

PHYSICAL AND NON-PHYSICAL METHODS OF SOLVING CRYSTAL STRUCTURES

PHYSICAL AND NON-PHYSICAL METHODS OF SOLVING CRYSTAL STRUCTURES

MICHAEL WOOLFSON AND FAN HAI-FU

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521412995

© Cambridge University Press 1995

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1995
This digitally printed first paperback version 2005

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Woolfson, M. M.

Physical and non-physical methods of solving crystal structures / Michael Woolfson and Fan Hai-fu.

p. cm. ISBN 0 521 41299 4

 X-ray crystallography – Technique. I. Fan, Hai-fu. II. Title. QD945.W59 1995
 548'.83-dc20 94-8254 CIP

> ISBN-13 978-0-521-41299-5 hardback ISBN-10 0-521-41299-4 hardback

ISBN-13 978-0-521-01938-5 paperback ISBN-10 0-521-01938-9 paperback

Contents

	Preface	<i>page</i> xi
1	The basics of X-ray diffraction theory	1
	1.1 Forming an image	1
	1.2 Scattering from a periodic object	1
	1.3 Scattering from a non-periodic object	5
	1.3.1 A single point scatterer	5
	1.3.2 A distribution of point scatterers	6
	1.3.3 Scattering from a continuous distribution	7
	1.4 Scattering of X-rays from atoms	9
	1.4.1 Scattering from a point electron	9
	1.4.2 Scattering from an isolated atom	10
	1.5 X-ray diffraction from crystals	12
	1.5.1 The reciprocal lattice	12
	1.5.2 The structure-factor equation	17
	1.5.3 Factors affecting observed intensities	18
	1.5.4 The electron density equation	23
	1.6 The symmetry of crystals	25
	1.6.1 The crystal lattice	25
	1.6.2 Symmetry elements	25
	1.6.3 Space groups	29
	1.7 Methods of solving crystal structures	32
2	The Patterson and heavy-atom methods	34
	2.1 The Patterson function	34
	2.1.1 The basic theory	34
	2.1.2 Parallel vectors and heavy atoms	36
	2.1.3 Space-group-dependent vectors	40

vi		Contents	
		2.1.4 Overlap methods	44
		2.1.5 Rotation and translation functions	53
	2.2	The heavy-atom method	57
		2.2.1 Wilson statistics	57
		2.2.2 The heavy-atom method; the centrosymmetric	0.
		structure	61
		2.2.3 The heavy-atom method; the non-centrosymmetric	
		structure	63
3	Dir	ect methods	66
	3.1	Introduction to direct methods	66
		3.1.1 The basis of direct methods	66
		3.1.2 Unitary and normalised structure factors	68
	3.2	Inequality relationships	69
		3.2.1 Harker–Kasper inequalities	69
		3.2.2 Determinant inequalities	73
	3.3	Structure invariants and seminvariants	75
		3.3.1 Structure invariants	75
		3.3.2 Structure seminvariants	78
		3.3.3 Selecting the origin and enantiomorph	81
	3.4	Sign and phase relationships	83
		3.4.1 Sayre's equation and sign relationships	83
		3.4.2 General phase relationships	87
		3.4.3 Other relationships between phases	90
	3.5	The application of direct methods	92
		3.5.1 The symbolic-addition method	92
		3.5.2 Other ways of using symbols	96
		3.5.3 MULTAN	102
		3.5.4 Other strategies	108
		3.5.5 SAYTAN	112
		3.5.6 The SIR approach	115
		3.5.7 SHELXS-86 and phase annealing	117
4		basics of isomorphous replacement and anomalous	
		cattering	121
	4.1	The isomorphous replacement method	121
		4.1.1 Isomorphous structures	121
		4.1.2 Isomorphous replacement for centrosymmetric	
		structures	123
		4.1.3 Single isomorphous replacement (SIR) for non-	
		centrosymmetric structures: the phase ambiguity	125

		Contents	vii
		4.1.4 SIR for non-centrosymmetric structures: finding the	
		replaced atoms	127
		4.1.5 SIR for non-centrosymmetric structures: a	
		probabilistic approach to phase estimation	127
		4.1.6 SIR for non-centrosymmetric structures: the double	
		phase synthesis	129
		4.1.7 The multiple isomorphous replacement method for	
		non-centrosymmetric structures	132
	4.2	The anomalous scattering method	134
		4.2.1 The phenomenon of anomalous scattering	134
		4.2.2 Anomalous scattering and Friedel's law	139
		4.2.3 Anomalous scattering and the phase ambiguity	140
		4.2.4 Determination of the positions of the anomalous	
		scatterers	142
	4.3	Assessing the quality of solutions for proteins	144
5	Fur	ther aspects of the isomorphous replacement method	146
		Introduction	146
	5.2	Resolving the SIR phase ambiguity in real space: Wang's	
		solvent-flattening method	146
	5.3	Resolving the ambiguity in reciprocal space: a general	
		review	148
		5.3.1 Algebraic methods	150
		5.3.2 Integration of direct methods with SIR data	153
		5.3.3 Combining direct methods with macromolecular	
		methods	157
6	Use	of anomalous scattering data	167
	6.1	Introduction	167
	6.2	Combining anomalous scattering with isomorphous	
		replacement	169
	6.3	Multi-wavelength anomalous scattering	170
	6.4	One-wavelength anomalous scattering	172
		6.4.1 Phase ambiguity resolved by using heavy-atom	. = 0
		information	172
		6.4.2 The algebraic method	173
		6.4.3 Integration of direct methods with OAS data	174
		6.4.4 Wang's method	176
		6.4.5 Phase ambiguity resolved by direct methods	177
		6.4.6 Phase ambiguity resolved by Wilson statistics	179
		6.4.7 Use of P_s -function related methods	181

viii		Contents	
	6.5	Developments in multi-wavelength anomalous scattering	
		methods	188
		6.5.1 The MAD technique	188
		6.5.2 Refining observed magnitudes with multi-	
		wavelength data	190
		6.5.3 The AGREE method	192
		6.5.4 The ROTATE method	198
	6.6	Conclusions concerning anomalous scattering methods	199
7	Pha	ase extension and refinement	202
	7.1	Introduction	202
	7.2	Fragment development	202
		7.2.1 Recycling methods	202
		7.2.2 Tangent refinement applied to difference structure factors	205
	7.3	Phase extension from real to imaginary parts of structure factors	208
	7 4	Phase extension from one reflection subset to the others	209
	/. -	7.4.1 Direct methods for superstructures	212
		7.4.2 Direct methods for incommensurate modulated structures	214
		7.4.3 Direct methods for composite structures	221
	7.5	Phase extension based on electron micrographs	221
		7.5.1 Image deconvolution	222
		7.5.2 Resolution enhancement by phase extension	226
	7.6	Phase extension for proteins	231
		7.6.1 Least-squares phase refinement based on the Sayre	221
		equation 7.6.2 Tangent formula refinement	231 233
		7.6.3 Application of the Sayre-equation tangent formula	234
		7.6.4 The Maximum determinant method	234
		7.6.5 Wang's method	234
		7.6.6 Histogram matching and 'SQUASH'	235
		7.6.7 The Maximum entropy method	238
8	Μι	ultiple-beam scattering methods	244
-		Multiple-beam scattering	244
		8.1.1 A description of multiple-beam scattering	244
		8.1.2 The scattering phase shift	246
		8.1.3 Intensity change with three-beam scattering	248

Con	tents	ix
8.1.4 Diffraction in a near-F	Bragg configuration	251
8.1.5 Profiles for ψ scans in	three-beam diffraction	253
8.2 Multiple-beam scattering ex-	periments	255
8.2.1 Experimental determin	nation of three-phase	
invariants		255
8.2.2 Making use of three-p	hase invariant information	261
References		264
Sources of non-original figures		270
Index		272

Preface

When von Laue and his assistants produced their first smudgy X-ray diffraction photographs in Munich in 1912 they could not have known of the developments that would follow and the impact that these would have on such a wide range of science. Structural crystallography, the ability to find the arrangement of atoms inside crystals, has advanced over the years both theoretically and experimentally. Technical advances, such as the development of computers both for control of instruments and for complex calculations, and also the advent of high power synchrotron X-ray sources have all played their part.

In this book we bring together all the methods that have been and are being used to solve crystal structures. We broadly divide these methods into two main classes, non-physical and physical methods. In the first category we place those methods that depend on a single set of diffraction data produced by the normal Thomson scattering from the individual atoms. The Patterson methods and direct methods described in chapters 2 and 3 respectively are non-physical methods. In chapter 4 the basic principles are explained for two physical methods - isomorphous replacement, which combines the data from two or more related compounds to obtain phase information, and anomalous scattering, which uses data at wavelengths for which some of the atoms scatter anomalously, i.e. with an amplitude and phase differing from that given by the Thomson process. In chapter 5 the method of isomorphous replacement is explored in much greater depth and in chapter 6 the same is done for anomalous scattering. It will be seen that some of the most effective ways of using physical data are in conjunction with non-physical methods, in particular direct methods, although Patterson function ideas also come into one successful technique for using anomalous scattering data.

The outcome of physical approaches, particularly when applied to

xii Preface

macromolecular structures, is that phases are found only for low resolution data although data at higher resolution might be available. This requires the techniques of phase extension and refinement which are described in chapter 7. Here we bring in some material slightly off the beaten track of conventional X-ray crystallography concerned with the solution of crystal structures by a combination of electron microscopy and diffraction and also the study of crystals with pseudosymmetry of various kinds.

In chapter 8, the final chapter, we describe what may be considered the most physical of all methods, which exploits the dynamical scattering process to acquire phase information. One of the helpful features of X-ray diffraction is that dynamical scattering effects are weak and this makes the connection between the observed data and the electron density in the crystal much more direct. It is therefore paradoxical that by doing very refined and accurate experiments to detect dynamical scattering effects one can go a long way towards solving the phase problem, the basic problem of structural X-ray crystallography.

We hope that this book will be found useful by working crystallographers and, in particular, those, such as graduate students, who are being introduced to the problems of solving crystal structures for the first time. For our readers who are at the beginning of their crystallographic studies we have given in chapter 1 an introduction to the field, sufficient to give comprehension to what follows without the pretence of being a complete treatment. Indeed we would not pretend that within the confines of a book of modest size we have covered exhaustively all the topics with which we have dealt. If we can give understanding and point the way to further reading and study where required then we shall have achieved our purpose.