. The issuer can also verify whether the card was black-
listed, for reasons of being reported stolen, or having compromised
keys, etc. If all these verifications are passed, the issuer informs the
POS terminal about the outcome of the authorization, approving or
denying the transaction.
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3.3.4 Symmetric cryptographic technology

The security protection in the transaction profile described in Section 3.3.3
is deliberately oversimplified. It serves solely for the presentation of con-
cepts related to the choice of an appropriate cryptographic technology for
either proprietary or interoperable design solutions.

The only security service foreseen in this transaction profile is card
authentication. The MAC-based dynamic data authentication, as explained
in Appendix D, Section D.7.1, is the security mechanism implementing this
security service.

Since the scheme is proprietary, the payment system operator can easily
coordinate the whole key management process for both issuers and acquir-
ers in the framework of symmetric cryptographic techniques.

» Using a secure key distribution channel established in advance,
each issuer receives an IMK. The payment system operator derives
IMK from its master key (MK). The issuer identifier serves as the
diversification information Diversification_Info (i.e., IMK= F,(MK)[Issuer
Identifier]) (see Appendix E, Section E.5). As it was explained in Sec-
tion 3.3.2, during the card personalization stage, the issuer uses IMK
to produce the key K, which is a symmetric key for computing the
dynamic authenticator.

» The payment system operator provides acquirers with a security
application module (SAM) that stores the MK. The SAM is a tamper-
resistant chip, which is not embedded in a plastic card but rather is
directly plugged into a specialized connector inside the terminal. Note
that since this chip contains the MK, its tamper resistance is an essen-
tial assumption for the security of the payment system operator.

In the remainder of the section we concentrate only on step 5 of the
transaction profile described in Section 3.3.3. We zoom in on both the
processing performed by the card to produce the dynamic authenticator
mac_card as well as on its verification by the terminal, with the help of its
SAM, in case the authorization is granted off-line.

Figure 3.8 outlines the computation of the dynamic authenticator by the
card application.

The terminal prepares the C-APDU with a header (CLA, INS, P1, and P2)
corresponding to the internal authenticate command. The body of the
C-APDU contains the message M1 =R || amount || TerminallD || TimeDate. M1 is
constructed as the concatenation from left to right of the random number R,
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Figure 3.8
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the amount of the transaction amount, the identifier of the terminal Termi-
nallD, and the time/date when the transaction took place TimeDate.

After receiving this C-APDU, the card application performs the following
processing:

» Retrieve the current ATC and use it as a diversifier for obtaining
the session key SSK from the card’s unique key K, (i.e., SSK =
F,(K)[ATC]).

» Compute a message M0 = CN || PAN || ExpDate. This message is the con-
catenation from left to right of the Cardholder Name (CN), the PAN,
and the Application Expiration Date of the card.

» Retrieve the message M! from the C-APDU body and construct the
message M as the concatenation of M0 and MI (i.e., M = MO || M1).

» Compute the dynamic authenticator as mac_card = MAC (SSK) [M].

» Compute the R-APDU body as the M2 = mac_card || ATC. Return
R-APDU.
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Figure 3.9 outlines the verification of the dynamic authenticator by the
terminal application with the support of the SAM.

After receiving the R-APDU, the terminal can verify off-line the correct-
ness of the dynamic authenticator mac_card received from the card, using
the SAM. In this case the SAM can be regarded as the issuer’s remote agent
validating the dynamic authenticator. To this end the terminal constructs
MO in the same way as the card did, using the data elements CN, the PAN,
and the Application Expiration Date previously read from the card. The ter-
minal computes the message M concatenating M0 and MI. The terminal
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prepares another C1-APDU, this time addressed to the SAM. Its header
(CLA, INS, P1, and P2) corresponds to the Verify MAC command supported
by the SAM. The body of this C1-APDU contains the message M = MO || M1
concatenated with the message M2 = mac_card || ATC.

After receiving the C1-APDU, the SAM performs the verification of the
dynamic authenticator mac_card, following the steps listed below:

» Retrieve the PAN from MO0 and isolate the issuer identifier. Use it as a

diversifier to obtain the IMK as IMK = F,(MK)[Issuer Identifier], where
MK was stored in the SAM since its personalization.

» Using the PAN as a diversifier, derive the unique key of the card K, used
for the computation of the dynamic authenticator, from the IMK (i.e.,

K,= F (IMK)[PAN]).

» Retrieve the ATC from M2 and use it as a diversifier for deriving the
session key SSK from the unique key of the card K, (i.e., SSK =
F, (K, [ATCT).

» Compute the dynamic authenticator as mac_witness= MAC (SSK) [M].

» Retrieve the dynamic authenticator mac_card computed by the card
from M2 and compare it with the recomputed value mac_witness.

» If the two values are equal, position the SW1 and SW2 status words in
the trailer of the R1-APDU as OK. Otherwise, position them as NOK.
Return R1-APDU.

After receiving the outcome of the dynamic authenticator verification in
R1-APDU, the terminal decides whether to approve (SW1SW2=“OK”) or
deny (SW1SW2=“NOK”) the transaction. The terminal keeps a transaction
record (M, M2) in its permanent memory. The record will be sent to the
acquirer for the clearing process.

If the terminal decides that the authorization is performed on-line by the
IH, the authorization request message (1100) will transport M = MO || M1
concatenated with the message M2 = mac_card || ATC. After receiving these
messages, the security module of the IH will perform the same processing
for verifying the dynamic authenticator as the processing described for
the SAM.

As one can see, in the case of a proprietary payment application, which
can authorize off-line transactions involving small amounts, symmetric key
cryptographic techniques are appropriate for implementing security mecha-
nisms. In this case the payment system operator controls the whole key
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management for both issuers and acquirers, which allows an easy and cost-
effective operation of symmetric key cryptographic algorithms. The immedi-
ate consequence is that the card does not need to implement asymmetric
cryptographic algorithms, and therefore, a cryptographic coprocessor for
long arithmetic computation is not needed in its hardware architecture (see
Appendix D, Section D.1.2). This keeps the price of chip cards low. The use
of the SAM in the structure of the terminal allows the off-line verification of
the MAC-based dynamic authenticator. The SAM increases the cost of the
terminal, which is the price to pay for off-line authorization of transactions
involving small amounts. If the payment system operator decides that all
the authorizations must be performed on-line, indifferent of the transaction
amount, the presence of the SAM in the terminal is no longer needed. In
this case, the verification of the dynamic authenticator is directly performed
by the issuer, which simplifies the design of the terminal and its cost.

We have argued that the use of symmetric key cryptography is rather
cheap for securing proprietary payment schemes, at least from the point of
view of issuers. This does not mean, however, that public key cryptographic
techniques are ruled out for securing the off-line authorization of transac-
tions in proprietary payment schemes. With the advance of chip technology,
it can be foreseen that the emphasis of security computations will shift
towards public key enabled chips, which will render unnecessary the pres-
ence of a SAM in the hardware structure of a terminal.

3.4 Interoperable payment application

The design principles explained in the previous section are not suitable for
interoperability. The following business case for an interoperable payment
application is now analyzed.

The proprietary card application described in Section 3.3 is referred to
as CI. The card hosting CI is issued by the issuer /I and is accepted at a ter-
minal managed by the acquirer AI, running the terminal application T1I.
The whole payment scheme is managed by the payment system operator
denoted OI.

Assume that a cardholder has an ICC storing a card application C2, pro-
viding the same functionality as CI. However, the issuer I2 that manages the
ICC containing C2 is not a subscriber of the payment system operator OI.
The issuer 12 is a subscriber of the payment system operator 02, which did
not establish any business agreement with OI. The payment system opera-
tor 02 made its own design for the card application C2 and for the terminal
application T2. This basically means that:
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» The rules of encoding the data elements into data objects adopted in
C2 could be different than the rules adopted in CI.

» It could be that the rules of encoding data elements into data objects
adopted by both CI and C2 are the same—for example, according to
ISO/IEC 7816-6 [7]. There is a high probability, however, that the map-
ping of data objects in elementary files is different from one card appli-
cation to the other, since there is no standard that regulates this matter.
Then the implicit identification of data objects in the two card applica-
tions is different.

» The file organization in C2 is different than the file organization in CI,
since the file tree structure and the file identifiers adopted by the file
organization in C2 are probably different than in the file organization
adopted by CI.

» Both payment applications use interindustry commands as defined in
ISO/IEC 7816-4 [5]. Because of the differences, however, in mapping
data objects in files and in the file organization, the set of data objects to
be transmitted with each command and the set of data objects expected
to be received with each response are different from one card applica-
tion to another. This determines two different transaction profiles for
the two payment applications, which finally means two distinct termi-
nal applications T! and T2.

» It is also possible that the formulas for computing the dynamic
authenticator differ from one card application to another, while the
cryptographic keys involved in this computation are certainly proprie-
tary to each payment system operator.

In case the acquirer AI would like to broaden its financial services to
cardholders of the issuer 12, then Al should establish a separate business
relationship with the payment system operator O2. Following this agree-
ment, the acquirer A! loads in its terminals another distinct terminal appli-
cation 72, which is proprietary to 02. Moreover, considering that symmetric
cryptographic technology is used, the terminal should be able to accommo-
date in addition to the security application module SAMI used by T1, a sup-
plementary security application module SAM2, which is exclusively used by
72. Another possibility would be to cumulate the security functions and the
corresponding cryptographic parameters of both SAMI and SAM?2 into one
single SAM, with the condition that the payment system operators Ol and
02 have established a business relationship in this sense. In practice, this
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alternative is almost ruled out both by concurrency reasons between opera-
tors and for reasons determined by logistic problems related to key manage-
ment and personalization of the SAM. As more and more system operators
propose proprietary payment applications to acquirers, the management of
the terminal applications and SAM(s) would become very difficult and the
terminal more and more expensive.

A possible solution for interoperability would be that payment system
operators create a consortium that specifies coproprietary card and terminal
applications, with closed design solutions. As a result, everyone interested in
being interoperable with this closed system would adhere to a memoran-
dum of understanding proposed by the initial consortium. This policy, how-
ever, is not appropriate for the world of banking and financial services.
Payment system operators, issuers, and acquirers would like to independ-
ently decide how the payment application would best match their interests.

A consortium comprised of Europay, MasterCard, and Visa (which is
referred to as the EMV™ consortium) proposed an interoperable and open
solution. In the framework of their solution each payment system operator,
issuer, and acquirer can still customize a card/terminal application to its
own business needs, providing they respect the basic negotiation mecha-
nisms proposed by the EMV™ specifications. The rest of this section explains
the principles of how this can be achieved.

3.4.1 Self-determined encoding of data elements

Instead of adopting a predefined fixed format for encoding data elements
into data objects and an implicit identification of these data objects, the solu-
tion adopted by the EMV™ is to explicitly identify each data object. This is
achieved with a tag, which can be regarded as a unique identification label.
The data object has also attached the information about the length of the
data element it encodes, such that there is no need of specifying beforehand
a fixed length for each data element supported by an application. Thus, a
data element is encoded following the tag-length-value (TLV) convention,
described in the Basic Encoding Rules (BER) contained in the ISO/IEC 8825
standard [12]. Only the value field of the EMV™ data object actually con-
veys the useful information, while the tag and length fields convey the iden-
tification information. The BER-TLV encoding of the data elements in the
card application CI is listed in Table 3.3.

The BER-TLV representation is suitable from the point of view of
interoperability. Since every EMV™ data element is completely character-
ized by the tag and the length fields, the EMV™ terminal application can
identify each data element and retrieve the conveyed information in the
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Table 3.3
BER-TLV Encoding of Data Elements

Name Format Tag Length

Application Preferred Name an 1-16 9F12 1-16

Application Version Number b 9F08 2

Application Expiration Date né6 (YYMMDD) 5F24 3

Application PAN cn 19 5A Var. up to 10
var. up to 19

Cardholder Name ans 2-26 5F20 2-26

Issuer’s operator, phone nlé To be defined 8

number

MAC-based dynamic b 9F26 8

authenticator (called
Application Cryptogram in

EMVT™)

Signed Static Application b 93 The length of the

Data RSA modulus of
the issuer (for
further details on
RSA, see
Appendix F)

Signed Dynamic Application b 9F4B The length of the

Data RSA modulus of
the card

value field, indifferent of their “position” in the card (which EF and on
which position). Therefore, the EMV™ terminal application has no need to
know in advance the structure of the EMV™ files in the ICC to retrieve
financial data needed for the completion of a payment transaction. As it will
become evident in the next paragraph, it is sufficient that the terminal appli-
cation knows the references of all the publicly available elementary files of
the card application and the indexes of all the retrievable records from these
files. The terminal application, however, has no need of previous informa-
tion about how data is organized in these records. This allows complete free-
dom for the issuer of the EMV™ cards about the modality of mapping data
objects into elementary files. No business relationship has to be established
in advance between the issuer of the ICC and the acquirer responsible for
the terminal, except that they are members of the same payment system
operator/card association. The mapping of data objects in application ele-
mentary files (AEF) is illustrated in Figure 3.10.

An elementary file can be regarded as a sack where the data objects can
be located in any position. Once the elementary file is read in the terminal,
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Figure 3.10
EMV™ mapping
of data objects
in elementary
files.
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the sack is emptied. The terminal recognizes data objects in the heap accord-
ing to their tags and not according to their relative position in the elemen-
tary file from which they were downloaded.

The price paid for interoperability is a lower efficiency of the BER-TLV
encoding. Every data element needs more bytes for its representation
because of the addition of the tag and length fields besides the actual infor-
mation conveyed in the value field of the data object.

3.4.2 Customized file system organization

The file system of an EMV™ card is also compatible with ISO/IEC 7816-4
[5]. A possible EMV™ file system is presented in Figure 3.11.

The file system is divided into application definition files (ADF) and
directory definition files (DDF), allowing several card applications to be
simultaneously accommodated in the card. A separate ADF corresponds to
each card application present in the card. An ADF is referenced with an AID
(see Section 3.2.2.1). Each ADF encompasses one or more AEF(s). An AEF
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is a linear variable file containing the public information of the card applica-
tion available to the counterpart terminal application. From this perspective
an ADF can be regarded as an application data container. Inside the ADF
each AEF is referenced with a SFI, which is a number in the range 1 to 30
(see Section 3.2.2.2). The SFI can be used as the handler of the AEF, once
the ADF container is selected and known to the terminal. This handler can
be directly used by the card commands performing file operations.
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A DDF encompasses a group of related ADF(s). Each DDF in the card’s
file system is also referenced with an AID.

» The nature of the applications can be the criteria for grouping the
ADF(s) in a DDF. For example, all the payment card applications in an
EMV™ card could be gathered in the same DDF. The DDF that groups
them is called the payment system environment (PSE) and has a
special AID represented by the string 1PAY.SYS.DDFO01, which is
a reserved AID.

» The ADF(s) can be also grouped according to the payment system
operator that proposed them. In the example of Figure 3.11, DDF2
gathers all the payment card applications of a national payment sys-
tem operator.

A DDF can also include other hierarchical inferior DDF(s). For example,
the PSE can further contain a DDF dedicated to loyalty card applications,
denoted DDF1 in Figure 3.11. The DDF can be seen as a container of card
applications.

The organization of files in an EMV™ card is more flexible, such that the
EMV™ terminal is not compelled to know this organization in advance in
order to perform a transaction profile. The terminal has to be aware only
about the AID of the DDF applications containers in the card and of the ADF
data containers that are not included under a DDF. Thus, the acquirer has to
set up in the terminal a list of all the acceptable applications (ADFs) or of all
the acceptable groups of applications (DDFs).

» Once the selection of a DDF applications container is performed, the
terminal can find the table of contents of the DDF. This table of con-
tents is organized in a directory file, containing as entry points the
AID of all ADF data containers and the AID of all the other hierarchi-
cal inferior DDF applications containers. For example, the directory
file at the level of the PSE contains the AID of ADF2 and DDFI, and
the directory file at the level of DDF1 contains the AID of ADF3. By
reading a directory file, the terminal is able to learn the file organiza-
tion in that DDF.

» Whenever the terminal has selected an ADF container, it is further
able to read another table of contents, which this time lists the AEF(s)
that are publicly readable from a card application. This table of con-
tents is referred to as an Application File Locator (AFL).
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3.4.3 Variable formats for commands and responses

In an EMV™ setup the card application and the terminal application can be
designed by different roles, within the limits established by the EMV™ specifi-
cations. The roles do not have to agree in advance on the list of meaningful
data objects to be transmitted from the terminal application to the card appli-
cation within a command. These data objects are needed by the card to per-
form its processing. This means that the set of data objects to be transmitted
within a command can be different from one card application to another.

Therefore, the card must instruct the terminal about the data objects
acceptable to be transmitted in a command. To this end the card application
sends to the terminal application a data object list (DOL). This contains the
list of all the tag-length identifiers of the data objects to be included by the
terminal application in a command body.

For each command accepting a variable data input, the EMV™ specifica-
tions have defined a separate type of DOL, which is transmitted to the ter-
minal application before the invocation of the command. The list of items
(TL)1, (TL)2, (TL)3, ... included in each DOL type contains compulsory data
objects specified by the EMV™ specifications and also chosen data objects of
each issuer. The DOL(s) are personalized in the card application by the
issuer before the card is operated during the utilization life stage.

The terminal uses the tag-length identifiers (TL) of the data objects in the
DOL to retrieve the corresponding objects from its application heap. The
data objects in the heap correspond to the current business environment:
amount, TerminallD, Time/Date, and so on. The terminal retains the field
value of the data objects identified in the DOL and concatenates them in a
byte string, which is given as a data input to the corresponding command.
The mechanism is depicted in Figure 3.12.

Moreover, the transaction profile is also variable, since the sequence of
commands depends on the capabilities of the card concerning the imple-
mentation of some basic security mechanisms. Included among these
mechanisms are the card authentication method (CAM), the cardholder
verification method (CVM), and the decision as to whether the terminal
performs risk analysis or if everything must be judged on-line by the issuer.

The Application Interchange Profile (AIP) is the data element stored in
the card since the personalization, which instructs the terminal concerning
the acceptable sequence of commands from the card’s viewpoint.

3.4.4 Asymmetric cryptographic support

In the beginning of Section 3.4 we saw that implementing the off-line card
authentication service using symmetric cryptographic techniques requires
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Figure 3.12
Variable
command data
input with DOL
mechanism.

Chip Migration

Card Terminal

Stores DOL since the
personalization stage

DOL, = (TL)1 | | (TL)2 || (TL)3...
DOL,

»
>

Retrieve from the terminal's heap
the data objects corresponding to
DOL, = (TL)1 | | (TL)2 || (TL)3...

Concatenate the corresponding value in
the message M, =V1|| V2 || V3...

C-APDU_Header <- Corresponding to DOL,

C-APDU_Body <— M,

C-APDU <- C-APDU_Header || C-APDU_Body
C-APDU

<
<«

Processing according to C-APDU

each payment system operator to provide the acquirer with a dedicated
SAM. This impacts negatively on the complexity of the terminal and of the
key management process.

Openness of design and interoperability imply the use of asymmetric
cryptographic techniques for implementing the off-line card authentication
service. Thus, in order to prove the authenticity of the financial data person-
alized in the card, as well as the fact that the card is genuine, instead of using
the MAC-based DDA mechanism, one has to use the digital signature-based
DDA mechanism, as presented in Appendix D, Section D.7.2. In this case
there is no need for the distribution of sensitive secret cryptographic
parameters by the payment system operator, which is a considerable advan-
tage. Correspondingly, the hardware structure of the terminal is simplified,
as is the key management overhead. The chip card, however, must be able
to produce a digital signature, which requires an RSA operation in the case
of EMV™ chips. Therefore, the hardware structure of the chip includes a
cryptographic coprocessor for speeding up the computations performed by
the card (see Appendix D, Section D.1.2). Moreover, there is need for more
EEPROM space in the chip card to keep the private key used for signature
generation as well as of the corresponding public key with the accompany-
ing issuer certificate to be forwarded to the terminal for signature verifica-
tion. These extra facilities are expensive both in terms of computation
power and permanent storage space. They significantly increase the cost of
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the chip card supporting asymmetric cryptography when compared to the
chip card supporting only symmetric cryptography. When considering also
that the latter card is several times more expensive than the magnetic stripe
card, we can see that the former card is around 10 times more expensive
than a magnetic stripe card. One can also understand a card manager’s
reluctance in asking the issuer’s administration board for a dollar amount
with an added zero at the end (read $1,000,000 instead of $100,000) for
paying for the chip migration. As one can see, in relative terms the effort of
the issuer increases spectacularly.

The normal reaction of the issuer’s administration board would be to cut
it in half. In the given circumstances, the card manager remembers past
experiences with magnetic stripe cards. In that case the card authentica-
tion service was implemented with a MAC-based static data authentication
(SDA) mechanism (see Section 2.5.3 and Appendix D, Section D.6.1). The
issuer computes the static authenticator and writes it on the magnetic track
during the personalization stage. Since the static authenticator in this case
is computed with symmetric cryptographic techniques, the same limita-
tions on openness and interoperability would be encountered as explained
in the beginning of Section 3.4. Consequently, the EMV™ proposes the
cheap solution that mirrors somehow the security protection with static
authenticator but in an interoperable way. The issuer can compute this
time a static authenticator using the signature-based SDA mechanism (see
Appendix D, Section D.6.2). In this case the chip card would compute noth-
ing (no need for a coprocessor) but only store some more bytes correspond-
ing to the signature-based static authenticator. However, the security is also
drastically reduced if the EMV™ transaction is concluded off-line and no
on-line support is demanded from the issuer. The static authenticator would
prove the authenticity of the financial data personalized in the card but
would provide no protection against counterfeit. There is the impression
that cloning the public information of the chip is more difficult than cloning
the magnetic stripe. Cloning this public information, however, is still feasi-
ble for a hacker appropriately equipped (more details on this attack in
Section 7.7.4).

Thus, while spending $400,000 for chip cards supporting symmetric
cryptography on top of the costs of magnetic stripe implementation, the
issuer loses the benefit of high security against counterfeit in small value
transactions concluded off-line. Moreover, the issuer will not be able to
implement the asymmetric enciphered PIN cardholder verification method
(see Appendix D, Section D.5.5). This method would improve the security
of the cardholder’s PIN at the point of service, which is a very sensitive asset.
Finally, the issuer is not able to implement on a multiapplication chip card



90

Chip Migration

other “heavy” cryptography card applications, like the interoperable elec-
tronic purse CEPS, electronic brokerage, and electronic administration
applications for tax paying. Thus, it appears more and more that it is better
for chip migration to be done with support of asymmetric cryptographic
techniques.

It is also important to note that the payment system operator escaped
from the burden of organizing symmetric key generation and distribution
processes, but it must operate a public key infrastructure instead. This is an
equally difficult task, if not even more difficult. The operator, however, is
motivated by the same hope of being able to diversify its services towards its
subscribers.
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