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Introduction

GAME THEORYIS ABOUT WHAT HAPPENS when people—or genes, or nations—
interact. Here are some examples: Tennis players deciding whether to serve
to the left or right side of the court; the only bakery in town offering a dis-
counted price on pastries just before it closes; employees deciding how hard
to work when the boss is away; an Arab rug seller deciding how quickly to
lower his price when haggling with a tourist; rival drug firms investing in a
race to reach patent; an e-commerce auction company learning which fea-
tures to add to its website by trial and error; real estate developers guessing
when a downtrodden urban neighborhood will spring back to life; San Fran-
cisco commuters deciding which route to work will be quickest when the Bay
Bridge is closed; Lamelara men in Indonesia deciding whether to join the
day’s whale hunt, and how to divide the whale if they catch one; airline
workers hustling to get a plane away from the gate on time; MBAs decid-
ing what their degree will signal to prospective employers (and whether
quitting after the first year of their two-year program to join a dot-com
startup signals guts or stupidity); a man framing a memento from when
he first met his wife, as a gift on their first official date a year later (they're
happily married now!); and people bidding for art or oil leases, or for knick-
knacks on eBay. These examples illustrate, respectively, ultimatum games
(bakery, Chapter 2), gift exchange (employees, Chapter 2), mixed equilib-
rium (tennis, Chapter 3), Tunisian bazaar bargaining (rug seller, Chapter
4), patent race games (patents, Chapter 5), learning (e-commerce, Chap-
ter 6), stag hunt games (whalers, Chapter 7), weak-link games (airlines,
Chapter 7), order-statistic games (developers, Chapter 7), signaling (MBAs
and romance, Chapter 8), auctions (bidding, Chapter 9).
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2 1 Introduction

In all of these situations, a person (or firm) must anticipate what oth-
ers will do and what others will infer from the person’s own actions. A
game is a mathematical x-ray of the crucial features of these situations.
A game consists of the “strategies” each of several “players” have, with pre-
cise rules for the order in which players choose strategies, the information
they have when they choose, and how they rate the desirability (or “util-
ity”) of resulting outcomes. An appendix to this chapter describes the basic
mathematics of game theory and gives some references for further reading.

Game theory has a very clear paternity. Many of its main features were
introduced by von Neumann and Morgenstern in 1944 (following earlier
work in the 1920s by von Neumann, Borel, and Zermelo). A few years later,
John Nash proposed a “solution” to the problem of how rational players
would play, now called Nash equilibrium. Nash’s idea, based on the idea of
equilibrium in a physical system, was that players would adjust their strategies
until no player could benefit from changing. All players are then choosing
strategies thatare best (utility-maximizing) responses to all the other players’
strategies. Important steps in the 1960s were the realization that behavior
in repeated sequences of one-shot games could differ substantially from
behavior in one-shot games, and theories in which a player can have private
information about her values (or “type”), provided all players know the
probabilities of what those types might be. In 1994, Nash, John Harsanyi,
and Reinhard Selten (an active experimenter) shared the Nobel Prize in
Economic Science for their pathbreaking contributions.

In the past fifty years, game theory has gradually become a standard
language in economics and is increasingly used in other social sciences (and
in biology). In economics, game theory is used to analyze behavior of firms
that worry about what their competitors will do.! Game theory is also good
for understanding how workers behave in firms (such as the reaction of
CEOs or salespeople to incentive contracts), the spread of social conventions
such as language and fashion, and which genes or cultural practices will
spread.

The power of game theory is its generality and mathematical precision.
The same basic ideas are used to analyze all the games—tennis, bargaining
for rugs, romance, whale-hunting—described in the first paragraph of this
chapter. Game theory is also boldly precise. Suppose an Arab rug seller
can always buy more rugs cheaply, an interested tourist values the rugs at
somewhere between $10 and $1000, and the seller has a good idea of how

I Game theory fills the conceptual gap between a single monopoly, which need not worry about what
other firms and consumers will do because it has monopoly power, and “perfect competition,” in which
no firm is big enough for competitors to worry about. Game theory is used to study the intermediate case,

“oligopoly,” in which there are few enough firms that each company should anticipate what the others
will do.
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impatient the tourist is but isn’t sure how much the tourist likes a particular
rug. Then game theory tells you exactly what price the seller should start out
at, and exactly how quickly he should cut the price as the tourist hems and
haws. In experimental re-creations of this kind of rug-selling, the theory is
half-right and half-wrong: it’s wrong about the opening prices sellers state,
but the rate at which experimental sellers drop their prices over time is
amazingly close to the rate that game theory predicts (see Chapter 4).

It is important to distinguish games from game theory. Games are a tax-
onomy of strategic situations, a rough equivalent for social science of the
periodic table of elements in chemistry. Analytical game theory is a math-
ematical derivation of what players with different cognitive capabilities are
likely to do in games.? Game theory is often highly mathematical (which has
limited its spread outside economics) and is usually based on introspection
and guesses rather than careful observation of how people actually play in
games. This book aims to correct the imbalance of theory and facts by de-
scribing hundreds of experiments in which people interact strategically. The
results are used to create behavioral game theory. Behavioral game theory is
about what players actually do. It expands analytical theory by adding emo-
tion, mistakes, limited foresight, doubts about how smart others are, and
learning to analytical game theory (Colman, in press, gives a more philo-
sophical perspective). Behavioral game theory is one branch of behavioral
economics, an approach to economics which uses psychological regularity
to suggest ways to weaken rationality assumptions and extend theory (see
Camerer and Loewenstein, 2003).

Because the language of game theory is both rich and crisp, it could
unify many parts of social science. For example, trust is studied by social
psychologists, sociologists, philosophers, economists interested in economic
development, and others. But what is trust? This slippery concept can be
precisely defined in a game: Would you lend money to somebody who
doesn’t have to pay you back, but might feel morally obliged to do so? If you
would, you trust her. If she pays you back, she is trustworthy. This definition
gives a way to measure trust, and has been used in experiments in many
places (including Bulgaria, South Africa, and Kenya; see Chapter 3).

The spread of game theory outside of economics has suffered, I believe,
from the misconception that you need to know a lot of fancy math to apply
it, and from the fact that most predictions of analytical game theory are not
well grounded in observation. The need for empirical regularity to inform

2To be precise, this book is only about “noncooperative” game theory—thatis, when players cannot make
binding agreements about what to do, so they must guess what others will do. Cooperative game theory is a
complementary branch of game theory which deals with how players divide the spoils after they have made
binding agreements.



4 1 Introduction

game theory has been recognized many times. In the opening pages of their
seminal book, von Neumann and Morgenstern (1944, p. 4) wrote:

the empirical background of economic science is definitely inadequate.
Our knowledge of the relevant facts of economics is incomparably
smaller than that commanded in physics at the time when mathemati-
zation of that subject was achieved. . . . It would have been absurd in
physics to expect Kepler and Newton without Tycho Brahe—and there
is no reason to hope for an easier development in economics.

This book is focused on experiments as empirical background. Game
theory has also been tested using data that naturally occur in field settings
(particularly in clearly structured situations such as auctions). But experi-
mental control is particularly useful because game theory predictions often
depend sensitively on the choices players have, how they value outcomes,
what they know, the order in which they move, and so forth. As Crawford
(1997, p. 207) explains:

Behavior in games is notoriously sensitive to details of the environment,
so that strategic models carry a heavy informational burden, which is
often compounded in the field by an inability to observe all relevant
variables. Important advances in experimental technique over the past
three decades allow a control that often gives experiments a decisive
advantage in identifying the relationship between behavior and envi-
ronment. . . . For many questions, [experimental data are] the most
important source of empirical information we have, and [they are] un-
likely to be less reliable than casual empiricism or introspection.

Of course, it is important to ask how well the results of experiments
with (mostly) college students playing for a couple of hours for modest fi-
nancial stakes generalize to workers in firms, companies creating corporate
strategy, diplomats negotiating, and so forth. But these doubts about gen-
eralizability are a demand for more elaborate experiments, not a dismissal
of the experimental method per se. Experimenters Aave studied a few di-
mensions of generalizability—particularly the effects of playing for more
money, which are usually small. But more ambitious experiments with teams
of players, complex environments, communication, and overlapping gener-
ations® would enhance generalizability further, and people should do more
of them.

3See Schotter and Sopher (2000).
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1.1 What Is Game Theory Good For?

Is game theory meant to predict what people do, to give them advice, or
what? The theorist’s answer is that game theory is none of the above—it is
simply “analytical,” a body of answers to mathematical questions about what
players with various degrees of rationality will do. If people don’t play the
way theory says, their behavior has not proved the mathematics wrong, any
more than finding that cashiers sometimes give the wrong change disproves
arithmetic.

In practice, however, the tools of analytical game theory are used to
predict, and also to explain (or “postdict™*) and prescribe. Auctions are a
good example of all three uses of game theory. Based on precise assumptions
about the rules of the auction and the way in which bidders value an object,
such as an oil lease or a painting, auction theory then derives how much
rational bidders will pay.

Theory can help explain why some types of auction are more common
than others. For example, in “second-price” or Vickrey auctions the high
bidder buys the object being auctioned at a price equal to the second-highest
bid. Under some conditions these auctions should, in theory, raise more
revenue for sellers than traditional first-price auctions in which the high
bidder pays what she bid. But second-price auctions are rare (see Lucking-
Reilly, 2000). Why? Game theory offers an explanation: Since the high
bidder pays a price other than what she bid in a second-price auction, such
auctions are vulnerable to manipulation by the seller (who can sneak in an
artificial bid to force the high bidder to pay more).

How well does auction theory predict? Tests with field data are prob-
lematic: Because bidders’ valuations are usually hidden, it is difficult to
tell whether they are bidding optimally, although some predictions can be
tested. Fortunately, there are many careful experiments (see Kagel, 1995;
Kagel and Levin, in press). The results of these experiments are mixed. In
private-value auctions in which each player has her own personal value for
the object (and doesn’t care how much others value it), people bid remark-
ably close to the amounts they are predicted to, even when the function
mapping values into bids is nonlinear and counterintuitive.?

In common-value auctions the value of the object is essentially the
same for everyone, but is uncertain. Bidding for leases on oil tracts is an
example—different oil companies would all value the oil in the same way
butaren’t sure how much oil is there. In these auctions players who are most
optimistic about the value of the object tend to bid the highest and win.

4In some domains of social science, these kinds of game-theoretic “stories” about how an institution or
event unfolded are called “analytical narratives” and are proving increasingly popular (Bates et al., 1998).
5See Chen and Plott (1998) and the sealed-bid mechanism results in Chapter 4.
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The problem is that, if you win, it means you were much more optimistic
than any other bidder and probably paid more than the object is worth,
a possibility called the “winner’s curse.” Analytical game theory assumes
rational bidders will anticipate the winner’s curse and bid very conservatively
to avoid it. Experiments show that players do not anticipate the winner’s
curse, so winning bidders generally pay more than they should.

Perhaps the most important modern use of auction theory is to pre-
scribe how to bid in an auction, or how to design an auction. The shin-
ing triumphs of modern auction theory are recent auctions of airwaves to
telecommunications companies. In several auctions in different countries,
regulatory agencies decided to put airwave spectrum up for auction. An auc-
tion raises government revenue and, ideally, ensures that a public resource
ends up in the hands of the firms that are best able to create value from
it. In most countries, the auctions were designed in collaborations among
theorists and experimental “testbedding” that helped detect unanticipated
weaknesses in proposed designs (like using a wind tunnel to test the design
of an airplane wing, or a “tow-tank” pool to see which ship designs sink and
which float). The designs that emerged were not exactly copied from books
on auction theory. Instead, theorists spent a lot of time pointing out how
motivated bidders could exploit loopholes in designs proposed by lawyers
and regulators, and using the results of testbedding to improve designs. Auc-
tion designers opted for a design that gave bidders a chance to learn from
potential mistakes and from watching others, rather than a simpler “sealed-
bid” design in which bidders simply mail in bids and the Federal Com-
munications Commission opens the envelopes and announces the highest
ones. One of the most powerful and surprising ideas in auction theory—
“revenue equivalence”—is that some types of auctions will, in theory, raise
the same amount of revenue as other auctions that are quite different in
structure. (For example, an “English” auction, in which prices are raised
slowly until only one bidder remains, is revenue-equivalent to a sealed-bid
“Vickrey” auction, in which the highest bidder pays what the second-highest
bidder bid.) But when it came to designing an auction that actual compa-
nies would participate in with billions of dollars on the line, the auction
designers were not willing to bet that behavior would actually be equivalent
in different types of auctions, despite what theory predicted. Their design
choices reflect an ¢mplicit theory of actual behavior in games that is probably
closer to the ideas in this book than to standard theory based on unlimited
mutual rationality. Notice that, in this process of design and prescription,
guessing accurately how players will actually behave—good prediction—is
crucial ®

5 Howard Raiffa pointed this out many times, calling game theory “asymmetrically normative.”
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Even if game theory is not always accurate, descriptive failure is prescrip-
tive opportunity. Just as evangelists preach because people routinely violate
moral codes, the fact that players violate game theory provides a chance to
give helpful advice. Simply mapping social situations into types of games is
extremely useful because it tells people what to look out for. In their pop-
ular book for business managers, Co-opetition, Brandenburger and Nalebuff
(1996) draw attention to the barest bones of a game—players, information,
actions, and outcomes. Both are brilliant theorists who could have written
a more theoretical book. They chose not to because teaching MBAs and
working with managers convinced them that teaching the basic elements of
game theory is more helpful.

Game theory is often used to prescribe in a subtler way. Sometimes
game theory is used to figure out what it is likely to happen in a strategic
interaction, so a person or company can then try to change the game to
their advantage. (This is a kind of engineering approach too, since it asks
how to improve an existing situation.)

1.2 Three Examples

This chapter illustrates the basics of behavioral game theory and the ex-
perimental approach with three examples (which are discussed in more
detail in later chapters): ultimatum bargaining, “continental divide” coor-
dination games, and “beauty contest” guessing games. Experiments using
these games show how behavioral game theory can explain what people do
more accurately by extending analytical game theory to include how players
feel about the payoffs other players receive, limited strategic thinking, and
learning.

The three games use a recipe underlying most of the experiments
reported in this book: pick a game for which standard game theory makes a
bold prediction or a vague prediction that can be sharpened. Simple games
are particularly useful because only one or two basic principles are needed to
make a prediction. If the prediction is wrong, we know which principles are
at fault, and the results usually suggest an alternative principle that predicts
better.

In the experiments, games are usually posed in abstract terms because
game theory rarely specifies how adding realistic details will affect behavior.
Subjects make a simple choice, and know how their choices and the choices
of other subjects combine to determine monetary payoffs.7 Subjects are

" These design choices bet heavily on the cognitive presumption that people are using generic principles
of strategic thinking which transcend idiosyncratic differences in verbal descriptions of games. If choices are
domain specific then the basic enterprise this book describes is incomplete; varying game labels to evoke



8 1 Introduction

actually rewarded based on their performance because we are interested in
extrapolating the results to naturally occurring games in which players have
substantial financial incentives. The games are usually repeated because we
are interested in equilibration and learning over time. An appendix to this
chapter describes some key design choices experimenters make, and why
they matter.

1.2.1 Example 1: Ultimatum Bargaining

I once took a cruise with some friends and a photographer took our picture,
unsolicited, as we boarded the boat. When we disembarked hours later, the
photographer tried to sell us the picture for $5 and refused to negotiate. (His
refusal was credible because several other groups stood around deciding
whether to buy their pictures, also for $5. If he caved in and cut the price, it
would be evident to all others and he would lose a lot more than the discount
to us since he would have to offer the discount to everyone.) Being good
game theorists, we balked at the price and pointed out that the picture was
worthless to him (one cheapskate offered $1). He rejected our insulting
offer and refused to back down.

The game we played with the photographer was an “ultimatum game,”
which is the simplest kind of bargaining. In an ultimatum game there is
some gain from exchange and one player makes a take-it-or-leave-it offer of
how to divide that gain. Our picture presumably had no value to him and
was valuable to us (worth more than $5 in sentimental value). A price is
simply proposing a way to divide the gains from exchange between our true
reservation price and his cost. His offer to sell for $5 was an ultimatum offer
because he refused to negotiate.

In laboratory ultimatum games like this, two players, a Proposer and
a Responder, bargain over some amount, say $10 (the sum used in many
experiments). The $10 represents the value of the gain to exchange (or
“surplus”) that would be lost if the trade wasn’t made. The Proposer offers
x to the Responder, leaving herself $10 — x. The Responder can either take
the offer—then the Responder gets x and the Proposer gets $10 — x—or
reject it and both get nothing.

Because the ultimatum game is so simple, it is nof a good model of
the protracted process of most naturally occurring bargaining (and isn’t
intended to be). It is the right model of what happened to us after the cruise,

domain-specific reasoning is the next step. The study by Cooper et al. (1999) of ratchet effects in productivity
games using Chinese factory managers—who face such effects in planned economies—is a good example
(see Chapter 8).
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and what happens in the waning minutes before a labor strike is called, or
on the courthouse steps before a lawsuit goes to trial. It is a model of the last
step in much bargaining, and hence is a building block for modeling more
complicated situations (see Chapter 4).

Simple games test game-theoretic principles in the clearest possible way.
Ultimatum games, and related games, also are useful for measuring how
people feel about the allocations of money between themselves and others.

The analytical game theory approach to ultimatum bargaining is this:
First assume players are “self-interested”; that is, they care about earning
the most money for themselves. If players are self-interested, the Responder
will accept the smallest money amount offered, say $0.25. If the Proposer
anticipates this, and wants to get the most she can for herself, she will offer
$0.25 and keep $9.75. In formal terms, offering $0.25 (and accepting any
positive amount) is the “subgame perfect equilibrium”.® By going first, the
Proposer has all the bargaining power and, in theory, can exploit it because
a self-interested Responder will take whatever she can get.

To many people, the lopsided distribution of the $10 predicted by ana-
lytical game theory (with self-interest) seems unfair. Because the allocation
is considered unfair, the way people actually bargain shows whether people
are willing to take costly actions that express their concerns for fairness. In
the cruise-picture example, offering $1 instead of the $5 price the photog-
rapher offered added $4 to our surplus and subtracted $4 from his. If he
thought this was unfair to him, he could reject it and earn nothing (even
though everyone suffers—he earns no money and we don’t get a picture
we would like to own). The lab experiments simulate this simple game. Will
Responders put their money where their mouths are and reject offers that
seem unfair? If so, will Proposers anticipate this and make fair offers, or
stubbornly make unfair offers?

In dozens of experiments conducted in several different countries,
Proposers offer $4 or $5 out of $10 on average, and offers do not vary much.
Offers of $2 or less are rejected about half the time. The Responders think
much less than half is unfair and are willing to reject such small offers, to
punish the Proposer who behaved so unfairly. Figure 1.1 shows data from
a study by Hoffman, McCabe, and Smith (1996a). The x-axis shows the
amount being offered to the Responder, and the y-axis shows the relative
frequency of offers of different amounts. The dark part of each frequency
bar is the number of offers that were rejected. Most offers are close to half

8Note also that every offer is a “Nash equilibrium” or mutual best-response pattern because x is the
optimal offer if the Proposer thinks the Responder will reject any other offer. (This belief may be wrong but,
if the Proposer believes it, she will never take an action that disconfirms her belief, so the wrong belief can
be part of a Nash equilibrium.)
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Figure 1.1.  Offers and rejections in high- and low-stakes ultimatum games. Source: Based
on data from Hoffman, McCabe, and Smith (1996a).

and low offers are often rejected. Figure 1.1 also shows that the same pattern
of results occurs when stakes were multiplied by ten and Arizona students
bargained over $100. (A couple of subjects rejected $30 offers!) The same
basic result has been replicated with a $400 stake (List and Cherry, 2000) in
Florida and in countries with low disposable income, including Indonesia
and Slovenia, where modest stakes by American standards represent several
weeks’ wages.

There are many interpretations of what causes Responders to reject sub-
stantial sums (see Chapter 3). There is little doubt that some players define a
fair split of $10 as close to half and have a preference for being treated fairly.
Such rejections are evidence of “negative reciprocity”: Responders recipro-
cate unfair behavior by harming the person who treated them unfairly, at a
substantial cost to themselves (provided the unfair Proposer is harmed more
than they are). Negative reciprocity is evident in other social domains, even
when monetary stakes are high—jilted boyfriends who accost their exes,
ugly divorces that cost people large sums, impulsive street crimes caused by
a stranger allegedly “disrespecting” an assailant, the failure of parties in le-
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gal “nuisance cases” to renegotiate after a court judgment even when both
could benefit (Farnsworth, 1999), and so on.”

This explanation for ultimatum rejections begs the question of where
fairness preferences came from. A popular line of argument is that hu-
man experience in our ancestral past created evolutionary adaptations in
brain mechanisms, or in the interaction of cognitive and emotional systems,
which cause people to get angry when they are pushed around because get-
ting angry had survival value when people interacted with the same people
in a small group (see Frank, 1988). A different line of argument is that
cultures create different standards of fairness, perhaps owing to the close-
ness of kin relations or the degree of anonymous market exchange with
strangers (compared with sharing among relatives), and these cultural stan-
dards are transmitted socially through oral traditions and socialization of
children.

Remarkable evidence for the cultural standards view comes from a study
by eleven anthropologists who conducted ultimatum games in primitive cul-
tures in Africa, the Amazon, Papua New Guinea, Indonesia, and Mongolia
(see Chapter 2). In some of these cultures, people did not think that shar-
ing fairly was necessary. Proposers in these cultures offered very little (the
equivalent of $1.50 out of $10) and Responders accepted virtually every of-
fer. Ironically, these simple societies are the only known populations who
behave exactly as game theory predicts!

Note that rejections in ultimatum games do not necessarily reject the
strategic principles underlying game theory (for example, Weibull, 2000).
The Responder simply decides whether she wants both players to get noth-
ing, or wants to get a small share when the Proposer gets much more. The
fact that a Responder rejects means she is not maximizing her own earnings,
but it does not mean she is not capable of strategic thinking. Recent theo-
ries attempt to explain rejections using social preference functions which
balance a person’s desire to have more money with their desire to recipro-
cate those who have treated them fairly or unfairly, or to achieve equality.
Such functions have a long pedigree (traceable at least to Edgeworth in the
1890s). Economists have resisted them because it seems to be too easy to
introduce a new factor in the utility function for each game. But the new
theories strive to explain results in different games with a single function.
Having a lot of data from different games to work with makes this enterprise
possible and imposes discipline.

9 My sister Jeannine told me that in Atlantic City the casinos sometimes have problems with lucrative
“high-roller” customers stealing luxurious towels, robes, and other items from their (complimentary) hotel
rooms after losing at the casinos. In their minds these losers are simply taking things they have paid for.
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The new theories make surprising new predictions. For example, when
there are two or more Proposers, there is no way for any one of them single-
handedly to earn more money and limit inequality. As a result some theories
predict that both Proposers offer almost everything to the Responder even
though they do care about equality. (If there had been two photographers
on that damn boat, we would have gotten our picture for $1.)

New social preference theories should prove useful in analyzing bargain-
ing, tax policy, the strong tendency of tenant farmers to share crop earnings
equally with landowners (Young and Burke, 2001), and wage-setting (par-
ticularly the reluctance of firms to cut wages in hard times, which is puzzling
to economists who assume changes in the price of labor will equalize supply
and demand, and other phenomena).

1.2.2 Example 2: Path-Dependent Coordination in
“Continental Divide” Games

In coordination games, players want to conform to what others do (although
they may have different ideas about which conformist convention is best).
For example, in California there is an ongoing struggle over the physical
location of the “new media” firms, such as internet provision of film and
entertainment. New media people could gravitate toward Silicon Valley,
where web geeks congregate, or toward Hollywood and Southern California,
where many movies and TV shows are produced. Which geographical region
is the better location depends on whether you think the location of internet
firms is central, and “content” producers should follow them, or whether
the internet is merely a distribution channel and content providers are
king.1?

This economic tug-of-war can be modeled by a game in which players
choose a location, and their earnings depend on the location they choose
and the location most other people choose. A game with this flavor has
been studied by Van Huyck, Battalio, and Cook (1997). Table 1.1 shows the
payoffs (in cents). In this game, players pick numbers from 1 to 14 (think
of the numbers as corresponding to physical locations—low numbers are
Hollywood and high numbers are Silicon Valley). The matrix in Table 1.1
shows the row player’s payoff from choosing a number when the median
number everyone in a group picks—the middle number—is the number
in the different columns. If you choose 4, for example, and the median
is 5, you earn a healthy payoff of 71; but if the median is 12 you earn
—14 (bankruptcy!). The basic payoff structure implies you should pick a

10Of course, this example is undermined by the fact that cyberspace is everywhere and nowhere, so
content providers might be able to stay put in the swank Hollywood Hills and still do business “in” Silicon
Valley without moving.
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low number if you think most others will pick low numbers, and pick a
high number if you think most others will pick high numbers. If you aren’t
sure what others will do, pick anumber such as 6, which gives payoffs ranging
from 23 to 82 (hedging your bet).

In the experiments, players are organized into seven-person groups.
The groups play together fifteen times. After each trial you learn what the
median was, compute your earnings from that trial (depending on your
own choice and the median), and play again. Since the game is complicated,
think for a minute about what you would actually do and what might happen
over the course of playing fifteen times.

The payoffs have the property that, if a player guesses that the median
number is slightly below 7, her best response to that guess is to choose a
number smaller than the guess itself. For example, if you think the median
will be 7, your best response is 5, which earns 83 cents. Thus, if medians are
initially low, responding to low medians will drive numbers lower until they
reach 3. Three is an equilibrium or mutual best-response point because, if
everyone chooses 3, the median will be 3 and your best response to a median
of 3 is to choose 3. If players were to reach this point, nobody could profit
by moving away. (The payoff from this equilibrium is shown in italics in
Table 1.1.)

Table 1.1.  Payoffs in “continental divide” experiment (cents)

Median choice

Choice 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 45 49 52 55 56 55 46 —59 —88 —105—117 —127 —135 —142
2 48 53 58 62 65 66 61 —27 —52 —67 —77 —86 —92 —98
3 48 54 60 66 70 74 72 1 —20 —-32 —41 —48 —-53 —58
4 43 51 B8 65 71 77 80 26 8§ -2 -9 -14 -19 -22
5 35 44 52 60 69 77 8 46 32 25 19 15 12 10
6 23 33 42 52 62 72 82 62 53 47 43 41 39 38
7 7 18 28 40 51 64 78 75 69 66 64 63 62 62
8 -13 -1 11 23 37 51 69 8 8 8 8 80 81 82
9 -37 —24 -11 3 18 3 57 8 8 91 92 94 96 98
10 —-65 —51 —37 —21 -4 15 40 89 94 98 101 104 107 110

11 -97 —-82 —66 —49 -31 -9 20 85 94 100 105 110 114 119
12 -133-117-100 —-82 —61 —-37 -5 78 91 99 106 112 118 123
13 —-173-156 —137 -118 —96 —69 —33 67 83 94 103 110 117 123
14 —217-198 —179 —158 —134 —105 —65 52 72 85 95 104 112 120

Source: Van Huyck, Battalio, and Cook (1997).
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But there is another Nash equilibrium. If players guess that the median
will be 8 or above, they should choose numbers that are higher than their
guesses, until they reach 12; 12 is also a Nash equilibrium because choosing
12 gives the highest payoff if the median is 12.

This is a coordination game because there are two Nash equilibria in
which everybody chooses the same strategy. Game theorists have struggled
for many decades to figure out which of many equilibria will result if there
are more than one.

This particular game illustrates processes in nature and social systems
in which small historical accidents have a big long-run impact. A famous
example is what chaos theorists call the “Lorenz effect” Because weather
is a complex dynamic system, the movement of a butterfly in China can
set in motion a complicated meteorological process that creates a storm
in Bolivia. If that butterfly had just sat still, the Bolivians would be dry!
Another example is what social theorists call the “broken window effect.”
Anecdotal evidence suggests that, when there is a single broken window
in a community, neighbors feel less obligation to keep their yards clean,
replace their own broken windows, and put fresh paint on their houses.
Since criminals want to commit crimes in communities where neighbors
aren’t watchful and other criminals are lurking (so the cops are busy), a
single broken window can lead to a spiralling process of social breakdown.
Policymakers love the broken window theory because it suggests an easy fix
to problems of urban decay—repair every window before the effect of a few
broken ones spreads throughout the community like a virus.

I call the game in Table 1.1 the “continental divide” game. The conti-
nental divide is a geographic line which divides those parts of North America
in which water will flow in one direction from the parts in which water flows
in the opposite direction. If you stand on the continental divide in Alaska,
and pour water from a canteen as I once did, some drops will flow north
to the Arctic Ocean and others will flow to the Pacific Ocean. Two drops of
water that start out infinitesimally close together in the canteen end up a
thousand miles apart.

The game is called the continental divide game because medians below
7 are a “basin of attraction” (in evolutionary game theory terms) for conver-
gence toward the equilibrium at 3. Medians above 8 are a basin of attraction
for convergence toward 12. The “separatrix” between 7 and 8 divides the
game into regions where players will “flow” toward 3 and players will flow
toward 12.

Which equilibrium is reached has important economic consequences.
The 12 equilibrium pays $1.12 for each player but the 3 equilibrium pays
only $0.60. On this basis alone, you might guess that players would choose
higher numbers in the hopes of reaching the more profitable equilibrium.
Before glancing ahead, ask yourself again what you think will happen. If you
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Figure 1.2.  Median choices in the “continental divide” game. Source: Based on data from
Van Huyck, Battalio, and Cook (1997).

have studied a lot of game theory and still aren’t sure what to expect, your
curiosity about what people actually do should be piqued.

Figure 1.2 shows what happened in ten experimental groups. Five
groups started at a median at 7 or below; all of them flowed toward the
low-payoff equilibrium at 3. The other five groups started at 8 or above and
flowed to the high-payoff equilibrium.

The experiment has two important findings. First, people do not always
gravitate toward the high-payoff equilibrium even though players who end
up atlow numbers earn half as much. (Whether they would if they could play
again, or discussed the game in advance, is an interesting open question.)
Second, the currents of history are strong, creating “extreme sensitivity to
initial conditions.” Players who find themselves in a group with two or three
others who think 7 is their lucky number, and choose it in the first period,
end up sucked into a whirlpool leading to measly $0.60 earnings. Players in
a group whose median is 8 or higher end up earning almost twice as much.
One or two Chinese subjects choosing 8—a lucky number for Chinese—
could bring good fortune to everyone, just as the butterfly brought rain on
the Bolivians.

No concept in analytical game theory gracefully accounts for the fact
that some groups flow to 3 and earn less, while others flow to 12 and earn
more. Indeed, the problem of predicting which of many equilibria will result
in games such as these may be inherently unsolvable by pure reasoning. So-
cial conventions, communication, subtle features of the display of the game,
analogies players draw with experiences they have had, and homespun ideas
about lucky numbers could all influence which equilibrium is reached. As
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Schelling (1960) wrote, predicting what players will do in these games by
pure theory is like trying to prove that a joke is funny without telling it.

1.2.3 Example 3: “Beauty Conlests” and Iterated Dominance

In Keynes’s famous book General Theory of Employment, Interest, and Money,
he draws an analogy between the stock market and a newspaper contest in
which people guess what faces others will guess are most beautiful: “It is not
a case of choosing those which, to the best of one’s judgment, are really
the prettiest, nor even those which average opinion genuinely thinks the
prettiest. We have reached the third degree, where we devote our intelli-
gences to anticipating what average opinion expects the average opinion
to be. And there are some, I believe, who practise the fourth, fifth, and
higher degrees” (1936, p. 156). This quote is perhaps no more apt than in
the year 2001 (when I first wrote this), just after prices of American internet
stocks soared to unbelievable heights in the largest speculative bubble in his-
tory. (At one point, the market valuation of the e-tailer bookseller Amazon,
which had never reported a profit, was worth more than all other American
booksellers combined.)

Asimple game that captures the reasoning Keynes had in mind is called
the “beauty contest” game (see Nagel, 1995, and Ho, Camerer, and Weigelt,
1998). In a typical beauty contest game, each of N players simultaneously
chooses a number x; in the interval [0,100]. Take an average of the numbers
and multiply by a multiple p < 1 (say p = 0.7). The player whose number is
closest to this target (70 percent of the average) wins a fixed prize. Before
proceeding, think about what number you would pick.

The beauty contest game can be used to distinguish whether people
“practise the fourth, fifth, and higher degrees” of reasoning as Keynes
wondered. Here’s how. Most players start by thinking, “Suppose the average
is 50”. Then you should choose 35, to be closest to the target of 70 percent of
the average and win. Butif you think all players will think this way the average
will be 35, so a shrewd player such as yourself (thinking one step ahead)
should choose 70 percent of 35, around 25. But if you think all players think
that way you should choose 70 percent of 25, or 18.

In analytical game theory, players do not stop this iterated reasoning
until they reach a best-response point. But, since all players want to choose
70 percent of the average, if they all choose the same number it must be
zero. (Thatis, if you solve the equation x* = 0.7x*, you’ve found the unique
Nash equilibrium.)

The beauty contest game provides a rough measure of the number of
steps of strategic thinking that subjects are doing. Itis called a “dominance-
solvable game” because it can be “solved”—i.e., an equilibrium can be
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computed—pby iterated application of dominance. A dominated strategy is
one that yields a lower payoff than another (dominant) strategy, regardless
of what other players do. Choosing a number above 70 is a dominated
strategy because the highest possible value of the target number is 70, so
you can always do better by choosing a number lower than 70. But if nobody
violates dominance by choosing above 70, then the highest the target can be
is 70 percent of 70, or 49, so choosing 49-70 is dominated if you think others
obey one step of dominance. Deleting dominated strategies iteratively leads
you to zero.

Many interesting games are dominance solvable. A familiar example in
economics is Cournot duopoly. Two firms each choose quantities of similar
products to make. Since their products are the same, the market price is
determined by the total quantity they make (and by consumer demand). It
is easy to show that there are quantities so high that firms will lose money
because flooding the market with so much supply will drive prices too low to
cover fixed costs. If you assume your rivals won’t produce that much, then
somewhat lower quantities are bad (dominated) choices for you. Applying
this logic iteratively leads to a precise solution.

In practice, it is unlikely that people perform more than a couple of
steps of iterated thinking because it strains the limits of working memory
(i.e., the amount of information people can keep active in their mind at
one time). Consider embedded sentences such as “Kevin’s dog bit David’s
mailman whose sister’s boyfriend gave the dog to him.” Who’s the “him”
referred to at the end of the sentence? By the time you get to the end,
many people have forgotten who owned the dog because working memory
has only so much space.!! Embedded sentences are difficult to understand.
Dominance-solvable games are similar in mental complexity.

Iterated reasoning also requires you to believe that others are thinking
hard, and are thinking that you are thinking hard. When I played this game
at a Caltech board of trustees meeting, a very clever board member (a well-
known Ph.D. in finance) chose 18.1. Later he explained his choice: He knew
the Nash equilibrium was 0, but figured the average Caltech board member
was clever enough to do two steps of reasoning and pick 25. Then why not
pick 17.5 (which is 70 percent of 25)? He added 0.6 so he wouldn’t tie with
people who picked 17.5 or 18, and because he guessed that a few people
would pick high numbers, which would push the average up. Now that’s
good behavioral game theory! (He didn’t win, but was close.)

What happens in beauty contest games? Figure 1.3 shows choices in
beauty contests with p = 0.7 with feedback about the average given to

”Seeing the sentence on the written page makes it easier; try reading it aloud to somebody who must
remember the words and cannot refer back to them.
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Figure 1.3.  Convergence in low-stakes and high-stakes “beauty contest” games. Source: Un-
published data from Ho, Camerer; and Weigelt.

subjects after each of ten rounds (unpublished data from Ho, Camerer, and
Weigelt). Bars show the relative frequency of choices in different number in-
tervals (on the side) across ten rounds (in front). The first histogram shows
results from games with low-stakes payoffs (a $7 prize per period for seven-
person groups) and the second histogram shows results from high-stakes
($28) payoffs.

Firstround choices are around 21-40. A careful statistical analysis indi-
cated that the median subject uses one or two steps of iterated dominance.
That is, most subjects roughly guess that the average will be 50 and choose
35, or guess that others will choose 35 and choose 25. Very few subjects chose
the equilibrium of zero in the first round. In fact, they should not choose
zero. The goal is to be one step ahead of the average but no further and
choosing zero is being too smart for your own good!



1.2 Three Examples 19

100%

80%

60%

40%

20%

(b)

Figure 1.3 (continued)

Although the game-theoretic equilibrium of zero is a poor guess about
initial choices, players are inexorably drawn toward zero as they learn.
Behavioral game theory uses a concept of limited iterated reasoning to
understand initial choices and a theory of learning to explain movement
across rounds.

The beauty contest has been replicated in dozens of subject pools (see
Chapter 5 for details), including Caltech undergraduates,'? trustees on

12 Caltech students are a useful subject pool because they are extraordinarily analytically skilled. In many
years, the incoming first-year class has a median math SAT score of 800. Recently, the average test scores of
the applicants have been higher than the average of those students who are accepted at Harvard. Studying
how these students play simple games establishes whether very analytical students can figure the games out.
Generally they do not play much differently than students at other colleges.
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the Caltech board (including a subsample of corporate CEOs), economics
Ph.D.s and game theorists, and readers of business newspapers (the Finan-
cial Times in the United Kingdom, Spektrum in Germany, and Expansion in
Spain). The results in all these groups are very similar: Players use 0-3 levels
of reasoning, and few subjects choose the Nash equilibrium of zero. Com-
paring Figures 1.3(a) and 1.3(b) shows that increasing the prize by a factor
of four, leading to average earnings of $40 for a 45-minute experiment, has
only a small effect. (In the high-stakes condition there are more low-number
choices in periods 5-10).

The limited iterated reasoning measured in these games provides one
explanation for persistence of phenomena such as the stock price bubbles
Keynes had in mind. Even if all investors foresee a crash, they do not
“backward induct” all the way to the present. They guess that others will
sell a couple of steps before the crash, and plan to sell just before that
exodus. This reasoning process does not unravel all the way (because doubt
“reverberates”), which explains why bubbles can persist even if everyone
knows they will eventually burst. Allen, Morris, and Shin (2002) make their
argument precise and Camerer and Weigelt (1993) and Porter and Smith,
(1994) show that bubbles can happen in the lab.

1.3 Experimental Regularity and Behavioral Game Theory

This book is a long answer to a question game theory students often ask:
“This theory is interesting . . . but do people actually play this way?” The
answer, not surprisingly, is mixed. There are no interesting games in which
subjects reach a predicted equilibrium immediately. And there are no games
so complicated that subjects do not converge in the direction of equilibrium
(perhaps quite close to it) with enough experience in the lab.

Consider the three examples above. In ultimatum bargaining, players
are far from the perfect equilibrium-assuming self-interest, but they are
roughly in equilibrium when the Responder’s preference for being treated
fairly is taken into account (because offers maximize expected profit given
observed rejection rates). Behavioral game theory explains these results by
combining new theories of social utility with analytical game theory (see
Chapter 2). In the continental divide and beauty contest games, players start
far from equilibrium and converge close to itin ten periods or so. Behavioral
game theory explains these results using concepts of limited reasoning as
players first think about a game (see Chapter 5) and precise theories of
learning (see Chapter 6).

Sherlock Holmes said, “Data, data! I cannot make bricks without clay.”
Experimental results are clay for behavioral game theory. The goal is not to
“disprove” game theory (a common reaction of psychologists and sociolo-
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gists) but to improve it by establishing regularity, which inspires new theory.
Without some sort of observation, theoretical assumptions are grounded
in casual pseudo-empirical work—informal opinion polls in seminar and
office discussions and using one’s own intuitions (a one-respondent poll).
Biologists don’t just ask “If I was a robin foraging for food, how might I
do it?” They watch robins forage, or ask somebody who has. Theorist (and
part-time experimenter) Eric Van Damme, among others, worries about the
effects of having too few data of this sort in game theory (1999, p. 204):

Without having a broad set of facts on which to theorize, there is a
certain danger of spending too much time on models that are math-
ematically elegant, yet have little connection to actual behaviour. At
present our empirical knowledge isinadequate [precisely the same word
von Neumann and Morgenstern used fifty years before!] and it is an in-
teresting question why game theorists have not turned more frequently
to psychologists for information about the learning and information
processing processes used by humans.

Data are particularly important for game theory because there is often
more than one equilibrium (see Chapter 7) and how equilibration occurs is
not perfectly understood (see Chapter 6). Pure mathematics alone will not
solve these problems.

Why has empirical observation played a small role in game theory
until recently? One possibility is that early experimentation was thought
to have “failed”. In a 1952 RAND conference, several theorists (including
eventual Nobel laureate Nash) gathered to think about game theory. They
also did some experiments, the results of which did not confirm theory and
reportedly discouraged Nash and perhaps others (Nasar, 1998).13 Interest
in data also suffered from the fact that so many interesting mathematical
puzzles were open for solution in game theory for such a long time.!*
From about 1970 onward, developments in the theory of repeated games,
games of incomplete information, and applications to important fields such
as principal-agent relations, contracting, and political science led to an

131 think these early experimenters made a mistake by concentrating too much on games with mixed-
strategy equilibria. In those games, players have low monetary incentives and predictions depend on assump-
tions about risk tastes, which are difficult to measure or even control.

14 Many “modern”ideas in behavioral game theory were first proposed early in the history of game theory,
and left aside or forgotten. In his thesis Nash (1950) described a “mass action” interpretation of equilibrium
similar to modern evolutionary game theory (Weibull, 1995). Weighted fictitious play (see Chapter 6), which
seems to have been revived by empiricists around 1995, is described in the amazingly insightful book by Luce
and Raiffa (1957). Selten (1978) emphasized how players perceive the game they play, a topic being revived by
Rubinstein (1991), Camerer (1999), and Samuelson (2001), among others. Rosenthal (1989) first proposed
a “quantal response equilibrium” version, later refined and applied by McKelvey and Palfrey (1995, 1998)
and Goeree and Holt (1999).
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explosion of theory. There is no doubt that this pursuit has been extremely
insightful and necessary, but it was conducted with little empirical guidance
of any sort. There is also little doubt that it is high time to raise the ratio of
observation to theory. Itis also encouraging that some theorists have turned
serious attention to modeling bounded or procedural rationality formally
(e.g., Rubinstein, 1998) .17

Of course, experimental data are only one component of behavioral
game theory. Detailed facts about cognitive mechanisms and field tests are
important t00.!® The result of controlled experiments, field observation,
and theorizing working together is summarized by Vince Crawford (1997,
p- 208):

The experimental evidence suggests that none of the leading theoreti-
cal frameworks for analyzing games—traditional non-cooperative game
theory, cooperative game theory, evolutionary game theory, and adap-
tive learning models—gives a fully reliable account of behavior by itself,
but that most behavior can be understood in terms of a synthesis of
ideas from those frameworks, combined with empirical knowledge in
proportions that depend in predictable ways on the environment.

Rapid development of behavioral game theory will depend on how scientists
react to data. Reactions vary.

If you are smitten by the elegance of analytical game theory you might
take the data as simply showing whether subjects understood the game and
were motivated. If the data confirm game theory, you might say, the subjects
must have understood; if the data disconfirm, the subjects must have not
understood. Resist this conclusion. The games are usually simple, and most
experimenters carefully control for understanding by using a quiz to be sure
subjects know how choiceslead to payoffs. Furthermore, by inferring subject
understanding from data, there is no way to falsify the theory. Physicists and
biologists would not have the same reaction if a theory about particles were
falsified by careful experimentation (“The particles were confused!”) or if
birds didn’t forage for food as predicted (“If they had more at stake [than
survival?] they would getitright!”). Game theorists should be similarly open-
minded to what behaving humans can teach them about human behavior.

In fact, evidence cited as confirmation of game theory often supports
a key element of behavioral game theory—namely, that equilibration may
take a long time, perhaps years or decades (and equilibration is therefore a
crucial component of any theory). In the foreword to Roth and Sotomayor’s

15 This includes finite automata, e-equilibrium, evolutionary and dynamic theories, non-partitional
information structures, and so on. Most of this work is not directly inspired or disciplined by data, however.

16 Roth’s work on matching for college bowl games, sorority rush, and medical residency are rare,
impressive examples (e.g., Roth and Xing, 1994).
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(1990) book about the theory of matching markets, the brilliant mathemati-
cian Robert Aumann notes that

the Gale-Shapley [matching] algorithm had in fact been in practical
use already since 1951 for the assignment of interns to hospitals in the
United States; it had evolved by a trial-and-error process that spanned
more than halfa century. . . . in the real real world—when the chips are
down, the payoff is not five dollars but a successful career, and people
have time to understand the situation—the predictions of game theory
fare quite well.

Note that the “time to understand the situation” Aumann refers to was fifty
years!'” Over such a span, a learning or equilibration theory is essential.

Another reaction you may have is to criticize details of experimental
design. Aumann, again, writes (1990, p. xi):

Itis sometimes asserted that game theory is not “descriptive” of the “real
world,” that people don’treally behave according to game-theoretic pre-
scriptions. To back up such assertions, some workers have conducted
experiments using poorly motivated subjects, subjects who do not un-
derstand what they are about and are paid off by pittances; as if such
experiments represented the real world.

Aumann is alluding to an earlier generation of experiments in the 1960s and
1970s which were not sensitive to subject comprehension and incentives.
This book largely ignores those experiments (though some are described
in Chapter 3). The modern experiments described in this book—mostly
from the past ten years—fully respect concerns such as Aumann’s and are
designed with them in mind. Subjects are typically analytically skilled college
students who are quizzed and highly motivated.

Another reaction you are likely to have when behavior does not conform
to analytical game theory is that subjects were playing a different game
than the experimenter created. Such explanations are useful if they can
be tested and falsified. However, these explanations make experimenters
bristle when they are made in ignorance of the extraordinary care taken
to ensure subject comprehension, control for anonymity when trying to
create one-shot games, and variation in stakes and subject pool to check
for robustness.

17 A similar point is made by Dixit and Skeath (1999). Stephen Jay Gould (1985) argued that baseball
batting averages converged in the 20th century because of dynamic adjustments in field, pitching, and
hitting. Dixit and Skeath describe this as an “encouraging tale, drawn from real life, of how players learn
to play equilibrium strategies.” But the learning was on the order of decades, which means a behavioral
learning theory is just as important (or more so) than an equilibrium concept.
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For example, a common interpretation of the fact that Responders
reject offers in ultimatum games is that the Responders think they might
be playing a repeated game because they will meet the Proposers again. But
experimenters go to great lengths to ensure that subjects won’t meet again
and know that. For example, some experimenters pay subjects one at a time,
with a short lag between each payment, and stand in the hall to be sure
subjects don’t wait for others to leave. Under these conditions, the faux-
repeated-game explanation of ultimatum results is simply wrong. Others
(such as the famously careful Ray Battalio) are known to end an experiment
immediately if a subject says something aloud that others hear, breaking the
experimenter’s control. The reaction that subjects are playing a different
game than the experimenter intended should disappear as more theorists
learn about what actually happens in laboratories and come to believe in
the quality of the data that are produced.

Still another reaction you may have is that behavior which is not ra-
tional can’t be modeled. For example, several years ago Abreu and Mat-
sushima (1992b) said experimental results are frequently inexplicable by
“even approximately rational explanation.” I disagree: Virtually all the re-
sults reported in this book can be accommodated by including behavioral
components—social utility, limited iterated reasoning, and learning—into
analytical theory. They go on to ask, “Should we then give up the rationality
paradigm?” Of course not. It is too useful as a source of sharp predictions,
and it is often a good prediction of limiting behavior. Behavioral game the-
ory extends rationality rather than abandoning it. The last chapter of this
book shows how.

1.4 Conclusion

This chapter described three examples which illustrate experimental reg-
ularity, and hinted how that regularity is formalized in behavioral game
theory.

In the ultimatum game, Proposers typically offer close to half of a sum
to be divided, and Responders reject offers that are too low because they
dislike unfairness. The game is so simple that it is impossible to believe Re-
sponders rejecting money are confused, and the result has been replicated
for very high stakes (up to $400 in America, and comparable sums in for-
eign countries). According to behavioral game theory, Responders reject
low offers because they like to earn money but dislike unfair treatment (or
like being treated equally). In the continental divide game, players gravitate
toward equilibria over time and often end up in Pareto-inefficient equilibria
they could have avoided. Behavioral game theory explains this by assuming
that players aren’t sure what to do (at the beginning of the game), so they
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pick numbers in the middle; then they respond to history according to sim-
ple statistical learning rules. In the beauty contest game, players seem to
do one or two steps of reasoning about others, then stop. (Analytical game
theory assumes they keep going until they reach a mutual best-response
equilibrium.) And they learn over time. Later chapters expand on these
results and describe other classes of games (mixed equilibria, bargaining,
signaling, and auctions).

APPENDIX

Al.1 Basic Game Theory

This appendix introduces basic ideas in game theory.'® The goal is to equip
the novice reader to understand the gist of the rest of the book. If you do
not have some other background in game theory, and are serious about
understanding the experimental results described later, you should read
other books. A good introductory book (low on math) is Dixit and Skeath
(1999). More mathematical books include Rasmusen (1994) and Osborne
and Rubinstein (1995). Gintis (1999) includes fresh material on evolution-
ary theory and experimental data, and tons of problems. The heavy tomes
thatare used in graduate classes at places such as Caltech include Fudenberg
and Tirole (1991).

Notation: Player ¢’s strategy is denoted s;. A vector of strategies, one
for each player, is denoted s = s, o, ... , s,. The part of this vector which
removes player ¢’s strategy (i.e., every other player’s strategy) is denoted s_;.
The utility of player ¢’s payoff from playing s; is w;(s;, s_;).

Al.1.1 Dominance

Definition Al1.1.1 The strategy s is a dominant strategy if it is a strict best response
to any feasible strategy that the others might play

w; (¥, 5_;) > ui(s), s_;) Vs_; 8 # st

The strategy s; is dominated if there exists s € S; such that

w; (s}, 5_;) > ui(sl, s_;) Vs_;.

18 Thanks to Angela Hung for writing much of this appendix.





