
1. Reflection and Refraction
of Spherical Waves

Our previous book [1.1] was completely focused on the problem of plane and
quasi-plane waves in layered media. In the theory of acoustic wave propaga-
tion, however, it is important to take into account that the sound source is
located at a finite distance from the receiver as well as from the boundaries.
The most simple example of this is the classical problem about the field of
a point source in the presence of an interface between two homogeneous me-
dia. In other words, it is a problem of spherical wave reflection and refraction.
For electromagnetic waves this was first considered by A. Sommerfeld [1.2].
Later, fundamental works by H. Weyl, H. Ott, V. Fock, M. Leontovich, A.
Baños [1.3–7] appeared. Below we shall follow mainly our own works [1.8–11]
which are the further development of Weyl’s idea of the representation of a
spherical wave as a superposition of plane waves. Using the same techniques,
the more difficult problem of the bounded wave beam reflection can be solved
as well.

Below we shall consider reflection and refraction of acoustical waves at
an interface of two fluids, including moving ones. Analogous problems for
fluid–solid as well as two solid halfspace interfaces have also been considered
[Refs. 1.12, Chap. 3; 1.13, Sect. 24; 1.14–21 and others]. The reader can find
a more complete bibliography on spherical wave reflection and refraction at
solid–solid and fluid–solid interfaces in the monographs [1.12, 15, 22, 23].

1.1 Integral Representation of the Sound Field

The main difficulty of the problem of spherical wave reflection and refraction
at a planar interface is due to the difference in the symmetry of the wave
and the interface – the latter is planar whereas the wave is spherical. It is
natural therefore to solve the problem by representing the spherical wave as
a superposition of plane waves, the reflection and refraction of which were
discussed thoroughly in our first book [1.1].

The sound pressure in divergent spherical waves with arbitrary time de-
pendence is given by

p = R−1F (R/c− t) , R =
√
x2 + y2 + z2 , (1.1.1)
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where F is an arbitrary smooth function and R is the distance between
the observation point and the origin, where we have temporarily placed the
source at an arbitrary location. In the case of a monochromatic wave F (τ) =
const · exp(iωτ), τ ≡ R/c− t. Omitting the arbitrary constant and the factor
exp(−iωt) we obtain the expression for a spherical wave p = R−1 exp(ikR),
where k = ω/c is the wave number.

At the plane z = 0, the field of the spherical wave is r−1 exp(ikr), r ≡
(x2 + y2)1/2. Let us represent this field as a two-fold Fourier integral in the
coordinates x and y:

exp(ikr)
r

=

+∞∫∫
−∞

A(ξ1, ξ2) exp[i(ξ1x+ ξ2y)]dξ1dξ2 ,

where

A(ξ1, ξ2) =

+∞∫∫
−∞

dxdy

4π2r
exp[i(kr − ξ1x− ξ2y)] . (1.1.2)

We introduce the polar coordinates

ξ1 = ξ cosψ , ξ2 = ξ sinψ , ξ = (ξ21 + ξ22)1/2 ; x = r cosϕ , y = r sinϕ .

Then

(2π)2A(ξ1, ξ2) =
∫ 2π

0
dϕ

∫ ∞

0
exp[ir(k − ξ cos(ψ − ϕ))]dr

= i
∫ 2π

0

dψ1

k − ξ cosψ1
, ψ1 ≡ ϕ− ψ . (1.1.3)

We assume that some (may be infinitely small) absorption exists in the
medium, hence Im{k} > 0 and exp(ikr) → 0 at r → ∞. The integral in
(1.1.3) can be found in standard tables which give

A(ξ1, ξ2) = i
(
2π

√
k2 − ξ2

)−1
and finally :

exp(ikr)
r

=
i

2π

+∞∫∫
−∞

exp [i (ξ1x+ ξ2y)]
dξ1dξ2
µ

,

µ ≡
√
k2 − ξ2 , Im {µ} ≥ 0 .

(1.1.4)

The last expression describing the field at the plane z = 0 may be ex-
tended into the whole space. Each Fourier component gives rise to a plane
wave in the space. Formally, it is sufficient for such a “continuation” to add
the term ±iµz in the exponent in the integrand. The plus (minus) sign corre-
sponds to observation points in the halfspace z > 0 (z < 0) and to the waves
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propagating in the positive (negative) z-direction. At ξ > k the plane wave is
inhomogeneous. The condition Im {µ} ≥ 0 ensures boundedness of the field
at |z| → ∞. Hence,

exp(ikR)
R

=
i

2π

+∞∫∫
−∞

exp [i (ξ1x+ ξ2y + µ|z|)] dξ1dξ2
µ

, Im {µ} ≥ 0. (1.1.5)

The validity of this continuation is based on the fact that the right hand side
of the last expression satisfies the wave equation (since it is satisfied by the
integrand) and gives the correct value for the field at z = 0.

Equation (1.1.5) is the expansion of a spherical wave into plane waves.
The exponent in the integrand represents a plane wave propagating in the
direction given by the components ξ1, ξ2, µ sgn z of the wave vector. Note
that the direction of the coordinate axes can be chosen arbitrarily. Hence,
a spherical wave can be expanded into plane waves in such a way that the
inhomogeneous waves entering into the expansion are attenuated not in the
z-direction, but in any other direction desired.

We have considered the case of a harmonic spherical wave. Analogous
expansion of a spherical wave of general kind (1.1.1) is given in [1.24]. It
appears also that the field of concentrated source in some local regions can
be represented as a superposition of only homogeneous plane waves [1.25].
In this case, in the integrand a generalized function of ξ1 and ξ2 is present
instead of 1/µ.

Let a spherical wave be radiated at the point S at a distance z0 from
the interface between two homogeneous fluid halfspaces. We assume that the
origin of the rectangular coordinates is located at the interface below the
source (Fig. 1.1). The plane wave expansion of the spherical wave incident
upon the interface will be written in the form of (1.1.5) where in place of
z we now have z − z0. At z ≥ 0 the total field is the sum of incident and
reflected waves:

p(r, z, z0) = R−1 exp(ikR) + pr , R = [(z − z0)2 + r2]1/2 . (1.1.6)

Now our task is the analysis of the reflected wave pr.
Each of the plane waves in the integrand in (1.1.5) acquires the phase

ξ1x+ξ2y+µ(z+z0) when traveling from the source to the interface and then
to the point of observation. In addition, the amplitude of each plane wave
must be multiplied by the reflection coefficient [Ref. 1.1, Eq. (2.2.13)].

V = (m cos θ − n cos θ1)/(m cos θ + n cos θ1) , (1.1.7)

where θ and θ1 are incidence and refraction angles, respectively, so that ξ =
k sin θ = k1 sin θ1; m = %1/%, n ≡ c/c1, where %(%1) and c(c1) are the density
and sound velocity in the upper (lower) medium. Now we obtain for the
reflected wave
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pr =
i

2π

+∞∫∫
−∞

dξ1dξ2
µ

V (ξ) exp [i (ξ1x+ ξ2y + µ(z + z0))] , (1.1.8)

where the reflection coefficient is represented as a function of ξ. Note that V
depends only on the modulus ξ = |ξ|. It is reasonable then to use the polar
coordinates (1.1.2) and while integrating over ψ to use the identity [Ref. 1.25,
Chap. 9]

∫ 2π

0
exp[iu cos(ϕ− ψ)]dψ = 2πJ0(u) ,

where J0(u) is the zero order Bessel function. Now we obtain from (1.1.8)

pr = i
∫ ∞

0

ξdξ

µ
V (ξ)J0(ξr) exp[iµ(z + z0)] . (1.1.9)

The right hand sides of (1.1.5, 8) are often called Weyl integrals whereas
the right hand side of (1.1.9) is referred to as the Sommerfeld integral. When
r 6= 0 it is reasonable to transform the latter, taking into account the relations
J0(u) = 0.5[H(1)

0 (u) − H
(1)
0 (eiπu)] [Ref. 1.26, Chap. 9] and µ(−ξ) = µ(ξ),

V (−ξ) = V (ξ). Combining integrals from H
(1)
0 (u) and H

(1)
0 (−u) in (1.1.9)

into one integral, we obtain

pr =
i
2

∫ +∞

−∞

ξdξ

µ
V (ξ)H(1)

0 (ξr) exp[iµ(z + z0)] . (1.1.10)

Integral representation of the sound field in the lower medium (z < 0) can
be constructed analogously. We obtain

p =
i
2

∫ +∞

−∞
H

(1)
0 (ξr) exp[i(µz0 − µ1z)]W (ξ)

ξdξ

µ
,

µ1 =
√
k2
1 − ξ2 , Im {µ1} ≥ 0 ,

(1.1.11)

whereW is the transmission coefficient for a plane wave [Ref. 1.1, Eq. (2.2.18)]:

W = 2m cos θ/(m cos θ + n cos θ1) = 2m cos θ/(m cos θ

+
√
n2 − sin2 θ) . (1.1.12)

By using the appropriate reflection coefficient V (ξ), one can apply (1.1.10)
for the calculation of a wave reflected from an arbitrarily layered halfspace.
Note that according to (1.1.10) pr depends only on the sum z0 + z of the
heights of the source and receiver over the boundary but not on each of
them separately. It is important also that if V ≡ V0 = const [for example,
at reflection from absolutely rigid (V = 1) or pressure release (V = −1)
boundaries] it follows from (1.1.6, 8) that
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Fig. 1.1 Spherical wave reflection and
refraction. S is the source, S1 is the
fictitious source, P and P1 are obser-
vation points

pr = V0R
−1
1 exp(ikR1) ; R1 ≡ [(z + z0)2 + r2]1/2 . (1.1.13)

A reflected wave can be treated, in this case, as a wave emitted by the ficti-
tious (“image”) source S1 located in the lower medium (Fig. 1.1). The points
S and S1 are located symmetrically with respect to the boundary at z = 0.

1.2 Reflected Wave

Consider the sound field in the upper medium and assume that the distance
R1 from the “image” source S1 is large compared to the wavelength. We
shall begin with the integral expansion (1.1.10) and follow mainly works
[1.8, 10, 11, 27]. Let us use the asymptotic expansion of the Hankel function
[Ref. 1.26, Chap. 9]

H
(1)
0 (u) =

(
2
πu

)1/2

exp
[
i
(
u− π

4

)] [
1 − i

8u
+O(u−2)

]
,

− π < arg u < 2π .

(1.2.1)

The integration variable ξ in (1.1.10) we replace with q = ξ/k = sin θ, where θ
is the angle of incidence of the corresponding plane wave. To take into account
the energy dissipation in the medium we assume that the wave number k is
complex. Now (1.1.10) can be written down as

pr =
(

k

2πr

)1/2

exp
(

iπ
4

) ∫ +∞ exp(−iα)

−∞ exp(−iα)
F (q) exp[|kR1|f(q)]dq , (1.2.2)

where a ≡ exp(iα) ≡ k/|k|,
f(q) = ia[q sin θ0 + (1 − q2)1/2 cos θ0] , θ0 = arcsin (r/R1) , (1.2.3)
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F (q) =
√

q

1 − q2
V

[
1 − i

8krq
+O

(
1

k2r2

)]
=

√
q

1 − q2

×
[
1 − i

8krq
+O

(
1

k2r2

)]
m

√
1 − q2 −

√
n2 − q2

m
√

1 − q2 +
√
n2 − q2

. (1.2.4)

In the case of a nonabsorbing medium (k real) a = 1. The inequality 0 ≤
α < π/4 is valid since the real and imaginary parts of k2 are positive. In the
lower medium k1 = nk = an|k|. Hence we have 0 ≤ arg (an) < π/4 at any
value of the refraction index in an absorbing medium.

Since we have assumed kR1 � 1, it is reasonable to treat the integral
in (1.2.2) by the method of steepest descent (also called the saddle point
method or the passage method) described in Appendix A. Equation (A.1.1)
for the saddle point qs has a single solution qs = sin θ0. At this point we
have f(qs) = ia, f ′′(qs) = −ia/ cos2 θ0. The passage path or path of steepest
descent γ1 is specified by (A.1.3):

q sin θ0 + (1 − q2)1/2 cos θ0 = 1 + is2/a , −∞ < s < ∞ . (1.2.5)

It is easy to verify that at infinity the path γ1 asymptotically approaches the
rays q = |q| exp[i(θ0 − α)] and q = |q| exp[i(π − θ0 − α)]. It crosses the real
axis q at two points. The first is the saddle point qs, the second lies to the
right of the point q = 1/ sin θ0 and approaches it when α → 0 (Fig. 1.2).

Fig. 1.2 Transformation of an initial
integration path to the path of steep-
est descent γ1. The cuts are shown by
lines with transverse strokes


