Design Methods, Programming
Techniques, and Issues

Developing dependable, critical applications is not an easy task. The trend
toward increasing complexity and size, distribution on heterogeneous plat-
forms, diverse accidental and malicious origins of system failures, the conse-
quences of failures, and the severity of those consequences combine to thwart
the best human efforts at developing these applications. In this chapter, we
will examine some of the problems and issues that most, if not all, software
fault tolerance techniques face. (Issues related to specific techniques are dis-
cussed in Chapters 4 through 6 along with the associated technique.) After
examining some of the problems and issues, we describe programming
or implementation methods used by several techniques: assertions, check-
pointing, and atomic actions. To assist in the design and development
of critical, fault-tolerant software systems, we then provide design hints and
tips, and describe a development model for dependable systems and a design
paradigm specific to N-version programming (NVP).

3.1 Problems and Issues

The advantages of software fault tolerance are not without their attendant
disadvantages, issues, and costs. In this section, we examine these issues
and potential problems: similar errors, the consistent comparison problem
(CCP), the domino effect, and overhead. These are the issues common to
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many types of software fault tolerance techniques. Issues that are specific to
individual techniques are discussed in Chapters 4 through 6, along with the
associated technique. Knowing the existence of these problems and under-
standing the problems may help the developer avoid their effects or at least
understand the limitations of the techniques so that knowledgeable choices
can be made.

3.1.1 Similar Errors and a Lack of Diversity

As stated in the introductory chapter, the type of software fault tolerance
examined in this book is application fault tolerance. The faults to be tolerated
arise from software design and implementation errors. These cannot be
detected by simple replication of the software because such faults will be the
same in all replicated copies—hence the need for diversity. (We discussed the
need for and experiments on diversity in Chapter 2.) Diversity allows us to
be able to detect faults using multiple versions of software and an adjudicator
(see Chapter 7). In this section, we examine the faults arising from a lack of
adequate diversity in the variants used in design diverse software fault toler-
ance techniques and the problems resulting from a lack of diversity.

One of the fundamental premises of the NVP software fault tolerance
technique (described in Section 4.2) and other design diverse techniques,
especially forward recovery ones, is that the lack of “independence of pro-
gramming efforts will assure that residual software design faults will lead to
an erroneous decision by causing similar errors to occur at the same [decision
point]” [1] in two or more versions. Another major observation is that
“INVP’s] success as a method for run-time tolerance of software faults
depends on whether the residual software faults in each version are distin-
guishable” [2, 3]. The reason errors need to be distinguishable is because of
the adjudicator—forward recovery design diverse techniques typically use
some type of voter to decide upon or adjudicate the correct result from the
results obtained from the variants. (Adjudicators are discussed in Chapter 7.)

The use of floating-point arithmetic (FPA) in general computing pro-
duces a result that is accurate only within a certain range. The use of design
diversity can also produce individual variant results that differ within a cer-
tain range, especially if FPA is used. A tolerance is a variance allowed by a
decision algorithm. Two or more results that are approximately equal within
a specified tolerance are called similar results. Whether the results are correct
or incorrect, a decision algorithm that allows that tolerance will view the
similar results as correct. Two or more similar results that are erroneous are
referred to as similar errors [1, 4], also called identical and wrong answers
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(IAW). If the variants (functionally equivalent components) fail on the same
input case, then a coincident failure 5] is said to have occurred. If the actual,
measured probability of coincident variant failures is significantly different
from what would be expected by chance occurrence of these failures (assum-
ing failure independence), then the observed coincident failures are correlated
or dependent [6-9].

When two or more correct answers exist for the same problem, for the
same input, then we have multiple correct results (MCR) [10, 11]. An exam-
ple of MCR is finding the roots of an zth order equation, which has » dif-
ferent correct answers. The current algorithms for finding these roots often
converge to different roots, and even the same algorithm may find different
roots if the search is started from different points. Figure 3.1 presents a tax-
onomy of variant results, the type of error they may indicate, the type of

Variant results

Outside tolerance Within tolerance
Dissimilar results Similar results
Correct Incorrect Correct Incorrect
Multiple correct Multiple incorrect Correct results Similar errors
results results [Success]
Same
l l input
.. . v case
Probable decision Independent failure
mechanism failure [Detected failure] Coincident failure
[Undetected success]
Occurs
more
frequently
than by
chance
\ 4

Correlated or
dependent failures

AN J
'

[Undetectable failures]

Figure 3.1 A taxonomy of variant results.
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failure the error may invoke, and the resulting success or failure detected.
The arrows show the errors causing the failures to which they point.

Figure 3.2 illustrates some of these errors and why they pose problems
for fault-tolerant software. In this example, the same input, 4, is provided to
each variant. Variants 1 and 2 produce results, 7 and 7, respectively, that are
within a predefined tolerance of each other. Suppose a majority voter-type
decision mechanism (DM) is being used. Then, the result returned by the
decision mechanism, 7[J is equal to 7, or 7, (or some combination of 7, and
r> such as an average, depending on the specific decision algorithm). If 7,
and 7, are correct, then the system continues this pass without failure. How-
ever, if 7, and 7, are erroneous, then we have similar errors (or JAW answers)
and an incorrect result will be returned as the “valid” result of the fault-
tolerant subsystem. Since variants 1 and 2 received the same input, 4, we also
have a coincident failure (assuming a failure in our example results from the
inability to produce a correct result). With the information given in this
example, we cannot determine if correlated or dependent failures have
occurred. This example has illustrated the havoc that similar errors can play
with multiversion software fault tolerance techniques.

3.1.2 Consistent Comparison Problem

Another fundamental problem is the CCP, which limits the generality of the
voting approach for error detection. The CCP [12, 13] occurs as a result of

A A A
| Variant 1 | | Variant 2 | | Variant 3 |
rl r2 r3
< oo o i

>
Tolerance

rb=rnorr,

rld

Figure 3.2 Example of similar results.
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finite-precision arithmetic and different paths taken by the variants based
on specification-required computations. Informally stated, “the difficulty
is that if /V versions operate independently, then whenever the specification
requires that they perform a comparison, it is not possible to guarantee that
the versions arrive at the same decision, i.e., make comparisons that are con-
sistent” [14]. These isolated comparisons can lead to output values that are
completely different rather than values that differ by a small tolerance. This is
illustrated in Figure 3.3. The following example is from [12].

Suppose the application is a system in which the specification requires
that the actions of the system depend upon quantities, x, that are measured
by sensors. The values used within a variant may be the result of extensive
computation on the sensor measurements. Suppose such an application is
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Figure 3.3 Consistent comparison problem yields variant result disagreement.
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implemented using a three-variant software system and that at some point
within the computation, an intermediate quantity, A(x), has to be compared
with an application-specific constant C; to determine the required process-
ing. Because of finite-precision arithmetic, the three variants will likely have
slightly different values for the computed intermediate result. If these inter-
mediate result values are very close to Ci, then it is possible that their rela-
tionships to C; are different. Suppose that two of the values are less than C;
and the third is greater than C;. If the variants base their execution flow on
the relationships between the intermediate values and Cj, then two will fol-
low one path and the third a different path. These differences in execution
paths may cause the third variant to send the decision algorithm a final result
that differs substantially from the other two, B(A(x)) and C(A(x)).

It may be argued that the difference is irrelevant because at least two
variants will agree, and, since the intermediate results were very close to G,
either of the two possible results would be satisfactory for the application. If
only a single comparison is involved, this is correct. However, suppose that a
comparison with another intermediate value is required by the application.
Let the constant involved in this decision be C,. Only two of the variants will
arrive at the comparison with G, (since they took the same path after com-
parison with C). Suppose that the intermediate values computed by these
two variants base their control flow on this comparison with G, then again
their behavior will differ. The effect of the two comparisons, one with each
constant, is that all variants might take different paths and obtain three
completely different final results, for example, D(B(A(x))), E(B(A(x))), and
C(A(x)). All of the results are likely to be acceptable to the application, but
it might not be possible for the decision algorithm to select a single correct
output. The order of the comparisons is irrelevant, in fact, since different
orders of operation are likely if the variants were developed independently.
The problem is also not limited to comparison with constants because if
two floating-point numbers are compared, it is the same as comparing their
differences with zero.

The problem does not lie in the application itself, but in the specifica-
tion. Specifications do not (and probably cannot) describe required results
down to the bit level for every computation and every input to every com-
putation. This level of detail is necessary, however, if the specification is
to describe a function in which one, and only one, output is valid for every
input [15]. It has been shown that, without communication between the
variants, there is no solution to the CCP [12].

Since the CCP does not result from software faults, an 7-version system
built from fault-free variants may have a nonzero probability of being unable
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to reach a consensus. Hence, if not avoided, the CCP may cause failures to
occur that would not have occurred in non-fault-tolerant systems. The CCP
has been observed in several NVP experiments. There is no way of estimat-
ing the probability of such failures in general, but the failure probability will
depend heavily on the application and its implementation [14]. Although
this failure probability may be small, such causes of failure need to be taken
into account in estimating the reliability of NVP, especially for critical
applications.

Brilliant, Knight, and Leveson [12] provide the following formal defi-
nition of CCP:

Suppose that each of NV programs has computed a value. Assuming that
the computed values differ by less than € (¢ > 0) and that the programs
do not communicate, the programs must obtain the same order rela-
tionship when comparing their computed value with any given
constant.

Approximate comparison and rounding are not solutions to this prob-
lem. Approximate comparison regards two numbers as equal if they differ by
less than a tolerance 0 [16]. It is not a solution because the problem arises
again with C+ 0 (where Cis a constant against which values are compared).
Impractical avoidance techniques include random selection of a result, exact
arithmetic, and the use of cross-check points (to force agreement among
variants on their floating-point values before any comparisons are made that
involve the values).

When two variants compare their computed values with a constant, the
two computed values must be identical in order for the variants to obtain
the same order relationship. To solve the CCP, an algorithm is needed that
can be applied independently by each correct variant to transform its com-
puted value to the same representation as all other correct variants [12]. No
matter how close the values are to each other, their relationships to the con-
stant may still be different. The algorithm must operate with a single value
and no communication between variants to exchange values can occur since
these are values produced by intermediate computation and are not final out-
puts. As shown by the following theorem, there is no such algorithm, and
hence, no solution to the CCP [12].

Other than the trivial mapping to a predefined constant, no algorithm
exists which, when applied to each of two -bit integers that differ
by less than 24, will map them to the same m-bit representation
(m+ k< 7).
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In the investigation of practical avoidance techniques for the CCP, the major
characteristic that needs to be considered is whether or not the application
has state information that is maintained from frame to frame, that is,
whether or not the application maintains its history [12]. Systems and associ-
ated CCP avoidance techniques can be characterized as shown in Figure 3.4.
Each of these types of systems and the avoidance technique proposed by Bril-
liant, Knight, and Leveson [12] are discussed in the following paragraphs.
The immediate effect of inconsistent comparison on a system is that a con-
sensus might not be reached. The extent of the resulting damage varies with
the application and has a substantial impact on the effectiveness of measures
designed to handle the damage [12]. The avoidance approach requires that
enhancements be made to the implementation of an NVP system.

3.1.2.1 Systems with No History

Some simple control systems have no history and thus compute their outputs
for a given frame using only constants and the inputs for that frame. If no
consensus is reached in one frame and if the inputs are changing, then it is
extremely unlikely that the lack of consensus will last for more than a short
time. After a brief interval, the inputs should leave the region of difficulty.
Doing so, subsequent comparisons will be consistent among the variants.
Hence, the effects of the CCP in systems with no history are transient.

An avoidance approach, using confidence signals, for the CCP in sys-
tems with no history is described in [12]. Each variant determines, for itself,
whether the values used in comparisons were close enough to warrant
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Figure 3.4 Consistent comparison problem avoidance techniques depend on system his-
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suspicion of inconsistency. If a possibly inconsistent solution is detected by
the variang, it signals the voter of the event. The voter is unable to tell the dif-
ference between the occurrence of an inconsistent comparison and a failed
variant, so it ignores the flagged variants’ results. The voter can then vote
using the results from the variants that indicated confidence in their results.
Hence, the fault tolerance may be reduced or even eliminated in this situa-
tion. System recovery under these circumstances is application dependent,
but it may be possible to treat the situation as a single-cycle failure [12]. This
approach requires fairly extensive modifications to the system structure. For
example, each variant result would have to be supplemented by a confidence
signal, and the voter would have to be modified to incorporate these signals
into its decision-making logic.

3.1.2.2 Systems with Convergent States

The situation is much more complex for systems with history, that is, those
that maintain internal state information over time. In these systems, the fail-
ure to reach a consensus may coincide with differences in the internal state
information among the variants [12]. The duration of these internal state
differences varies among applications.

In some applications, the state information is revised with the passage
of time and, once the inputs have changed so that comparisons are again con-
sistent, the variants may revise their states to also be consistent. In these sys-
tems with convergent states, the entire system is once again consistent and
operation can safely proceed. An example [12] of this type of application is
an avionics system in which the flight mode is maintained as internal state
information. If the flight mode is determined by height above ground, then
if a measurement is taken that is close to the value at which the mode is
changed, different variants might reach different conclusions about which
mode to enter. If the variants continue to monitor the height sensor, any
inconsistency that occurs should be rapidly corrected.

Inconsistent comparisons may cause a temporary discrepancy among
variant states in systems with convergent states. A confidence signal approach
may also be used with these systems [12]. Each variant must maintain confi-
dence information as part of its state. If a part of the system’s state infor-
mation is based on a comparison that may be inconsistent, then the variant
must indicate a “No confidence” signal to the voter for its results. The no
confidence state for this variant remains until the system state is reevaluated.
The time required to reevaluate the state is application dependent. During
the reevaluation period the system is not fault tolerant. In addition, the time
to reevaluate the state may be unacceptably long.
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3.1.2.3 Systems with Nonconvergent States

Other applications (i.e., systems with nonconvergent states) determine and
then never reevaluate some state information. An example [12] of this type
system is sensor processing in which one variant may determine that a sensor
has failed and subsequently ignore it. Other variants may not make the
same decision at the same point in time, and, depending on subsequent sen-
sor behavior, may never conclude that the sensor has failed. Hence, although
the inputs change, the variants may continue to arrive at different correct
outputs long after comparisons become consistent because the sets of state
information maintained by the individual variants are different.

Once the variants in a system with nonconvergent states acquire differ-
ent states, the inconsistency may persist indefinitely. Though no variant has
failed, the variants may continue to produce different outputs. In the worst
case, the NVP system may never again reach a consensus on a vote. There is
no simple avoidance technique that can be used for systems with nonconver-
gent states. The only practical approach in systems of this type seems to be to
revert to a backup or a fail-safe system [12].

3.1.3 Domino Effect

While the CCP of the previous section can generally affect design diverse
forward recovery software fault tolerance techniques, the domino effect dis-
cussed here can generally affect backward recovery techniques. The domino
effect [17] refers to the successive rolling back of communicating processes
when a failure is detected in any one of the processes.

To implement software fault tolerance in concurrent systems (of multi-
ple cooperating processes that communicate with each other via messages),
one cannot simply apply some fault tolerance technique in each separate
process. If this is done, then each process will have its own error detection
mechanism and would establish its own recovery point(s). When one process
detects an error and attempts recovery to its recovery point or checkpoint,
this can result in an inconsistent global system state unless the other rele-
vant processes are also rolled back. When rolling back the faulty process to its
recovery point, the messages issued by that process may also be faulty, so they
must be recalled [17, 18]. This recall will force the other processes to roll
back to their recovery points that precede receipt of the recalled messages.
This recovery and recall continues until the system reaches a stable state,
which may be the initial state. This continual rollback and recall is the dom-
ino effect, resulting when recovery and communication operations are not
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coordinated. This causes the loss of the entire computation that was per-
formed prior to the detection of the initial error.

An example will help illustrate the domino effect (see Figure 3.5).
(Similar examples are provided in [18-21] and others. The example provided
here is derived from [22].) In the figure below, the communicating processes
are labeled P1 and P2. At time T1, P1 detects an error and must roll back to
recovery point R6. Because of the communications, C5, between P1 and P2,
process P2 has to roll back to its recovery point R5. Because of this rollback,
the effect of C4 has to be removed, so P1 has to roll back to R4. Because of
C3, P2 has to roll back to R3. Because of C2, P1 has to roll back to R1 and
because of C1, P2 has to roll back to R2. Now both processes have rolled
back to their initial state at TO and lost the computations performed between
TOand TT1.

The avoidance of the uncontrolled rolling back evidenced by the
domino effect is achieved if system consistent states, which serve as recovery
points, can be established. A consistent state of a system conforms to the
system’s correctly reachable states and the events history as reflected in
the system behavior (its interface) [23]. A consistent state allows the system
to achieve an error-free state that leads to no contradictions and conflicts
within the system and its interfaces. All communications between processes
and their order of occurrence are taken into account. To support consistency,
some restrictions on the communication system must be enforced [23]:
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Figure 3.5 The domino effect. (Source:[22], © 1991, IEEE. Reprinted with permission.)
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+ Communication delay is negligible and can be considered zero.

+ Communication maintains a partial order of data transfer. All mes-
sages sent between a particular pair of processes are received at the
destination in the order they were sent.

Consistent states can be determined statically or dynamically. The
static approach is a language-based approach in which the consistent state is
determined at compile time. At compile time a recovery line is set compris-
ing a set of recovery points, one for each process, to which the processes will
roll back. The conversation scheme [17, 24] is a well-known static approach
and the oldest approach for overcoming the domino effect. In the conversa-
tion scheme, processes that are members of a conversation may communi-
cate with each other, but not with processes outside the conversation. The
processes must establish a recovery point when they enter a conversation,
and all processes must leave the conversation together. This technique is dis-
cussed more in Chapter 4.

The dynamic approach uses stored information about communication
and recovery points to set up a recovery line only after an error occurs.
The programmer-transparent coordination scheme [18, 25, 26] is a dynamic
approach that overcomes the domino effect by relying on an intelligent
underlying machine. Detailed implementations of models and recovery
protocols based on state descriptions can be found in the literature, such
as in [27].

3.1.4 Overhead

The benefits of software fault tolerance do not come without a price. In
this section, we examine the overhead incurred in the use of software fault
tolerance in terms of space (memory), time, and cost. Given this information
(and information specific to individual techniques presented in Chapter 4),
one can make a more informed decision on the use of software fault
tolerance.

Table 3.1 [28] provides a summary of the overhead involved in soft-
ware fault tolerance for tolerating one fault. Overhead is described in terms
of both structural overhead and operational time overhead. The table does
not include overhead that is common to all approaches (including that over-
head that should be present in non-fault-tolerant software) such as checking
input variables to ensure their values are within a valid range or checking
for results that are obviously grossly wrong. For example, the recovery block
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(ReB) technique includes structural overhead for one variant, an acceptance
test (AT), and its recovery cache and operational time overhead for executing
the AT, accessing the recovery cache, and when an error is detected, execut-
ing an additional variant and the AT on the second variant’s results. We hold
further discussion of the details of this table for the technique discussions of
Chapters 4 through 6. It is provided here to briefly illustrate some of the
non-cost-related overhead.

As discussed in Chapter 2, all the software fault tolerance techniques
require diversity in some form and this diversity in turn requires additional
space or time, or both. Xu, Bondavalli, and Di Giandomenico [29] provide
an illustration (see Figure 3.6) that summarizes the space and time overheads
of software fault tolerance techniques. Space is defined here as the amount of
hardware, such as the number of processors, needed to support parallel exe-
cution of multiple variants. Time is defined for the figure as the physical time
required to execute the variants sequentially. For example, the NVP technique
requires additional space for its 7 variants, so it is to the upper (right) side of
the space continuum on the figure. It is also on the lower (top) side of the time
continuum because all the variants are executed in parallel. (Xu, Bondavalli,
and Di Giandomenico [29] developed a technique, self-configuring optimal
programming (SCOP), presented in Chapter 6, that attempts to optimize

(Parallel execution)

0 » Space
Recovery
blocks 2 A v, e.g., NVP
t/(n—1)-VP
NSCP
Vv,
Conditionally
sequential Possible region of
execution dynamic space-time
trade-offs
Software variant

e.g., Sequential NVP

I Time (sequential execution)

Figure 3.6 Space and time redundancy in software fault tolerance. (Source: [29],
© 1995, Springer-Verlag, Figure 1, p. 158.)
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these overheads.) For use here, the figure provides a basis for understanding
the space and time requirements of, and possible trade-offs between, the soft-
ware fault tolerance techniques being considered for use.

Software fault tolerance also introduces additional overhead in terms of
costs. The cost-effectiveness of software has been the subject of debate for
many years. The question usually posed is this: Is it better to devote the extra
effort to develop the additional variants for diverse software or to devote that
effort to the verification and validation (V&V) of one “really good” piece of
software? (Halton [30] provides an interesting discussion of this question,
favoring diversity.) Below we provide brief descriptions of experimental
results on the cost of diversity, then continue with more specific cost
information.

The following summaries provide brief overviews of experimental
results on the costs of diversity. Note that, in general, the results indicate that
the cost of threefold diversity (e.g., NVP with 7 = 3) is not three times that of
a single development (it is less) and the cost of twofold diversity is less than
twice that of a single development. In addition, not all parts of the software’s
functionality are critical; that is, only a small part of the software may need to
be made fault tolerant. Software fault tolerance may also be less expensive
than alternative means of assurance. When examining the cost of software
fault tolerance, it is useful to keep the focus on the cost implications on the
overall project.

* Several experiments, for example [31-33], have shown that the
development and maintenance costs for three-variant diversity can
be twice that of a single development and less than double for two-
variant diversity.

* The Ericsson company [32] found that, for their railway interlock-
ing system, the costs of developing two functionally equivalent soft-
ware variants is not double the cost of a single variant because: (a)
not all parts of the system are critical, hence only the critical parts
may require fault tolerance; (b) while the cost of program specifica-
tion (design), coding, and testing is doubled, the cost of requirement
specification, system specification, test specification, and system test
execution is not doubled. In the Ericsson system [32], the majority
of the system is concerned with complex computations to make
train control decisions. The control commands are submitted to the
interlocking software and only the interlocking software is diversely
implemented.
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Panzl [34] found that two-variant development with back-to-
back (comparison) testing increases the initial development cost by
77% (not a factor of 2), but reduced the number of residual errors
from 69 to 2.

Laprie, et al. [35] analyzed the cost of several software fault tolerance
techniques and found that in a multiple variant software develop-
ment project typical component cost is about 75% to 80% of
single-variant costs.

An experiment at the University of Newcastle upon Tyne estimated
the ReB technique’s overhead for two variants to be 60% [36] (i.e.,
0.8 times the cost of a non-fault-tolerant variant, a cost increase fac-
tor of 1.6).

Another experiment estimated the cost of NVP for # = 3 variants
at 2.26 times the cost of a one-variant program [37] (and a cost
increase factor of 1.5 for » =2). Hence, the cost of a variant in NVP
was evaluated as 0.75 times the cost of a non-fault-tolerant variant.

There are a number of models of the cost of fault-tolerant software
[35, 38—43]. We will examine one of these in detail later in this
section.

Some industries, such as aircraft and nuclear power, are subject
to official regulation. The costs of demonstrating safety in these
industries can far outweigh the development costs. For example,
over 500 person-years of effort in safety assessment [44, 45] (not
including lost income associated with licensing delays) have been
used in the Sizewell B nuclear power station computer-based protec-
tion system. In some cases, diversity (not necessarily soffware diver-
sity) has been used to make a more convincing safety case.

Acceptable alternatives to software fault tolerance may also increase
the system’s cost. For example, formal methods can be used to prove
that a program meets its specification (see Section 1.3.1.3). How-
ever, there are high costs associated with these alternatives and there
remains the risk of faults within the process and results of these
approaches.

Kanoun [46] provides the results of examining working hours recorded
during the development of a real-life software system (composed of two self-
checking diverse variants). Kanoun evaluated the cost overhead induced
by the development of the second variant with respect to the cost of the
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principal variant, which was considered as a reference. The results indicate
this overhead varies from 15% to 134% according to the development phase
(134% for coding and unit tests together; about 100% for integration tests,
general tests, maintenance, and analysis; about 60% for specification analy-
sis, design, and documentation; and 25% for functional specifications). The
average was around 64% for all phases excluding the effort spent for require-
ment specifications and system tests. The average is between 42% and 71% if
the requirement specification phase only is excluded (assuming the system
test overhead is 0% and 100%, respectively). Kanoun’s results confirm those
published in previous work (see above). The results are especially valuable
since they were observed for a real system in an industrial environment (ver-
sus an experimental environment).

We will examine one of the cost models mentioned above in more
detail. Laprie, et al. [35] examined the costs of several software fault tolerance
techniques and provided a model for determining the cost of fault-tolerant
software with respect to the cost of non-fault-tolerant software. Laprie starts
with a cost distribution across life cycle phases for classical, non-fault-
tolerant software (see Table 3.2, with these entries based on [47]). Since
fault-tolerant software is used mainly with critical applications and the cost
distribution is based on no specific class of software, [35] provides some mul-
tiplicative factors that depend on the particular lifecycle activity (from [48]).

To determine the cost of fault-tolerant software, factors are used to
account for the overheads associated with the decision points and the DMs,
and to account for the cost reduction in V&V caused by commonalities
among variants. The commonalities include actual V&V activities (e.g.,
back-to-back testing) and V&V tools (e.g., test harnesses). Given the current
state of the art, the values of these factors cannot be accurately estimated, but
[35] provides reasonable ranges of values for the factors. The factors and their
ranges from [35] are provided below.

» 7 is the multiplier associated with the decision points, with
1<r<1.2.

e sis the multiplier associated with the decider, with 1 <s< 1.1 for
NVP (Section 4.2) and N self-checking programming (NSCP)
(Section 4.4) when error detection is performed through compari-
son, and 1 <5< 1.3 for RcB (Section 4.1) and NSCP when error
detection is performed through AT (Section 7.2). This difference
reflects the differences in the deciders, that is, the fact that the
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deciders are specific when they decide by AT and generic when they
decide by comparison or vote.

* uis the proportion of testing performed once for all variants (such as
provision for test environments and harnesses), with 0.2 <% <0.5.

¢ vis the proportion of testing, performed for each variant, that takes
advantage of the existence of several variants (such as back-to-back
testing), with 0.3 < v < 0.6.

* w is the cost-reduction factor for testing performed in common for
several variants, with 0.2 < 0w <0.8.

The following expression gives the cost of fault-tolerant software (Crr)
with respect to the cost of non-fault-tolerant software (Cyr):

CrrlCnpr = Prey 75 Pse +[N” +(s - 1)](,01)95 + p[m]))
+ r{us + (1 - u)N[vw + (1 - V)]}pv&v

where Nis the number of variants, and pg,;s Psse Ppecs Prps a0 Py are the
cost distribution percentages for requirements, specification, design, imple-
mentation, and V&V, respectively.

Table 3.3 gives the ranges for the ratio Cyr/Cyrr as well as the average
values and the average values per variant. Examining this table’s results
provides quantitative evidence for the qualitative statement that N-variant
software is less costly than NV times a non-fault-tolerant software. The experi-
mental cost results noted earlier in this section fall within the ranges noted in

Table 3.3.

3.2 Programming Techniques

In this section, we describe several programming or implementation tech-
niques used by several software fault tolerance techniques. The programming
techniques covered are assertions, checkpointing, and atomic actions. Asser-
tions can be used by any software fault tolerance technique, and by non-
fault-tolerant software. Checkpointing is typically used by techniques that
employ backward recovery. Atomic actions can also be used in non-fault-
tolerant software, but are presented here primarily in the context of software
fault tolerance in concurrent systems.
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Table 3.2
Software Cost Elements for Non-Fault-Tolerant Software
(From:[35], © 1990, IEEE. Reprinted with permission.)

Life-Cycle Cost Multipliers

Cost Distribution

Development Development

Breakdown for Critical and

Activity [47] Applications [48] Maintenance
Development

Requirements 3% 1.3 8% 6%

Specification 3% 1.3 8% 7%

Design 5% 1.3 13% 14%

Implementation 7% 1.3 19% 19%

V&V 15% 1.8 52% 54%
Maintenance® 67%

*0Of this, 20% is for corrective maintenance, 25% is for adaptive maintenance, and 55% is for perfective
maintenance [47].

Table 3.3

Cost of Fault-Tolerant Software Versus Non-Fault-Tolerant Software

(From:[35], © 1990, IEEE. Reprinted with permission.)

Faults Fault Tolerance (Crr/Cnrr)  (Crr/Curr)  (Crr/Cnrr)  (Crr/NCnrr)
Tolerated Method N Minimum Maximum Average Average
1 RcB 2 1.33 2.17 1.75 0.88
1 NSCP
AT 2 1.33 2.17 1.75 0.88
Comparison 4 2.24 3.77 3.01 0.75
1 NVP 3 1.78 2.71 2.25 0.75
2 RcB 3 1.78 2.96 2.37 0.79
2 NSCP
AT 3 1.78 2.96 2.37 0.79
Comparison 6 3.7 5.54 4.63 0.77
2 NVP 4 224 3.77 3.01 0.75
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3.21 Assertions

Assertions are a fairly common means of program validation and error detec-
tion. As early as 1975, Randell [17] presented executable assertions as central
to the design of fault-tolerant programs. An executable assertion is a state-
ment that checks whether a certain condition holds among various program
variables, and, if that condition does not hold, takes some action. In essence,
they check the current program state to determine if it is corrupt by test-
ing for out-of-range variable values, the relationships between variables and
inputs, and known corrupted states. These assertion conditions are derived
from the specification, and the assertion can be made arbitrarily stringent
in its checking. Assertions may be set up to only produce a warning upon
detection of a corrupt state or they may take or initiate corrective action. For
example, upon the detection of a corrupt state, the assertion may halt pro-
gram execution or attempt to recover from the corrupt state. What the asser-
tion does upon firing (detecting a corrupt state) is application-dependent.
Assertions can be used as part of a “reasonableness-checking AT” such as a
range bounds AT (see Section 7.2.3).

Traditional assertions produce warnings when the condition being
checked is not met. They do not typically attempt recovery. Recovery asser-
tions, on the other hand, are forward recovery mechanisms that attempt to
replace the current corrupt state with a correct state. As with checkpointing
(discussed in the next subsection), the entire state can be replaced or only
specific variables, depending on the system constraints and overhead (e.g.,
time and memory) involved in the saving and restoration of the variables” or
state’s values. Assertions can also be used to reset variables periodically (i.e.,
without necessarily testing for a corrupt state) in, for example, safety-critical
real-time systems to limit the propagation of corrupt data values [49].

Some programming languages provide special constructs for executable
assertions. However, executable assertions are essentially Boolean functions
that evaluate to TRUE when the condition holds, and FALSE otherwise.
Using a generic pseudocode language, we can present the simplest form of an
executable assertion as

if not assertion then action

where assertion  is a Boolean expression and action is a method or
procedure.

The most general form of an assertion must refer to the current state
and to a previous state. Primary choices for the previous state are:
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e The initial state, so;

e An intermediate state between s, and the current state that was
reached along the path the program execution has taken.

Mili [50] provides three reasons for which an intermediate state should be
chosen over the initial state in an executable assertion:

1. Modularity: We can think of the assertion « as checking a local pro-
gram segment & by referring to the state of the program before exe-
cution of & and after execution of 4. The program segment & and its
assertion-checking facilities then form a modular unit that is con-
text independent—it does not depend on where it is in the pro-
gram [50].

2. Time parsimony: Block b can be arbitrarily short, and the function it
computes arbitrarily simple. Hence the assertion that checks it can
be arbitrarily easy to compute and arbitrarily time efficient. By con-
trast, referring to 5 means that, at milestone 7z, we check expected
past functional properties of program P at 7, whose complexity we
do not choose [50].

3. Space parsimony: Block b can be arbitrarily short, and the variables
it affects arbitrarily few. Hence the memory space required to save
the variables modified by block & is arbitrarily small. By contrast,
referring to s means that sufficient memory space must be set
aside to save all of s, whose size we do not choose [50].

The initial state or intermediate state, the block & to be checked, and the

statement that saves all or part of the previous state comprise an elementary
asserted block (EAB). The general form of an EAB is [50]:

$
b; /I modifies s, but not S
if not a($, s) then action;

In the above EAB, the assignment statement § = s means saving state s in §.
The expression 4(s, ) is the assertion. As stated earlier, we may only want to
save some variables, such as those that are going to be modified by & and/or
those that are involved in the expression of assertion a.

Let’s look at an example. Suppose s [JSis an integer. Also, suppose that
program block & determines the square of s that is, & = (s = s Os). The
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following three simple assertions [50] illustrate different assertions we can
use with the defined program block, &.

S =s;

b;

if not (s = §% then action;

S =s;

b;

if not ($§>10 s> $§) then action;
S =s;

b;

if not (s > 0) then action;

In typical practice, & would be an intricate block of code that is difficult to
analyze and 4(§, 5) would be a simple assertion [50].

When an error is detected in the current state, action should be taken
to notify the designer (so that corrective action—fault removal—can be
taken) and a procedure is invoked to perform damage assessment and take
appropriate recovery action.

An assertion, s¢, can be used to detect strict correctness (or freedom
from errors) in the program. The following pseudocode sample (after [50])
illustrates the pattern for such an assertion.

perform_error_management

{
if not sc($ =s) then {
/I erroneous state

produce_warning(Ul_or_errorfile, detected_error);
/I Ul - User Interface
perform_damage_assessment_and_recovery; }

3.22 Checkpointing
Checkpointing is used in (typically backward) error recovery, which we recall

restores a previously saved state of the system when a failure is detected. Recov-
ery points, points in time during the process execution at which the system
state is saved, are established. The recovery point is discarded when the process
result is accepted, and it is restored when a failure is detected. Checkpoints are
one of several mechanisms used to establish these recovery points. Other
mechanisms include the audit trail [51] and the recovery cache [52, 53]:
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*  Checkpoint: saves a complete copy of the state when a recovery point

is established.

e Recovery cache: saves only the original state of the objects whose val-
ues have changed after the latest recovery point.

o Audit trail: records all the changes made to the process state.

In the discussion that follows, the generic term “checkpoint” will be used and
will include all three mechanisms, unless otherwise stated.

The information saved by checkpoints includes the values of variables
in the process, its environment, control information, register values, and so
on. The information should be saved on stable storage so that even if the
node fails, the saved checkpoint information will be safe. For single node,
single process systems, checkpointing and recovery are simpler than in sys-
tems with multiple communicating processes on multiple nodes.

For single process checkpointing, there are different strategies for
setting the checkpoints. Some strategies use randomly selected points, some
maintain a specified time interval between checkpoints, and others set a
checkpoint after a certain number of successful transactions have been com-
pleted. For example, [54, 55] examine the location of checkpoints based on
the principle of information reduction. There is a trade-off between the fre-
quency and amount of information checkpointed, and various performance
measures (e.g., information integrity, system availability, program correct-
ness, and expected execution time). For example, the code size between
checkpoints can be a determining factor in the effectiveness and cost of
a fault tolerance strategy. If the intermediate results are checked after small
pieces of code have been executed, then there is lower error latency, but also
a higher execution time overhead. In addition, decision points limit design
diversity, since an increase in the frequency or number of decisions requires
the agreement of variants at a higher level of detail. However, a large modular
decomposition (and thus larger code segments between decisions or check-
points) ensures higher variant independence and lower execution overheads.
Larger code segments between checkpoints and decisions may result in a cur-
sory acceptance test that is incapable of localizing the errors that occur. Mod-
els of the various approaches to checkpointing have been compared and their
effects on system performance examined [54, 56-58].

There are generally two approaches to multiprocess backward recov-
ery—asynchronous and synchronous checkpointing. In asynchronous check-
pointing, the checkpointing by the various nodes in the system is not
coordinated. However, sufficient information is maintained in the system so
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that when rollback and recovery is required, the system can be rolled back to
a consistent state. The cost of asynchronous checkpointing is lower than syn-
chronous checkpointing, but the risk of unbounded rollback (the domino
effect, discussed earlier in this chapter) remains. Many checkpoints for a
given process may need to be saved because during rollback, a remote (in
time) state can be restored. Asynchronous checkpointing is simpler than syn-
chronous checkpointing, but can be useful on/y where expected failures are
rare and there is limited communication between the system processes. State
saving and restoration protocols for asynchronous checkpointing include
[59-62] and others.

In synchronous checkpointing (or distributed checkpointing), estab-
lishing checkpoints is coordinated so that the set of checkpoints as a whole
comprise a consistent system state. This limits the amount of rollback
required, but the cost of establishing the checkpoints is higher than in asyn-
chronous checkpointing because of the coordination required. Also, only a
few checkpoints of a process need to be saved at a time. State saving and res-
toration protocols for synchronous checkpointing include [63-69] and
others. Consistency criteria for distributed checkpoints (independent of the
communication model) are investigated in [70].

Calsavara and Stroud [71] provide example C++ code for check-
pointing and discuss some implementation issues. A very simple technique
for implementing backward error recovery as part of a generic recovery block
is to make a copy of the original object before invoking each alternate, as
shown below [71] (reproduced here with permission):

try

{
T oldobject = object;
alternate(object);
if( accept(object) )
{

return;

}

}

catch ( ...)

{

object = oldobject;
continue;
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An alternative implementation of backward recovery has each alternate
returning a new object (shown below, [71], with permission) rather than

modifying the old object in place.

try
{
T newobject = alternate(object);
if ( accept(newobject) )
{
object = newobject;
return;
}
}
catch( ...)
{
continue;
}

The first approach may be preferable because it only involves an initialization
in the normal case, where the second approach requires both an initializa-
tion and an assignment. Both approaches make crude copies of the entire
state of what could be a very large object. It is preferable to only save and
restore the state that has changed.

Using C++, the designer can specify what it means to make a copy
of an object. The compiler supplies default implementations of these copy
operations if they are not supplied by the implementer, however, the default
implementations are recursively defined in terms of their implementation for
each subcomponent of the object. By overriding the assignment operator and
defining the copy for classes, one has the freedom to copy objects fully or
partially on demand, or to copy them using reference counting (“lazy” copy).
This control may be exercised at any level of the object hierarchy. So, if each
subcomponent of a large object is made up of a smaller object that makes a
lazy copy of itself and only makes a full copy when it is modified, then with-
out much effort, the copying operations used in the implementation of the
recovery block algorithm above will in fact copy only the state which is modi-
fied and no more [71]. Hence, one can use these C++ mechanisms to imple-
ment a hardware recovery cache in software.

There has been much research in checkpointing over the years, for
example, in protocols and performance modeling (references mentioned ear-
lier), for different application environments (e.g., [63], mobile environments
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[72]), and in object-oriented development (e.g., [71, 73, 74]). The reader is
referred to the literature referenced in this section and the references therein
for further details on checkpointing.

3.23 Atomic Actions

Atomic actions are used for error recovery, primarily in concurrent systems
(and are widely used in transaction systems, which are not covered specifi-
cally in this text). Critical concurrent systems must be structured so that their
complex asynchronous activities, such as those related to fault tolerance, can
be achieved. One way to approach this requirement is to use atomic actions,
which have been shown [75] to increase the quality and reusability of code
and to reduce code complexity significantly. The activity of a group of com-
ponents constitutes an atomic action if no information flows between that
group and the rest of the system for the duration of the activity [76]. An
atomic action [77-79] is an action that is:

* Indivisible: Either all the steps in the atomic action complete or none
of them does, that is, the “all-or-nothing” property.

o Serializable: All computation steps that are not in the atomic action
either precede or succeed all the steps in the atomic action.

*  Recoverable: The external effects of all the steps in the atomic action
either occur or not; that is, either the entire action completes or no
steps are completed.

The property of atomicity guarantees that if an action successfully exe-
cutes, its results and the changes it made on shared data become visible for
subsequent actions. On the other hand, if a failure occurs inside of an action,
the failure is detected and the action returns without changes on shared data.
This enables easy damage containment and error handling, since the fault,
error propagation, and error recovery all occur within a single atomic action.
Therefore, the fault and associated recovery activities will not affect other
system activities. If the activity of a system can be decomposed into atomic
actions, fault tolerance measures can be constructed for each of the atomic
actions independently [80].

The “indivisibility” property of atomic actions may seem to imply that
an atomic action itself cannot have structure. However, an action can be
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composed of other actions that are not necessarily primitive operations.
These are called nested atomic actions [81]. Since a procedure (or operation or
method) may invoke other procedures, which may invoke other procedures,
and so on, we can naturally get a nested atomic action.

The structure of a nested action atomic cannot be visible from outside
the nested atomic action. A nested atomic action consists of subactions (not
visible from outside), which are seen as atomic actions to the other subac-
tions of the same action. That is, within the nested atomic action, each
subaction is an atomic action, and hence the structure of a subaction is not
visible to another subaction. This enables a safe method of supporting con-
currency within an action.

Although atomic actions were developed some time ago, few of the
mainstream programming languages or operating systems provide direct
support for atomic actions [82]. Supporting atomicity in a single process
environment is straightforward. Suppose we have an action, 4, that we wish
to execute atomically. Prior to beginning the execution of 4, checkpoint the
state of the system. If no failure occurs before the completion of 4’s execu-
tion, then the “all” part of the atomic action’s “all-or-nothing” property is
satisfied. If, however, a failure occurs prior to the completion of 4’s execu-
tion, then restore the checkpointed state. This removes the effects of &’s
partial execution and effectively satisfies the “nothing” part of the “all-or-
nothing” property.

In a distributed system, supporting atomic actions is more compli-
cated. Without proper coordination of concurrent data access, this access to
shared data by different processes can cause the system state to become
inconsistent. Some efforts to provide support for atomic actions in distrib-
uted systems are noted below.

 In Pact (the parallel acrions parallel programming environment),
atomic actions are used to achieve fully user-transparent fault toler-
ance with low run-time overhead [62].

» Wellings and Burns [83] show how atomic actions can be imple-
mented in Ada 95, and how they can be used to implement software
fault tolerance techniques.

* Avalon/C++ [84] takes advantage of inheritance to implement
atomic actions in object-oriented applications.
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* The Arjuna system [85] uses inheritance, in a manner similar to
Avalon/C++, and object extensions to implement atomic actions in
object-oriented applications.

We will examine Arjuna a bit more closely.
To implement atomic actions, the Arjuna toolkit requires the
following:

 Every object used within an atomic action must be recoverable;
that is, it must provide its own state preservation and recovery
operations.

» Each object is also required to state explicitly within the atomic
action when it is modified.

o All persistent objects are derived from a special class, LockManager,
which is known to the implementation of class AtomicAction
LockManager has two pure virtual functions, save_state  and
restore_state , which each subclass of LockManager is
required to define.

 To ensure that the state’s save and restore operations are invoked at
appropriate points during the atomic action, an object that is about
to modify itself must first acquire a write lock.

There are similarities between the Arjuna mechanism and the recursive defi-
nition of default copy operations provided by the C++ compiler itself [71],
described earlier.

The class declaration below [85] (boldface indicates keywords) shows
the important operations provided by the Arjuna AtomicAction  class. To
create an atomic action using Arjuna, one declares an AtomicAction
instance in the program and invokes the Begin operation. To create nested
atomic actions, declare multiple instances of the class so nesting occurs when
a Begin operation is invoked within the scope of another atomic action.
(Code and discussion from [85] are reproduced here with permission.)
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class  AtomicAction : public ~ StateManager
{

/I private instance variables

RecordList List;

protected: /I protected operations
PrepareOutcome Prepare();
void Commit();

public:
/I global class variable
static ~ AtomicAction *Current;
AtomicAction();
~AtomicAction();

virtual Action_Status Begin();
virtual Action_Status End();
virtual Action_Status Abort();

bool add(AbstractRecord*);
AtomicAction*Parent();

The following code [85] shows two atomic actions, one of which is com-
mitted (A) and the other aborted (B). Arjuna also supports nested concurrent
atomic actions, implemented by the class ConcurrentAtomicAction [85].

AtomicAction A, B;

A.Begin(); /I start of atomic action A
B.Begin(); /I start of atomic action B
B.Abort(); /I abortion of atomic action B

A.End(); /I commitment of atomic action A

The basic structure for state-based recovery using atomic actions in Arjuna is
illustrated in the pseudocode below (from [71]).
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for (each alternate)

{
AtomicAction A;
A.Begin();
try
{
alternate(object);
if ( accept(object) )
{
A.Commit();
return;
}
}
catch( ...)
{
A.Abort();
continue;
}
}

3.3 Dependable System Development Model and N-Version
Software Paradigm

As stated in the introduction to this chapter, developing dependable, critical
applications is not an easy task. The trend toward increasing complexity and
size, distribution on heterogeneous platforms, diverse accidental and mali-
cious origins of system failures, the consequences of failures, and the severity
of those consequences combine to thwart the best human efforts at develop-
ing these applications. In this section, we describe methods to assist in the
design and development of these critical, fault-tolerant software systems. In
doing so, the following topics are covered: design considerations, a develop-
ment model for dependable systems, and a design paradigm specific to NVP.

3.3.1 Design Considerations

This section provides a brief introduction to some of the design considera-
tions to be examined when developing fault-tolerant software. These issues
are primarily related to design diverse software fault tolerance techniques,
but are also useful to consider for other types of software fault tolerance
techniques.
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3.3.1.1 Component Selection

One of the first major decisions to make is to determine which software func-
tions or components to make fault tolerant. Specifications, simulation and
modeling, cost-effectiveness analysis, and expert opinion from those familiar
with the application and with software fault tolerance can be helpful in this
determination.

3.3.1.2 Level of Application of Fault Tolerance

One of the most important early decisions impacting the system architec-
ture is the level of fault tolerance application. There are two major questions
determining the level of application of fault tolerance: (1) At what level of
detail should one perform the decomposition of the system into components
that will be diversified? and (2) Which layers (application software, execu-
tive, hardware) must be diversified [86]?

Level of Decomposition/Granularity

While discussing checkpointing, we touched on this question. There is a
trade-off between large and small components, that is, the granularity of fault
tolerance application. Component size can be a determining factor in the
effectiveness and cost of a fault tolerance strategy. Small pieces of code enable
lower error latency and make decision algorithms simpler and more precise.
However, small components will increase the number of decision points,
which limits design diversity, since an increase in the frequency or number
of decisions requires the agreement of variants at a higher level of detail. A
smaller modular decomposition (i.e., smaller code segments between deci-
sion or checkpoints) increases execution overhead in decision making and
fault tolerance control.

Larger components favor diversity and higher variant independence.
In addition, larger components result in lower execution overheads because
of the lower frequency of executing the decision algorithm. However, larger
component size increases the error latency because of increased synchroni-
zation delays (e.g., for NVP or NSCP) or rollback distance (e.g., for ReB).
Having larger code segments between checkpoints and decisions may result
in a cursory decision mechanism that is incapable of localizing the errors that
occur.

Related to this decomposition/granularity decision is a lower-level
design issue regarding the placement of decision and recovery points within a
fault-tolerant section of code and the choice of the data upon which to per-
form decision making.
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What Layer(s) to Diversify/Extent of Diversity

As discussed in Chapter 2, diversity can be applied at several layers of the sys-
tem (e.g., the application software, executive software or operating system,
and hardware) and throughout the development effort (e.g., languages,
development teams and tools, and so on). Additional diversity is likely to
increase reliability, but must be balanced against cost and management of the
resulting diversity.

3.3.1.3 Technique Selection

Selection of which technique(s) to use is an important design consideration.
This decision can be helped by input from performance analysis, simulation
and modeling, cost-effectiveness analysis, design tools (e.g., [87]), and expert
opinion (again, from those familiar with the application (domain) and with
software fault tolerance). The information provided in Chapters 4—6 should
also be useful in making this decision.

3.3.1.4 Number of Variants

Not considering any economic impact, the number of variants to be pro-
duced for a given software fault tolerance method is directly related to the
number of faults to be tolerated [86]. There are, of course, both cost and per-
formance effects to consider. A larger number of variants should increase reli-
ability (if the number of related faults does not also increase). However, a
larger number of variants in a recovery block scheme will also increase the
execution time and cost. Similarly, in multiversion software (such as NVP),
an increase in the number of variants will result in higher development and
support costs.

3.3.1.5 Design Methodology

Using a design methodology that effectively considers dependable, fault-
tolerant software needs will assist in managing the complexities, realizing and
handling the design and development issues particular to fault-tolerant soft-
ware, and developing a dependable system. The guidance in the methodolo-
gies presented in the following sections can provide valuable assistance.

3.3.1.6 Decision Mechanism Algorithm

Selection of which DM to use is another important design consideration.
This selection can be helped by input from fault-handling simulation,
design tools (e.g., [87]), and expert opinion. The information provided
in Chapter 7 should also be useful in selecting an appropriate DM.
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3.3.1.7 Summary of Design Considerations

Little specific assistance is available to make the required decisions about
design, particularly since many of them are at least partially application-
dependent. However, cost and overhead information (such as that described
earlier in this chapter), performance analysis (such as that described in [63]),
design methodologies (e.g., those described in the next sections), and proto-
type design assistance tools (e.g., the Software Fault Tolerance Design Assis-
tant (SFTDA) [87]) provide valuable guidance and input to the necessary

decisions.

3.32 Dependable System Development Model

Given the complexity of computer-based critical software, the diversity of
faults to be handled by these systems, and the consequences and severity
of their failure, a systematic and structured design framework that integrates
dependability concerns and requirements at the early stages of (and through-
out) the development process is needed [88-90]. Software design faults are
recognized as the current obstacle to successful dependable systems develop-
ment [91]. Conventional development methods do not incorporate the
processes and key activities required for effective development of dependable
systems. To fill this need, Kaaniche, Blanquart, Laprie, and colleagues [91,
92] developed the dependability-explicit development model. The model
provides guidelines emphasizing the key issues to be addressed during the
main stages of dependable systems development [91, 92]. In this section, we
provide an overview of the development model’s key activities for the fault
tolerance process and refer the reader to the sources [91, 92] for additional
details and activities in other processes.

The dependability-explicit development model provides lists of key
activities related to system development phases. The requirements phase
begins with a detailed description of the system’s intended functions and
definition of the system’s dependability objectives. The following list
[91, 92] summarizes the key activities in the fault tolerance process for

this phase.

¢ Description of system behavior in the presence of failures:

Identification of relevant dependability attributes and necessary

trade-offs;

Failure modes and acceptable degraded operation modes;
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- Maximum tolerable duration of service interruption for each
degraded operation mode;

. Number of consecutive and simultaneous failures to be tolerated
for each degraded operation mode.

The main objective of the design phase is to define an architecture that
will allow the system requirements to be met. The following list [91, 92]
summarizes the key fault tolerance activities and issues for this phase.

¢ Description of system behavior in presence of faults:
- Fault assumptions (faults considered, faults discarded);
* System partitioning:
- Fault tolerance structuring: fault-containment regions, error-
containment regions;

- Fault tolerance application layers;

* Fault tolerance strategies:
- Redundancy, functional diversity, defensive programming, pro-
tection techniques and others;
* Error-handling mechanisms:

- Error detection, error diagnosis, error recovery;
* Fault-handling mechanisms:
- Fault diagnosis, fault passivation, reconfiguration;

¢ Identification of single points of failure.

The realization phase consists of implementing the system components
based on the design specification. Below is a summary of the key fault toler-
ance process activities for the implementation or realization phase [91, 92].

¢ Collect the number of faults discovered during this stage:
- Use as indicator of component dependability;

- Use to identify system components requiring reengineering.

The integration phase consists of assembling the system components
and integrating the system into its environment to make sure that the final
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product meets its requirements. Following is a summary of the key fault tol-
erance activities for the integration phase [91, 92].

¢ Verification of integration of fault and error processing mechanisms:

Use analysis and experimentation to ensure validated fault-
tolerant subsystems satisfy dependability requirements when inte-
grated;

Use fault injection (multiple and near-coincident faults);

¢ Evaluate fault tolerance mechanisms’ efficiency;

* Estimate fault tolerance mechanism coverage—fault injection
experiments.

The dependability-explicit development model is provided to ensure
that dependability related issues are considered at each stage of the develop-
ment process. The model is generic enough to be applied to a wide range of
systems and application domains and can be customized as needed. Since the
key activities and guidelines of the model focus on the nature of activities to
be performed and the objectives to be met, they can be applied regardless of
which development methods are used.

3.3.3 Design Paradigm for N-Version Programming

Although the NVP technique is presented in Section 4.2, we describe in this
section a design paradigm for NVP because it contains guidelines and rules
that can be useful in the design of many software fault tolerance tech-
niques. It is generally agreed that a high degree of variant independence
and a low probability of failure correlation are vital to successful operation of
N-version software (NVS). This requires attaining the lowest possible prob-
ability that the effects of similar errors in the variants will coincide at
the DM. The design paradigm for NVP was developed and refined by Lyu
and Avizienis [93-96] to achieve these goals. Hence, the objectives of the
design paradigm, as stated in [96] are:

* To reduce the possibility of oversights, mistakes, and inconsistencies
in the process of software development and testing;

* To eliminate most perceivable causes of related design faults in the
independently generated versions of a program, and to identify
causes of those that slip through the design process;
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 To minimize the probability that two or more versions will produce
similar erroneous results that coincide in time for a decision (con-
sensus) action of the N-version executive (NVX).

The design paradigm for NVP is illustrated in Figure 3.7 [96]. As
shown, it consists of two groups of activities. On the left side of the figure are
the standard software development activities. To the right are the activities
specifying the concurrent implementation of NVS. Table 3.4 summarizes
the NVS design paradigm’s activities and guidelines incorporated into the
software development life cycle. (The table was developed by combining
information found in [95] (the table structure and initial entries) and [96]
(updated information on the refined paradigm). For more detail on the
paradigm and a discussion of the associated issues, the reader is referred

to [95, 96].

3.4 Summary

This chapter presented software fault tolerance problems and issues, pro-
gramming techniques, and design and development considerations and
models. The advantages of software fault tolerance are accompanied by dis-
advantages, issues to consider, and costs. Those common to most tech-
niques were covered here. We covered perhaps the greatest bane of design
diversity—similar errors. If these are not avoided then software fault
tolerance techniques based on design diversity will not be effective. Other
issues and potential problems to be considered were covered, including the
CCP with FPA applications, the domino effect in backward recovery,
and overhead (not just cost, but time, operation overhead, redundancy, and
memory).

Then, to help in development, we described several programming
methods that are used by several software fault tolerance techniques. These
include assertions (that can be used by fault tolerant or non-fault-tolerant
software), checkpointing (typically used in techniques employing backward
recovery), and atomic actions (also used in non-fault-tolerant software, but
presented here in reference to concurrent systems).

Backing out the scope, we then present methods to assist in the design
and development of critical, fault-tolerant software systems. Design consid-
erations, a development model for dependable systems, and a design para-
digm specific to NVP are presented.
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Figure 3.7 Design paradigm for N-version programming. (Source: [96], © 1995 John
Wiley and Sons. Reproduced with permission.)
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Table 3.4

N-Version Programming Design Paradigm Activities and Guidelines

Software Life Enforcement of
Cycle Phase  Fault Tolerance

Design Guidelines and Rules

System Determine method
requirement of NVS supervision

Software Select software

requirement design diversity
dimensions

Software Install error

specification detection and
recovery algorithms

Design and Conduct NVS

coding development
protocol

Testing Exploit presence of
NVS

Evaluationand  Assess the

acceptance dependability of
NVS
Operational Choose and

implement an NVS
maintenance policy

1. Choose NVS execution method and allocate required
resources

2. Develop support mechanisms and tools
3. Select hardware architecture

1. Assess random diversity versus required diversity
2. Evaluate required design diversity
3. Specify diversity under application constraints

1. Specify the matching features needed by NVX
2. Avoid diversity-limiting factors

3. Diversify the specification

1. Impose a set of mandatory rules of isolation

2. Define a rigorous communication and documentation
protocol

3. Form a coordinating team

1. Support for verification procedures

2. Opportunities for back-to-back testing

1. Define NVS acceptance criteria
2. Assess evidence of diversity
3. Make NVS dependability predictions

1. Assure and monitor NVX functionality
2. Follow the NVP paradigm for NVS modification

This chapter has focused on issues that are fairly common across soft-
ware fault tolerance techniques. In the following Chapters 4, 5, and 6, we
examine individual techniques, including technique-specific issues.
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