
8
Java Card Basics

This chapter is dedicated to the basics of Java Card technology. It first
explains the Java Card architecture and its remarkable features. Particular
attention will be paid to differences between Java Card and Java technolo-
gies. The section concludes with the major steps of Java Card application
development and explains the Java Card application programming interface
(API).

8.1 Java Card Architecture

One of the main ideas that encouraged the development of Java Card tech-
nology was to make smart card applications portable across different
platforms. The advantages of Java, such as platform independence and
language-level security, were already well known and appreciated. Hence, a
plan to bring the power of Java to the world of smart cards emerged and was
implemented. The Java Card platform is formed by a combination of a
customized subset of the Java programming language and a Java run-time
environment dedicated to smart cards and other resource-constrained
devices. Due to the fact that smart cards still have low performance and lim-
ited resources, it was necessary to customize the Java language, which was
initially developed for the world of traditional computers. Customization of
Java resulted in the omission of some features that are either impossible to
implement on a smart card or irrelevant to smart card applications. However,
some features were also added to Java Card to accommodate the specifics of a

79



smart card and its applications. These are discussed in detail in later sections
of this chapter.

Java Card is characterized by the following major benefits:

• Platform independence. Java Card applications written in accordance
with the specifications are intended to run on any Java Card�com-
pliant smart card. This feature was thought to ensure a high degree
of portability of Java Card applications. Unfortunately, individual
smart card manufacturers frequently introduce their own packages
with a manufacturer-dependent API (especially security-related
APIs) or still support different versions of Java Card. This signifi-
cantly decreases the portability of Java Card applications.

• Multiple-application support. More than one application can be run
on a Java Card technology smart card. Furthermore, the data of each
application is securely protected from any other application run on
the same card.

• Power of Java. Java Card inherits many benefits of the Java program-
ming language. In the particular case of smart cards, such benefits
are object-oriented programming and language-level security.
However, some limitations on Java introduced in Java Card (see
Section 8.2) frequently lead to a style of programming that is differ-
ent from conventional Java. Another advantage of Java Card is that
its applications can be developed using any development tool or
environment for standard Java.

The Java Card architecture is illustrated in Figure 8.1. As can be seen, it
looks very similar to traditional Java. The smart card operating system (OS)
is layered on top of a smart card microcontroller and is aimed at providing
common services like file and data management, communication, and com-
mand execution. From the communication point of view, Java Card is fully
compliant with ISO/IEC 7816. In particular, Java Card supports communi-
cation protocols1 and commands in accordance with ISO/IEC 7816-3 and
ISO/IEC 7816-4, respectively.

The Java Card run-time environment (JCRE) is layered on top of the
smart card operating system and consists of the Java Card Virtual Machine
(JCVM), the Java Card API, also referred to as the framework, and native

80 Java Card for E-Payment Applications

1. T = 0 and T = 1 protocols.



methods. Native methods are needed to implement certain special platform-
dependent operations like I/O operations or cryptographic operations in a
compact and efficient way. That is why the implementation of such opera-
tions interacts directly with the smart card operating system and is usually
done in languages other than Java (typically, C or Assembler). The Java Card
API is formed by a number of packages containing classes dedicated to vari-
ous purposes (see Chapter 11). In addition to the standard Java Card API,
particular JCRE implementations frequently contain some manufacturer-
specific extension APIs. On the one hand, they provide some additional
functions, but on the other, they decrease the cross-platform portability of
Java Card applications.

Java Card applications, called card applets or simply applets, written in
the Java programming language are located on the topmost level of the Java
Card architecture. More than one applet can be run on a card. Each applet
on a card is uniquely identified by its AID. Chapter 10 of this book addresses
security issues involved with the Java Card�s multiple-application support.

The main task of the JCVM is to execute an applet bytecode on a card
and to provide the Java language support. The core difference between the
JCVM and the conventional Java Virtual Machine is that the first one is
actually split into two independent parts. One part of JCVM, called the Java
Card Converter, is executed off-card, for instance, on a personal computer.

Java Card Basics 81

Applet AppletApplet

Java Card API

Java Card virtual
machine

Native methods

Java Card Runtime Environment

Smart card operating system

Smart card microcontroller

Figure 8.1 Java Card architecture.



The second part of JCVM is run on-card and is capable of applet code execu-
tion, managing classes, and providing interapplet security mechanisms. In
contrast to Java, the lifetime of the on-card JCVM is limited only by the life-
time of a smart card. In other words, the on-card JCVM cannot be stopped
and then started new again�it always runs on a card and is merely temporar-
ily paused when power is removed from the card.

The Java Card Converter is a software tool that prepares a card applet
bytecode (all applet class files put into one package) for uploading to a
card. This preparation includes verification of classes to be loaded, various
checks for Java Card�specific restrictions and violations, allocation and crea-
tion of the applet data structures, and resolution of symbolic references to
the applet data structures. The result of the conversion is a converted applet
(cap) file containing a complete image of the applet prepared and optimized
for an execution on a card.

Figure 8.2 illustrates the principle described above and shows the main
steps of card applet development. A card applet code can be written and
compiled using any Java development tool and environment. Debugging and
testing is a different case�because of the specifics of Java Card and the use of
manufacturer-specific packages, this can be done in most cases only with the
help of development tools provided by the smart card manufacturer.

After compilation of all source java files related to the applet, the
resulting class files are passed to the Java Card Converter, which generates
the applet cap file as an output. The applet cap file then can be uploaded to
a card. Java Card specifications do not define exactly how the applet cap file
is uploaded to a card�this also remains a manufacturer-specific issue.

82 Java Card for E-Payment Applications

Any Java
development tool

java files cap file

class files

Java compiler Java Card
converter

Java Card
technology smart
card

Figure 8.2 Java Card applet preparation.



A few words must be said about how an applet is uploaded to a card.
Any Java Card technology smart card contains a special application called the
installation program that is capable of loading an applet cap file and storing
it on the card. Thus, there is no need for JCVM to take care of loading the
applet�this is accomplished by the installation program. From an architec-
tural point of view, the installation program can be seen as an ordinary Java
Card application layered on top of JCVM and implementing an applet cap
file upload over certain format APDUs sent to the card by a terminal.

Note that, in order to increase applet uploading security, certain JCRE
implementations allow the applet cap file to be uploaded in a digitally
signed and encrypted manner. In this case, the applet is uploaded successfully
only if the applet�s digital signature is successfully verified on the card.

Another remarkable feature of Java Card is that it does not provide
ISO/IEC 7816-4 file system support on-card. In other words, the Java Card
API has no means of working with files in terms of creating, writing, reading,
and so forth. All functions related to file representation and handling should
be implemented within an applet. Although this looks like a restriction, it
gives more flexibility and allows implementation of only those file support
features that are really needed by an applet.

Initially, the plan was to provide file system support on Java Card.
Even the previous version of Java Card, Java Card 2.0, contained a set of
classes dedicated to operations on files. It is said that manufacturers could
not come to an agreement on an underlying API and therefore file system
support was left out of Java Card 2.1.

A practical object-oriented implementation of a Java Card file system is
demonstrated in Part IV of this book.

JCVM, JCRE, and the Java Card API are defined by Sun Microsystems
Inc. specifications [1�3], which are available online.2 As of February 2001,
not all existing Java Card implementations were based on Java Card 2.1. For
instance, iButton from Dallas Semiconductor and Schlumberger Cyberflex
follow the Java Card 2.0 specification.

In May 2000, the Java Card 2.1.1 specification was released [4]. In
comparison with Java Card 2.1, Java Card 2.1.1 contains a number of minor
improvements and pays more attention to some aspects of Java Card
implementation.

Java Card Basics 83

2. http://java.sun.com/ products/javacard.



8.2 Differences from Java

A smart card is a resource-constrained device. It cannot provide the amounts
of memory and high performance that are available on modern computer
architectures. That is why it is impossible to implement the standard Java
platform in a one-to-one manner on a smart card. The decision was made,
therefore, to implement Java Card as a subset of standard Java, omitting
some features and adding some restrictions.

First of all, because of the resource constraints and limited CPU per-
formance, Java Card does not support multithreading. Second, Java Card does
not support dynamic class loading, for an obvious reason: It is very problem-
atic and almost impossible to ensure loading of additional classes to the card
during applet execution. Object cloning is also not supported by Java Card.

All objects once created by an applet will exist as long as the applet
exists, that is, until the applet is deleted from the card. This means that all
objects3 created by the applet are persistent, that is, their values are preserved
when power is removed from the card. Therefore, Java Card does not need
and does not support garbage collection. As a consequence, the method
finalize() is not supported. This feature also increases applet safety:
References to nonexistent objects are avoided because objects cannot be
destroyed during an applet�s lifetime. On the other hand, implementation
of garbage collection could be quite useful in that it could prevent a loss of
memory occupied by a dynamic object that leaves the applet�s scope. Some
Java Card implementations, like iButton from Dallas Semiconductors, sup-
port garbage collection.

The following sections discuss in detail certain differences between Java
Card and Java.

8.2.1 Primitive Data Types and Arrays

Like Java, Java Card supports such primitive data types as byte , short , and
boolean . A byte is an 8-bit signed number with values that can range from
�128 to 127. A short is a 16-bit signed number with values that can range
from �32,768 to 32,767. A boolean value is represented internally by a byte.

In contrast to Java, Java Card does not support such data types as float,
double, long, and char at all. Data type int is optional; that is, some particular
Java Card implementations may support it, some not. A summary of supported
and unsupported Java Card primitive data types is given in Table 8.1.

84 Java Card for E-Payment Applications

3. Except transient objects that are created in a special manner and whose value is reset
upon certain Java Card system events.



Java Card supports only one-dimensional arrays, not multidimensional
arrays. This limitation is also because of the limited resources available on a
Java Card technology smart card. As in Java, elements of an array may be of
any supported primitive data type or objects. The following example demon-
strates valid declarations of arrays:

byte byte_array[] = new byte[3];

byte states[] = {0, 1, 2} ;

PIN app_pins[] = new PIN[3]; // array containing 3

// references to PIN objects

The following array declarations are invalid because they declare multidi-
mensional arrays:

byte a[][] = new byte[3][3];

boolean flags[][] = new boolean[5][5];

As in Java, Java Card arrays are represented by objects. This means that
methods of the class Object can be applied to them. For instance, an equal-
ity of two array references can be checked using the method equals() of
the Object class:

if ( states.equals(byte_array) ) {

...

}

Java Card Basics 85

Table 8.1
Supported and Unsupported Primitive Data Types in Java Card

Data Type Width (bits) Supported?

byte 8 Yes

short 16 Yes

boolean 8 Yes

int 32 Optional

char 16 No

float 32 No

long 64 No

double 64 No



The method returns a boolean value indicating whether the array references
are equal or not. More advanced operations on arrays (copying, comparing,
etc.) can be performed with the help of static methods of the class Util ,
which is a member of the Java Card framework classes.

8.2.2 Operations and Type Casting

Java Card supports all arithmetic, logical, and bit-wise operations defined
in Java. However, typecasting rules used in Java Card are slightly different
from rules defined in Java. The main typecasting rule of Java Card states that
results of intermediate or unassigned operations must be explicitly cast to
a type of a desired value. An intermediate calculation is part of a complex
expression involving a number of operations on a number of values. A result
of an unassigned operation is not assigned to any variable. An example of an
unassigned operation could be an array index calculation.

The reason behind the explicit typecasting rule is that, in Java, results
of intermediate or unassigned operations are cast to the type int by default.
However, Java Card supports the type int only optionally, which implies
that not all Java Card implementations will have it. Hence, casting either to
the types short or byte must be specified explicitly. The following exam-
ple demonstrates correct explicit casting of results of intermediate or unas-
signed operations:

byte byte_array[] = new byte[3];

byte b;

short s;

b = byte_array[(byte)(s-1)]; // unassigned operation

b = (byte)( (byte)(s+6)*2 ); // intermediate operation

The example below demonstrates erroneous typecasting:

b = byte_array[s+1];

b = (byte)( (s+6)*2 );

Typecasting errors related to Java Card restrictions are reported by the Java
Card Converter.

8.2.3 Exceptions

In principle, Java Card supports all Java mechanisms for exception han-
dling. Card applets may contain try , catch , and finally statements.

86 Java Card for E-Payment Applications



Obviously, exceptions related to unsupported features, like multithreading
or dynamic class loading, are not supported. Moreover, the constrained
resources of a smart card also have an impact, resulting in the following three
features of Java Card exception handling:

1. Not all of the Java exception classes are supported.

2. Descriptive string messages in exceptions are not supported.
Instead, a reason code of the type short is used.

3. Creating instances of exception classes is not recommended.
Instead, static JCRE instances of exception classes should be used.

We now discuss each aspect of this list in detail. All Java Card
exceptions are subclasses of a superclass Throwable . Exception classes are
stored in two core packages of the Java Card framework, java.lang and
javacard.framework . Exceptions contained in the first package repre-
sent erroneous situations related to Java language programming. Table 8.2
gives a general overview of exceptions contained in the java.lang package.

Table 8.2
java.lang Package Exceptions

Exception Description

ArithmeticException Indicates a certain arithmetic run-time
error. An example could be the
division-by-zero error.

ArrayIndexOutOfBoundsException Indicates that an array index is outside of
the array boundaries.

ArrayStoreException Indicates that there was an attempt to
store an object of an incorrect type in an
array.

ClassCastException Indicates an incorrect attempt to cast an
instance of one class to another class.

NegativeArraySizeException Indicates an attempt to create an array with
a negative size.

NullPointerException Indicates a null reference access.

SecurityException Indicates a violation of access rights for a
certain object.

Java Card Basics 87



One important fact must be mentioned: Java Card specifications do
not define JCVM behavior for the case in which a certain exception is
thrown and is not caught by a card applet. As a first consequence of an
uncaught exception, JCVM will halt, that is, card applet execution will be
stopped. What will happen then depends on the particular Java Card imple-
mentation. For instance, the Sm@rtCafé Java Card technology smart card
from Giesecke & Devrient, which is used to implement a sample EMV
application later in this book, will respond to a terminal with a status word
indicating a general card error.

Exceptions contained in the javacard.framework package repre-
sent smart card�specific erroneous situations that occur during a card applet
execution. Table 8.3 gives their general description.

Java Card does not support the object type string . Therefore, Java
Card exceptions do not provide descriptive string messages. Instead, addi-
tional information about the reason for an exception is reported by a reason
code. The reason code is a value of the type short . A remarkable thing about
exception reason codes is that most exception classes, mainly smart card�spe-
cific exception classes, contain predefined static constants representing main
reason codes typical of the underlying exception.

To conclude the description of Java Card exceptions, a few words must
be said about exception usage. First of all, it is strongly recommended not to
create a new exception object each time an exception is thrown. Instead, all
exception objects needed by an applet should be created during the applet
initialization phase, the references to them stored, and the objects reused

88 Java Card for E-Payment Applications

Table 8.3
javacard.framework Package Exceptions

Exception Description

APDUException Indicates errors related to APDU handling.

ISOException Is used to issue a response APDU with a given
status word.

PINException Indicates errors related to PIN handling.

SystemException Indicates errors occurring on the Java Card at
system level.

TransactionException Indicates errors occurring during transaction
processing.

UserException Is used to implement user-defined exceptions.



each time an exception must be thrown. In this context, �reused� means that
an exception object is created just once but thrown as many times as needed
with a desired reason code. The reasoning behind such a practice is obvious:
Creating new instances of exception classes will simply waste the limited card
memory available.

There is an even more efficient method of exception throwing. JCRE
precreates all exceptions defined in the Java Card API. In other words, JCRE
creates instances of all Java Card exceptions by default. This means that these
precreated exception objects can be used instead of objects created by a card
applet, so there is no need to create most of the exception objects at all. All
exceptions defined in the javacard.framework package (see Table 8.3)
have a static method throwIt() that throws a JCRE (a precreated) instance
of the class.

Let us demonstrate this principle with an example. Assume that an
applet must report that the instruction (INS value) given in a command
APDU is not supported. This can be achieved with the following statement:

ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED);

First of all, execution of this statement will throw a JCRE instance of
the ISOException exception class with the desired reason code. As a
consequence, this exception will force JCRE to issue a response APDU
with the ISO 7816-4 status word 6D 00 H defined by the static
constant SW_INS_NOT_SUPPORTEDof the Java Card framework interface
ISO7816 .

8.3 Java Card Applet

The lifetime of a Java Card applet consists of a number of stages. After being
compiled and converted to a cap file (see Section 8.1) by the Java Card Con-
verter, the applet is loaded to a card by the card installation program. This is
the moment when the on-card life of the applet begins. First of all, the applet
must be installed and registered within JCRE. If the applet registration
is accomplished successfully, the applet becomes available for selection via
SELECT APDU, sent to the card, and processed by JCRE. The selected applet
is ready to receive incoming command APDUs delivered to it by JCRE, to
process them, and to generate response APDUs that are sent out by JCRE.

As pointed out in Section 8.1, the lifetime of a card applet is limited by
the lifetime of the Java Card Virtual Machine, that is, by the lifetime of the

Java Card Basics 89



card. However, note that certain Java Card implementations may allow
clearing of the application area of a card�s EEPROM. In this way, all applets
existing on the card and all data objects belonging to them are completely
deleted from the card.

The Java Card API provides handy mechanisms for card applet imple-
mentation. Any card applet is implemented on the basis of an abstract
base class Applet located in the javacard.framework package. The
class Applet contains all methods necessary for applet installation, selec-
tion, and deselection, and APDU processing. Those methods and aspects
related to them are discussed in detail in the following section.

8.3.1 Installation and Registration

After an applet has been successfully loaded to the card, it must be installed.
The installation procedure is initiated by the INSTALL APDU sent to the
card. Java Card specifications do not define the exact format of this APDU;
they instead leave it up to the manufacturer. The INSTALL APDU is
received and processed by the same card application that loaded the applet
cap file to the card�the installation program.

On receiving the INSTALL APDU, the card installation program sim-
ply invokes a special method of the applet that is to be installed. This method
is called install and is defined in the abstract class Applet extended
by any card applet. The installation program also passes to the install
method applet initialization options received with the INSTALL APDU.
The applet install method is called only once (obviously, an applet is
installed on a card only once).

The core task of the install method is to create an instance
of the loaded applet class and to register the instance within JCRE. Natu-
rally, the applet constructor is called when the applet instance is created. The
constructor may create data objects used by the applet, and it is good pro-
gramming practice to create all applet objects in the applet constructor.

The applet instance registration is mandatory: If it is not performed,
the applet installation fails. The registration is done via invocation of the
register method of the applet. The register method exists in two ver-
sions, one with parameters, the other without. The register method with
parameters is used to specify an AID of the applet instance.

Summarizing everything said above, the main steps of an applet instal-
lation procedure (assuming that the applet is already loaded to the card) are
as follows:

90 Java Card for E-Payment Applications



1. Card installation program receives INSTALL APDU and invokes
the install method of the applet to be installed.

2. An instance of the applet class is created in the install method.

3. The applet instance is registered via invocation of the register
method.

If the applet is installed successfully, JCRE makes it available for selection.

8.3.2 Selection and Deselection

Any applet installed on a card must be explicitly selected before command
APDUs are sent to it. An applet is selected by means of the SELECT APDU
with the following defined format:

CLA INS P1 P2 Lc Data

00 A4 04 00 AID length AID

The data field of the APDU contains an AID of the applet to select. Other
fields of the SELECT APDU are fixed and defined in accordance with
ISO/IEC 7816-4. If JCRE finds an applet with the given AID, it marks it as
selected and forwards it to it all further command APDUs. If no applet with
such an AID is found, JCRE reports the fact with the respective status word
in the response APDU.

After a card reset, all applets on the card are in a suspended state. In
other words, none of the applets is marked as selected. Therefore, if JCRE
receives any4 APDU different from SELECT, it will answer with the
response APDU indicating that no applet is selected (status word 69 99 H).
Note that some Java Card implementations may allow specification of a
default applet. A default applet is marked as selected after a card reset and
JCRE will forward to it all received APDUs even if there was no explicit
SELECT command. However, Java Card 2.1 specifications address no
means for defining a default applet and leave this question up to the
manufacturer.

The abstract class Applet contains two methods related to applet
selection and deselection. The first one is called select() and is invoked

Java Card Basics 91

4. Except manufacturer-proprietary command APDUs related to card personalization and
management, for example, applet load or install APDUs. Command APDUs of this kind
are not considered further in this discussion.



by JCRE whenever the applet becomes selected. An applet may perform
operations needed for further processing of commands; for example, it may
change the values of internal flags. The select() method should return a
boolean value indicating whether it is ready to accept commands or not. By
default, the value true is returned.

The applet method deselect() is called by JCRE when a currently
selected applet becomes deselected, that is, when another applet on the card
is selected. Obviously, this method is not called when power is removed from
the card.

An interesting feature of SELECT APDU processing is that the APDU
is also passed to the applet after its selection by JCRE. This means that the
applet also has possibilities of processing this APDU and answering it in a
desired manner.

Aspects related to the processing of command APDUs by an applet are
addressed in the next section.

8.3.3 APDU Processing

Figure 8.3 demonstrates a general scheme for incoming APDU processing by
JCRE. Applet selection mechanisms were presented in the previous section.
The abstract class Applet extended by any Java Card applet contains the
method process . This method is invoked by JCRE for each received com-
mand APDU. All operations dealing with processing the APDU, performing
all necessary application-specific operations in response to the APDU, and
preparing the response APDU are done in the applet process method.

The process method has one single parameter. This parameter is an
instance of the APDUclass, another Java Card framework class located in the
javacard.framework package. This class provides a handy interface to
the communication facilities of a smart card and is designed in a protocol-
independent manner. Therefore, an applet developer does not have to deal
with specifics of T = 0 or T = 1 protocols (those are the only protocols sup-
ported by Java Card 2.1)�all of them are �hidden� inside the APDUclass
and its methods implementation.

A core field of the APDU class is a byte array buffer that is used
for reading data of the incoming APDU and preparing data of the outgoing
(response) APDU. In addition, the class APDUprovides a number of meth-
ods for easy access to the byte buffer.

If no exception is thrown during the process method execution,
JCRE sends out data in the APDU buffer (if the response was constructed by
the applet) with the success status word 90 00 H automatically attached. If

92 Java Card for E-Payment Applications



the applet throws an ISOException (see Section 8.2.3), JCRE catches it
and sends out a response APDU with the status word given in the exception
reason code. If any other exception is thrown during the process method
execution, JCRE will send out a response APDU with the status word �No
precise diagnosis� 6F 00 H.

The APDUclass and the Applet calls are discussed in Chapter 11.

References

[1] Sun Microsystems Inc., �Java Card 2.1 Virtual Machine Specification,� Mar. 1999.

[2] Sun Microsystems Inc., �Java Card 2.1 Runtime Environment (JCRE) Specification,�
Feb. 1999.

[3] Sun Microsystems Inc., �Java Card 2.1 Application Programming Interface,� Feb.
1999.

[4] Sun Microsystems Inc., �Java Card 2.1.1 Specifications. Release Notes,� May 2000.

Java Card Basics 93

Response APDU
�no applet selected�

Response APDU
�no applet found�

Incoming APDU

Incoming APDU

SELECT APDU? AID found?

Select applet, invoke
applet�s
method

select()Any default or
selected applet?

Invoke applet�s
methodprocess

Perform all
operations

SELECT APDU

ISOException
is thrown Response APDU

with respective SW

Response APDU with SW 90 00
or DATA and SW 90 00

yes

yes

yes

no

no

no

Figure 8.3 Command APDU processing by JCRE and an applet.


	8  Java Card Basics  79
	8.1  Java Card Architecture  79
	8.2  Differences from Java  84
	8.3  Java Card Applet  89
	References  93


