
Preface

This Edited Volume is based on a workshop on “Mathematical and Physical As-
pects of Quantum Gravity” held at the Heinrich-Fabri Institute in Blaubeuren
(Germany) from July 28th to August 1st, 2005. This workshop was the succes-
sor of a similar workshop held at the same place in September 2003 on the issue
of “Mathematical and Physical Aspects of Quantum Field Theories”. Both work-
shops were intended to bring together mathematicians and physicists to discuss
profound questions within the non-empty intersection of mathematics and physics.
The basic idea of this series of workshops is to cover a broad range of different
approaches (both mathematical and physical) to a specific subject in mathemati-
cal physics. The series of workshops is intended, in particular, to discuss the basic
conceptual ideas behind different mathematical and physical approaches to the
subject matter concerned.

The workshop on which this volume is based was devoted to what is com-
monly regarded as the biggest challenge in mathematical physics: the “quantiza-
tion of gravity”. The gravitational interaction is known to be very different from
the known interactions like, for instance, the electroweak or strong interaction
of elementary particles. First of all, to our knowledge, any kind of energy has a
gravitational coupling. Second, since Einstein it is widely accepted that gravity
is intimately related to the structure of space-time. Both facts have far reaching
consequences for any attempt to develop a quantum theory of gravity. For in-
stance, the first fact questions our understanding of “quantization” as it has been
developed in elementary particle physics. In fact, this understanding is very much
related to the “quantum of energy” encountered in the concept of photons in the
quantum theory of electromagnetism. However, in Einstein’s theory of gravity the
gravitational field does not carry (local) energy. While general relativity is a local
theory, the notion of gravitational energy is still a “global” issue which, however,
is not yet well-defined even within the context of classical gravity. The second fact
seems to clearly indicate that a quantum theory of gravity will radically chance
our ideas about the structure of space-time. It is thus supposed that a quantum
version of gravity is deeply related to our two basic concepts: “quantum” and
“space-time” which have been developed so successfully over the last one-hundred
years.

The idea of the second workshop was to provide a forum to discuss differ-
ent approaches to a possible theory of quantum gravity. Besides the two major
accepted roads provided by String Theory and Loop Quantum Gravity, also other
ideas were discussed, like those, for instance, based on A. Connes’ non-commutative
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geometry. Also, possible experimental evidence of a quantum structure of gravity
was discussed. However, it was not intended to cover the latest technical results
but instead to summarize some of the basic features of the existing ansätze to for-
mulate a quantum theory of gravity. The present volume provides an appropriate
cross-section of the discussion. The refereed articles are written with the intention
to bring together experts working in different fields in mathematics and physics
and who are interested in the subject of quantum gravity. The volume provides
the reader with some overview about most of the accepted approaches to develop
a quantum gravity theory. The articles are purposely written in a less technical
style than usual and are mainly intended to discuss the major questions related
to the subject of the workshop.

Since this volume covers rather different perspectives, the editors thought
it might be helpful to start the volume by providing a brief summary of each of
the various articles. Obviously, such a summary will necessarily reflect the editors’
understanding of the subject matter.

The volume starts with an overview, presented by Claus Kiefer, on the main
roads towards a quantum theory of relativity. The chapter is nontechnical and
comprehensibly written. The author starts his article with a brief motivation why
there is a need to consider a quantum theory of gravity. Next, he discusses several
aspects of the different approaches presented in this volume. For instance, he con-
trasts background independent approaches with background dependent theories.
The chapter closes with a brief summary of some of the main results obtained so
far to achieve a quantum version of gravity.

In the second article Claus Lämmerzahl reports on the experimental status
of quantum gravity effects. On the one hand, gravity is assumed to be “universal”.
On the other hand, quantum theory is regarded as being “fundamental”. As a con-
sequence, one should expect that a quantum theory of gravity will yield corrections
to any physical process. Recent experiments, however, confirm with high precision
the theory of relativity and quantum theory. Nonetheless, the author indicates how
astrophysical as well as laboratory and satelite experiments may be improved in
accuracy so that possible quantum gravity effects could be observed not too far in
the future. Lämmerzahl describes at which scales and parameter ranges it could
be more promising to push forward experimental efforts. The article closes with
a discussion on recent proposals to increase experimental accuracy. A wealth of
information is presented in a very readable style.

In their contribution the authors Alfredo Macias and Hernando Quevedo
review in a very precise and compelling way the role of time in the process of
(canonical) quantization. They discuss different approaches to solve the so-called
“time paradox”. The different conclusions drawn from their analysis imply that,
after 70 years of attempts to quantize gravity, the fundamental “problem of time”
is still an unresolved and fascinating issue.
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In the search for quantum gravity the approach proposed by Louis Kauffman
assumes non-commutative variables. In his contribution the author considers a
non-commutative description of the world from an operational point of view. He
introduces in a fascinating and straightforward approach a differential calculus that
permits rephrasing some of the most basic notions known from classical differential
geometry without the use of smooth manifolds. This includes, especially, the notion
of Riemannian curvature, which is less simple to algebraically rephrase than the
notion of Yang-Mills curvature of ordinary gauge theories. The discussion presented
in this article should be contrasted with the contributions by Majid and Paschke
as well as with the ideas presented by Grosse and Wulkenhaar concerning a non-
commutative quantum field theory.

In contrast to the approach by Kauffman, the contribution to this volume by
Shahn Majid uses the framework of Hopf algebras and (bi)covariant calculi on the
former to address the problem of quantum gravity within an elaborated algebraic
framework. The author starts by presenting the basic mathematical material in
order to afterwards discuss a whole series of examples. These examples provide
the reader with an introduction to a possible quantum theory of gravity on finite
sets. The outlook of the article addresses further generalizations toward a purely
functorial setting and a statement about the author’s viewpoint on why this is
needed to put quantum theory and gravity into a single framework. The author
concludes his contribution with a number of remarks concerning some links to
several other contributions of this volume.

Group field theory is an elaborated extension of Penrose’s spin networks
and spin foams. Daniele Oriti critically describes the challenges and achievements
of group field theory. It seems possible that this way of generalized loop quan-
tum gravity provides a richer framework that permits to handle problems like the
Hamiltonian constraint. The author puts emphasis on the viewpoint that group
field theory should be regarded as being a theoretical framework of its own.

Alain Connes’ non-commutative geometry may provide an alternative ap-
proach to a quantum theory of gravity. In his contribution Mario Paschke gives
an overview on the present status of this approach. The author focusses his at-
tention on the role of the so-called “spectral action”. In particular, he critically
discusses the need to extend non-commutative geometry to Lorentzian signature
and to study globally hyperbolic spectral triples. This viewpoint may provide a
Lorentzian covariant and hence a more physically convincing approach to a non-
commutative generalization of gravity. In this respect the article is closely related
to the ideas concerning a covariant description of a perturbative quantum field
theory as it is proposed by Brunetti and Fredenhagen in the next contribution.

Romeo Brunetti and Klaus Fredenhagen propose a certain background inde-
pendent axiomatic formulation of perturbative quantum gravity. This formulation
is based on a functorial mapping from the category of globally hyperbolic mani-
folds to the category of ∗ -algebras. As explained in some details, the axioms for
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this functor are physically well motivated and permit to consider a quantum field
as a fundamental local observable.

A major question of interest is the study of representations of the diffeomor-
phism group for any diffeomorphism invariant theory, like general relativity. In
the case of globally hyperbolic space-times, these representations are related to
the topology of spatially closed orientable 3-manifolds. One expects that a quan-
tum theory of gravity would yield a super-selection structure that is induced by
the topology of the classical (limiting) space. In his contribution to this volume,
Domenico Giulini provides a well written introduction to this fascinating topic.
He puts emphasis on a geometrical understanding of the mapping-class group of
3-manifolds and includes many illuminating pictures for illustration.

Next, Christian Fleischhack studies uniqueness theorems in loop quantum
gravity analogous to the famous Stone – von Neumann theorem of ordinary quan-
tum mechanics that guarantees the unitary equivalence of all the irreducible repre-
sentations of the Heisenberg algebra. Due to the tremendously more complicated
configuration space of loop quantum gravity, it is of utmost importance to know
whether different quantization schemes may give rise to different physical pre-
dictions. Fleischhack’s discussion of two uniqueness theorems proves that, under
certain technical assumptions, an almost unique quantization procedure can be
obtained for Ashtekar’s formulation of a quantum gravity.

String theory is known to naturally include a spin-two field. When quantized,
this field is commonly interpreted as graviton analogous to the photon in quantum
electrodynamics. A basic object in any string theoretical formulation of a quan-
tum theory of gravity plays the partition function defined in terms of appropriate
functional integrals. A perturbative evaluation of the partition functions yields
topological invariants of the background manifolds under consideration. Kishore
Marathe discusses several aspects of the interplay between topological quantum
field theory and quantum gravity. For instance, he discusses the Jones polynomial
and other related knot invariants of low-dimensional smooth manifolds.

A rather different route to quantum gravity is proposed by Felix Finster. His
“principle of the fermionic projector” summarizes the idea to start the formulation
of a quantum theory of gravity from a set of points, a certain set of projectors re-
lated to these points and a discrete variational principle. The author summarizes
the basic ideas how gravity and the gauge theory may be formulated within the
framework presented in his contribution. Contrary to the common belief, the au-
thor considers locality and causality as fundamental notions only in the continuum
limit of “quantum space-time”.

Black holes are models of actual astrophysical effects involving strong gravi-
tational fields. Hence, black holes are optimally suited as a theoretical laboratory
for quantum gravity. In his article, Thomas Mohaupt deals with a string theo-
retical approach to black hole physics. The usual black hole quantum theory is
heuristic and needs to be supported by a microscopic (statistical) theory. Formal



Preface xv

arguments from string theory permit possible scenarios to construct densities of
states that give rise to a statistical definition of entropy. Furthermore, Mohaupt’s
article demonstrates how effects even next to the leading order can be given a
satisfactory explanation by the identification of different statistical ensembles.

Quantum mechanics originated in the attempt to understand experimental
results which were in sharp contrast with Maxwell’s electrodynamics. In this re-
spect, one of the most crucial experimental effects was what is called today the
“photon electric effect”. Together with the black body radiation, the photon elec-
tric effect may be considered as the birth of the idea of the “quantum of (electro-
magnetic) energy”. This idea, in turn, is known to have been fundamental for the
development of the quantum theory of Maxwell’s electrodynamics. The authors
Tekin Dereli and Robin W. Tucker start out from the question of whether there
is a similar effect related to the “quantum of gravitational energy”. Analogous to
electrodynamics one may look for a Hamiltonian that incorporates the energy of
the classical gravitational field. In Einstein’s theory of gravity this is known to be
a non-trivial task. For this the authors introduce a different Lagrangian density
which includes additional degrees of freedom and from which they derive an en-
ergy momentum tensor of the gravitational field. Moreover, the authors discuss
specific gravitational (plane) wave like solutions of their generalized gravitational
field equations which may be regarded as being similar to the electromagnetic
plane waves in ordinary electromagnetism.

General relativity is known to be a perturbatively non-renormalizable theory.
Such a theory needs the introduction of infinitely many free parameters (“counter
terms”), which seems to spoil any predictive power of the corresponding quantum
theory. Using the renormalization group Oliver Lauscher and Martin Reuter dis-
cuss the existence of non-Gaussian fixed points of the renormalization group flow
such that the number of counter terms can be restricted to a finite number. Such
a scenario can be obtained from numerical techniques called “asymptotic safety”.
Employing techniques from random walks one can show that a scale dependent
effective theory which probes the nature of space-time on that particular scale can
be obtained. The renormalization group trajectories permit discussing space-time
properties on changing scales. While for large scales a smooth four dimensional
manifold occurs, at small scales a fractal space-time of dimension two is obtained.
Similar results are obtained using the idea of numerical dynamical triangulation
which has been introduced by other groups.

The idea to change the structure of space-time at small distances in order
to cure divergence problems in ordinary quantum field theory was introduced by
Heisenberg and Schrödinger and was firstly published by Snyder. Recent devel-
opments concerning D-branes in string theory also support such a scenario. Yet
another approach to a not point-like structure of space-time has been introduced
by Dopplicher, Fredenhagen and Roberts in the 1990’s. It is based on the idea
to also obtain an uncertainty principle for the configuration space similar to the
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known phase space uncertainty of ordinary quantum mechanics. Harald Grosse
and Raimar Wulkenhaar close this volume by a summary of their pioneering work
on the construction of a specific model of a renormalizable quantum field theory
on such a so-called “ θ−deformed” space-time. They also describe the relation of
their model to multi-scale matrix models.
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