
Preface

It is imperative for a manufacturing company to run an efficient operation now-a-
days to stay competitive in the world market. The advent of new technologies, a
continuous improvement in product quality and changing customer requirements
have all lead to shorter production runs, which demand effective methodologies
for their execution on the shop floor – the ones that minimize work-in-process
and cycle time while meeting customer demands. Due to the batch production
nature of such an environment, the use of an appropriate production lot size (or
sizes) on the shop floor is central to achieving these objectives. One technique that
can effectively influence the flow of a batch (or a lot) of jobs over the machines
by appropriately determining the size of production lots (also called sublots or
transfer lots) is lot streaming. By splitting a lot of jobs into smaller-size sublots and
processing them in an overlapping fashion over the machines, it tends to achieve
the above objective. In this book, we present this technique for the flow shop
machine configuration, which constitutes the brunt of its development that, thus,
also comprises of the core of the related theoretical contributions made in this field
of study.

The material presented in the book has been divided into five chapters, while
the last chapter, Chap. 6, contains concluding remarks. Chapter 1 introduces the
relevant concepts and definitions that are essential for a clear understanding of
the material presented in subsequent chapters. To give the reader an appreciation
of the potential benefits of lot streaming, analytical expressions to that end are
derived. A historical perspective of this technique is given to put the subject mat-
ter on lot streaming in proper perspective and to provide the motivation behind
the development of this technique. Some application areas that lend themselves to
the use of lot streaming are then presented. A glimpse of the material contained in
subsequent chapters is also provided to give the reader an idea of what to expect in
these chapters. Chapter 2 presents new and generic mathematical models for the
lot streaming problems that contain a variety of relevant features. A mathematical
model of a problem, in general, can aid in its analysis, and also, in the devel-
opment of an appropriate mathematical programming-based methodology for its
solution. Chapter 2 is written with this intent in mind. Chapters 3–5 present mate-
rial in the increasing order of difficulty of the lot streaming problems, namely, for
two-machine, three-machine, and m-machine problems. Each of these chapters
addresses a variety of problems while presenting for each the requisite analytical
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development leading up to the algorithm for its solution. These algorithms are
illustrated through numerical examples to further aid in their understanding.

The material in this book can be used as a supplement to a course in sequencing
and scheduling, production planning and control, production management, supply
chain management, or to courses in related areas at graduate or advanced under-
graduate levels. As background, it requires mathematical maturity and introduc-
tory knowledge of optimization concepts and methodologies. The book provides
useful ideas and algorithms for practitioners, and it can serve as a useful research
reference.

My first and foremost thanks go to one of my graduate students, Puneet
Jaiprakash. For his many direct contributions, I consider him to be a coauthor of
this book. I used the first draft of this book in my graduate-level course on sequenc-
ing and scheduling taught at Virginia Tech during the 2005 Spring semester. The
students from this class provided valuable feedback that assisted in improving the
exposition of the material presented in the book. In particular, I would like to
recognize the contributions made in this regard by Ming Chen and Liming Yao,
two of my doctoral students. I would also like to extend my sincere thanks to the
anonymous reviewers for their careful reading of the manuscript and insightful
comments.

A project of this magnitude cannot be accomplished without the unconditional
support, encouragement, and love of the family. For this, I would like to thank
my wife, Veena, and our sons, Sumeet and Shivan. Finally, I would like to thank
Sandy Dalton for her help in typing the manuscript.

Subhash C. Sarin
Blacksburg, VA
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2
Generic Mathematical Models for the
Flow Shop Lot Streaming Problem

2.1 Introduction

To comprehend the intricacies of a problem situation, it is best to represent it, if
possible, as a mathematical model. A mathematical model can also help in possi-
bly identifying some inherent structural properties of the problem and in devising
an appropriate algorithm for its solution. Chapter 1 contains a brief review of work
on the flow shop lot streaming problems. This work has focused on addressing
two-machine, three-machine, and the general m-machine scenarios. In this chap-
ter, we develop some generic mathematical models for the lot streaming problem
that encompass all of these scenarios and also that address various features perti-
nent to lot streaming. We present these models in Sect. 2.2 and also give their illus-
trations using simple examples. The key features of the models that are presented
in this section are summarized in Table 2.1. In Sect. 2.3, we introduce mathemati-
cal models for some special cases of the flow shop lot streaming problem that have
been presented in the literature.

2.2 Some Generic Mathematical Models for the Flow Shop
Lot Streaming Problem

2.2.1 Notation
We define the following notation in addition to that presented in Sect. 1.3.2.

Parameters:

RT jk Removal time of lot j on machine k
FT j Fixed transfer time for lot j
VT j Variable transfer time per unit for lot j
τ jk Sublot-attached setup time for a sublot of lot j on machine k
G A large positive number used to make a constraint redundant
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2.2. Some Generic Mathematical Models 35

Variables:
si jk Sublot size of the i th sublot of lot j on machine k; a general-

ization of the definition of sublot sizes presented in Sect. 1.3.2
Ci jk Completion time of the i th sublot of lot j on machine k; the

subscript j is omitted for problems involving a single lot

yi j =
{

1, if lot i precedes lot j
0, otherwise.

2.2.2 m/N/{C,E,V}/{II,NI}/{CV,DV}/{Lot-Attached Setup
and Removal Times, Sublot Transfer Times,
No Intermingling}

The lot streaming problem involving multiple lots deals with the issue of find-
ing the sublot sizes for each lot and the sequence in which to process the lots in
order to optimize a performance measure. Here, we consider the objective of min-
imizing the makespan. However, other performance measures can be conveniently
included in the formulations that we present. We make the following assumptions.

1. The sublot transfer times are variable and comprise of two parts, a fixed com-
ponent, which remains the same for all the sublots of a particular lot and a
variable component, which depends on the size of the sublot and is given by
V Tj · si jk .

2. The removal times are attached to the last sublot of each lot and are independent
of the sequence in which the lots are processed.

3. The number of sublots for all lots is known in advance.

Generic Model 1 (GM1):
Minimize: Cmax
Subject to:

1. Makespan Constraint:

Cmax ≥ Cnjm + RTjm,∀n j , j = 1, . . . , N .

This constraint captures the makespan Cmax, which is the largest among the
completion times of the last sublots of all the lots on the last machine (m).

2. Item Allocation Constraint:
n j∑

u=1

su jk = U j , ∀ j = 1, . . . , N , k = 1, . . . , m.

This constraint ensures that the sum of the items in the sublots of a lot, j ( j =
1, . . ., N ) that is processed on machine k(k = 1, . . ., N ) must be equal to the
total number of items in that lot.
The next two constraints capture the type of sublots involved. Constraint (3)
can be used in case we have consistent sublots while Constraints (3) and (4)
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together, capture the requirement of equal sublot sizes. We consider the case of
variable sublot sizes later.

3. Consistent Sublot Constraint:

si jk = si j (k+1), ∀i = 1, . . . , n j , j = 1, . . . , N , k = 1, . . . , (m − 1).

4. Equal Sublot Constraint:

si jk = s(i+1) jk, ∀ j = 1, . . . , N , k = 1, . . . , m.

5. Lot-attached Setup Constraint:

s1 jk ≥ �, ∀ j = 1, . . . , N , k = 1, . . . , m,

where ψ is the minimum number of items required to perform a setup on any
machine. In the presence of lot-attached setups, the setup time is associated
with the first sublot of every lot. However, there might be technological con-
straints on the minimum number of items required to perform a setup. The
constraint above ensures that the size of the first sublot of all the lots is greater
than ψ , thus ensuring that a setup can always be performed once the first sublot
has been transferred to machine k from machine (k − 1).

6. Sublot Size Constraint:

si jk ≥ 0, ∀i = 2, . . . , n j , j = 1, . . . , N , k = 1, . . . , m.

This constraint ensures nonnegative sublot sizes. These may also be restricted
to take integer or real (continuous) values.

7. Sequential Processing Constraint:

(a) First sublot:

C1 j (k+1) − p j (k+1)s1 j (k+1) ≥ C1 jk + t j (k+1) + FTj + V Tj s1 jk,

∀ j = 1, . . . , N , k = 1, . . . , (m − 1).

This constraint ensures that the first sublot begins processing on machine
(k + 1) only after it has completed processing on machine k, has been trans-
ferred to machine (k + 1) and the setup on machine (k + 1) has been com-
pleted.

(b) For sublots 2,. . . ,nj:

Ci j (k+1) − p j (k+1)si j (k+1) ≥ Ci jk + FTj + V Tj si jk,

∀i = 2, . . . , ni , j = 1, . . . , N , k = 1, . . . , (m − 1).

This constraint ensures that all the sublots, excluding the first one, begin
processing on the (k+1) th machine only after they have finished processing
on the kth machine and have been transferred to machine (k + 1).
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By replacing the above inequalities with equalities, the formulation can be
adapted to the no-wait flow shop.

8. No-Intermingling Constraint for Machines 1,. . ., m:

(a) (i, j) precedes (i ′, j ′)
(
Ci ′ j ′k − p j ′ksi ′ j ′k

) − (
Ci jk − p jksi jk

) + G
(
1 − y j j ′

)

≥
(

U j −
i−1∑
u=1

su jk

)
p jk + RTjk + t j ′k + p j ′k

i ′−1∑
u=1

su j ′k,

∀(i, j) and (i ′ j ′) : j �= j ′, i = 1, . . . , n j , j = 1, . . . , N ,

i ′ = 1, . . . , n j ′ , j ′ = 1, . . . , N , k = 1, . . . , m.

(b) (i ′, j ′) precedes (i, j)
(
Ci jk − p jksi jk

) − (
Ci ′ j ′k − p j ′ksi ′ j ′k

) + Gy j j ′

≥
⎛
⎝U j ′ −

i ′−1∑
u=1

su j ′k

⎞
⎠ p j ′k + RTj ′k + t jk + p jk

i−1∑
u=1

su jk,

∀(i, j) and (i ′, j ′) : j �= j ′, i = 1, . . . , n j , j = 1, . . . , N ,

i ′ = 1, . . . , n j ′ , j ′ = 1, . . . , N , k = 1, . . . , m.

For any two lots j and j ′( j �= j ′), we have two possibilities, namely, j pre-
cedes j ′ or j ′ precedes j . Since, either one must hold, these are referred to
as disjunctive constraints. To model these into the formulation, we define a
binary variable y j j ′ which takes a value of 1 if j precedes j ′, and 0, other-
wise. If it takes a value 1, then (8a) holds true since G(1 − y j j ′) = 0 and
(8b) becomes redundant. On the other hand, if y j j ′ takes a value of zero,
then (8b) is enforced and (8a) becomes redundant. For any pair of sublots
(i, j) and (i ′, j ′) : j �= j ′, the terms on the right hand side of (8a) ensure
that the difference between the start times of sublots i and i ′ is atleast equal
to the sum of the processing times of the sublots i to n j of lot j and 1 to
(i ′ − 1) of lot j ′, the removal time for lot j and setup time for lot j ′. These
constraints are enforced for all pairs of sublots belonging to lots j and j ′,
and on all the machines.

By replacing the above inequalities with equalities, the formulation can be
adapted to the scenario when no intermittent idling is permitted.

9. Station Capacity Constraint:

(a) First sublot of any lot on Machine 1:

c1 j1 − p j1s1 j1 ≥ t j1, ∀ j = 1, . . . , N .

This constraint ensures that the processing of the first sublot, of any lot
appearing first in the sequence, begins after its setup has been completed.
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(b) Sublots 2, . . ., nj of any lot on Machine 1:

C(i+1) j1 − p j1s(i+1) j1 = Ci j1, ∀i = 1, . . . , (n j − 1), j = 1, . . . , N .

This constraint captures the fact that the (i +1)th sublot of lot j should begin
processing on machine 1 only after the completion of its ith sublot.

(c) All sublots on machines k = 2, . . ., m:

C(i+1) jk − p jks(i+1) jk

≥ Ci jk, ∀i = 1, . . . , (n j − 1), j = 1, . . . , N , k = 2, . . . , m.

This constraint ensures that for all the lots processed on machines k =
2, . . ., m, the (i + 1)th sublot of lot j begins processing on machine k only
after the completion of i ts ith sublot on that machine.

Example 2.1 To illustrate the above model, consider a two-machine, three-lot
flow shop with the data shown in Tables 2.2 and 2.3. The sublot sizes are consis-
tent, restricted to take integer values and intermittent idling is permitted. Recall, G
is a large positive number; G = 5, 000 was used in this and subsequent problems.

In lieu of the above data, model GM1 can be written as follows.
Minimize: Cmax
Subject to:

Makespan Constraint:

Cmax ≥ Cn j j2 + RTj2, ∀n j , j = 1, 2, 3.

Item Allocation Constraint:
n j∑

u=1

su jk = U j , ∀ j = 1, 2, 3, k = 1, 2.

TABLE 2.2. Data for the Illustration of lot-attached setup model

Processing time Setup time Removal time

M/C 1 M/C 2 M/C 1 M/C 2 M/C 1 M/C 2

Lot 1 2 1 1 2 2 1
Lot 2 2 3 2 1 2 2
Lot 3 1 2 2 2 1 2

TABLE 2.3. Data for the Illustration of lot-attached setup model

n j U j r j FT j VT j

Lot 1 2 4 0 1 1
Lot 2 4 6 0 2 1
Lot 3 3 5 0 1 1
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Consistent Sublot Constraint:

si j1 = si j2, ∀i = 1, . . . , n j , j = 1, 2, 3.

Attached-Setup Constraint:

s1 jk ≥ 1, ∀ j = 1, 2, 3, k = 1, 2.

Sublot Size Constraint:

si jk ≥ 0, integer, ∀i = 2, . . . , n j , j = 1, 2, 3, k = 1, 2.

Sequential Processing Constraint:

(a) First sublot:

C1 j2 − p j2s1 j2 + FTj + V Tj s1 j1 + t j2, ∀ j = 1, 2, 3.

(b) For sublots 2, . . ., nj:

Ci j2 − p j2si j2 ≥ Ci j1 + FTj + V Tj · si j1, ∀i = 2, . . . , n j , j = 1, 2, 3.

No-Intermingling Constraint for Machines 1 & 2:

(a) (i, j) precedes (i ′, j ′)
(
Ci ′ j ′k − p j ′ksi ′ j ′k

) − (
Ci jk − p jksi jk

) + G(1 − y j j ′)

≥
(

U j −
i=1∑
u=1

su jk

)
p jk + RTjk + t j ′k + p j ′k

i ′−1∑
u=1

su j ′k,

∀(i, j) and (i ′, j ′) : j �= j ′, i = 1, . . . , n j , j = 1, 2, 3, i ′ = 1, . . . , n j ′ ,

j ′ = 1, 2, 3, k = 1, 2.

(b) (i ′, j ′) precedes (i, j)
(
Ci jk − p jksi jk

) − (
Ci ′ j ′k − p j ′ksi ′ j ′k

) + Gyi j ′

≥
⎛
⎝U j ′ −

i ′−1∑
u=1

su j ′k

⎞
⎠ p j ′k + RTj ′k + t jk + p jk

i=1∑
u=1

su jk,

∀(i, j) and (i ′, j ′) : j �= j ′, i = 1, . . . , n j , j = 1, 2, 3, i ′ = 1, . . . , n j ′ ,

j ′ = 1, 2, 3, k = 1, 2.

Station Capacity Constraint:

(a) First sublot of any lot on Machine 1:

C1 j1 − p j1s1 j1 ≥ t j1, ∀ j = 1, 2, 3.
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TABLE 2.4. Solution for the illustrative Example 2.1

Lot 1 Lot 2 Lot 3

Consistent sublot sizes
s1 s2 s1 s2 s3 s4 s1 s2 s3

2 2 1 1 1 3 1 1 3

Start time on machine 1 33 37 11 13 15 17 2 3 4
Start time on machine 2 42 44 20 23 26 29 7 9 11
Optimal sequence of lots 3–2–1
Optimal makespan 47

(b) Sublots 2, . . ., nj of any lot on Machine 1:

C(i+1) j1 − p j1 · s(i+1) j1 = Ci j1, ∀i = 2, . . . , (n j − 1), j = 1, 2, 3.

(c) All sublots on machines 2:

C(i+1) j2 − p j2 · s(i+1) j2 ≥ Ci j2,∀i = 1, . . . , (n j − 1), j = 1, 2, 3.

The above model was coded using AMPL and was solved using the CPLEX
optimization software. The optimal sublot sizes and the sequence in which to
process the lots are shown in Table 2.4.

2.2.3 m/N/{C,E,V}/{II,NI}/{CV,DV}/{Lot-Detached Setup and
Removal Times, Sublot Transfer Times, No
Intermingling}

The generic formulation above (GM1) can easily be adapted to the case of
detached setup (designated as model GM2) by making the following changes.

1. The lot-attached setup constraint (5) can be relaxed since the setups are
detached.

2. The Sequential Processing constraints (7a) and (7b) can be combined to give a
single constraint as follows:

Ci j (k+1) − p j (k+1)si j (k+1) ≥ Ci jk + FTj + V Tj si jk,

∀i = 1, . . . , n j , j = 1, . . . , N , k = 1, . . . , (m − 1).

3. The Station Capacity constraint (9a) now becomes

C1 jk − p jks1 jk ≥ t jk, ∀ j = 1, . . . , N , k = 1, . . . , m.

This constraint ensures that the first sublot of any lot starts after the setup
has been completed. It needs to be enforced for machines 2, . . . , m explicitly
and is not implied by the Sequential Processing constraint since the setups are
detached.
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TABLE 2.5. Data for the illustrative lot-detached setup problem

Processing time Setup time Removal time

M/C 1 M/C 2 M/C 1 M/C 2 M/C 1 M/C 2

Lot 1 2 1 1 2 2 1
Lot 2 3 2 2 1 2 2
Lot 3 2 3 2 4 1 2

TABLE 2.6. Data for the illustrative lot-detached setup problem

n j U j r j FT j VT j

Lot 1 2 4 0 1 1
Lot 2 4 6 0 2 1
Lot 3 3 5 0 1 1

Example 2.2 To illustrate the above model, consider a two-machine, three-lot
system with the data shown in Tables 2.5 and 2.6. The sublot sizes are consistent,
restricted to take integer values and intermittent idling is permitted.

In lieu of the above data, model GM2 can be written as follows.
Minimize: Cmax
Subject to:

Makespan Constraint:

Cmax ≥ Cn j j2 + RTj2, ∀n j , j = 1, 2, 3.

Item Allocation Constraint:
n j∑

u=1

su jk = U j , ∀ j = 1, 2, 3, k = 1, 2.

Consistent Sublot Constraint:

si j1 = si j2, ∀i = 1, . . . n j , j = 1, 2, 3.

Sublot Size Constraint:

si jk ≥ 0, integer, ∀i = 2, . . . , n j , j = 1, 2, 3, k = 1, 2.

Release Time Constraint:
200∑
t=0

t X1 j1t ≥ 0, ∀ j = 1, 2, 3.

Sequential Processing Constraint:

Ci j2 − p j2si j2 ≥ Ci j2 + FTj + V Tj si j1, ∀i = 1, . . . , n j , j = 1, 2, 3.
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TABLE 2.7. Solution for the illustrative Example 2.2

Lot 1 Lot 2 Lot 3

Consistent sublot sizes
s1 s2 s1 s2 s3 s4 s1 s2 s3

2 2 1 1 2 2 1 1 3

Start time on machine 1 36 40 15 18 21 27 2 4 6
Start time on machine 2 45 47 28 31 33 37 7 10 16
Optimal sequence of lots 3–2–1
Optimal makespan 50

No-Intermingling Constraint for Machines 1 and 2:

(a) (i, j) precedes (i ′, j ′)(
Ci ′ j ′k − p j ′ksi ′ j ′k

) − (
Ci jk − p jksi jk

) + G
(
1 − y j j ′

)

≥
(

U j −
i−1∑
u=1

su jk

)
p jk + RTjk + t j ′k + p j ′k

i ′−1∑
u=1

su j ′k

∀(i, j) and (i ′, j ′) : j �= j ′, i = 1, . . . , n j , j = 1, 2, 3, i ′ = 1, . . . n j ,

j ′ = 1, 2, 3, k = 1, 2.

(b) (i ′, j ′) precedes (i, j)(
Ci jk − p jksi jk

) − (
Ci ′ j ′k − p j ′ksi ′ j ′k

) + Gy j j ′

≥
⎛
⎝U j ′ −

i ′−1∑
u=1

su j ′k

⎞
⎠ p j ′k + RTj ′k + t jk + p jk

i−1∑
u=1

su jk

∀(i, j) and (i ′, j ′) : j �= j ′, i = 1, . . . , n j , j = 1, 2, 3, i ′ = 1, . . . , n j ′ ,

j ′ = 1, 2, 3, k = 1, 2.

Station Capacity Constraint:

(a) C1 j1 − p j1s1 j1 ≥ t j1, ∀ j = 1, 2, 3,∀k = 1, 2.
(b) C(i+1) j1 − p j1s(i+1) j1 = C1 j1, ∀i = 1, . . . , n j−1,∀ j = 1, 2, 3.
(c) C(i+1) j2 − p j2s(i+1) j2 ≥ Ci j2, ∀i = 1, . . . , n j−1,∀ j = 1, 2, 3.

The optimal sublot sizes and the sequence in which to process the lots are shown
in Table 2.7.

2.2.4 m/N/{C,E,V}/{II,NI}/{CV,DV}/{Sublot-Attached
Setup and Removal Times, Sublot Transfer Times,
Intermingling}

This problem is identical to the one discussed in Sect. 2.2.2 except for the fact
that the setup involved is sublot attached instead of lot attached considered earlier,
and also, we permit intermingling of the sublots. The formulation for this problem
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(designated as Generic Model GM3) follows from that presented in Sect. 2.2.2.
The constraints (1), (2), (3), (4), and (6) are the same for this problem as well.
Constraint (5) is no longer relevant as we now have sublot-attached setups.

The Sequential Processing Constraint for this case is as follows:

Ci j (k+1) − p j (k+1)si j (k+1) ≥ Ci jk + τ j (k+1) + FTj + V Tj si jk

∀i = 1, . . . , n j , j = 1, . . . , N , k = 1, . . . , (m − 1).

This constraint ensures that any sublot i begins processing on machine (k+1) only
after it has completed processing on machine k has been transferred to machine
(k + 1) and the setup on machine (k + 1) for sublot i has been completed.

By replacing the above inequalities with equalities, the formulation can be
adapted to the no-wait flow shop scenario.

The intermingling constraint for machines 1, . . ., m can be expressed as follows:

(a) (i, j) precedes (i ′, j ′)

Ci ′ j ′k − p j ′ksi ′ j ′k − Ci jk + G(1 − yi ji ′ j ′) ≥ RTjk + τ j ′k,

∀(i, j) and (i ′, j ′), i = 1, . . . , n j , j = 1, . . . , N , i ′ = 1, . . . , n j ′

j ′ = 1, . . . , N , k = 1, . . . , m : if j = j ′, then i �= i ′.

(b) (i ′, j ′) precedes (i, j)(
Ci jk − p jksi jk

) − Ci ′ j ′k + Gyi ji ′ j ′ ≥ RTj ′k + τ jk

∀(i, j) and (i ′, j ′), i = 1, . . . , n j , j = 1, . . . , N , i ′ = 1, . . . , n j ′ ,

j ′ = 1, . . . , N , k = 1, . . . , m : if j = j ′, then i �= i ′.

These disjunctive constraints are identical to those presented in Sect. 2.1.2,
except that now, since intermingling is allowed, we define a new binary vari-
able yi ji ′ j ′ , which takes a value of 1 if sublot (i, j) precedes (i ′, j ′), and a
value of 0 if (i ′, j ′) precedes (i, j). For any pair of sublots (i, j) and (i ′, j ′)
if j = j ′ then i �= i ′ The terms on the right hand side in (a) above ensure
that the difference between the start times of sublots (i, j) and (i ′, j ′) is at
least equal to the sum of processing times of sublot (i, j), the removal time
for sublot (i, j), and setup time for(i ′, j ′). These constraints are enforced for
all pairs of sublots scheduled on any machine k.

By replacing the inequalities with equalities in the above expressions, the for-
mulation can be adapted to the case of no-intermittent idling.

The station capacity constraint for this case is as follows:

Ci j1 − p jksi j1 ≥ τ j1, ∀i = 1, . . . n j , j = 1, . . . , N .

This constraint ensures that any sublot i of any job j begins processing on machine
1 only after its setup has been completed.

Example 2.3 To illustrate the above model, consider a two-machine, two-lot sys-
tem with data as shown in Tables 2.8 and 2.9. The sublot sizes are consistent,
restricted to take integer values and intermittent idling is permitted.
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TABLE 2.8. Data for the illustrative sublot-attached setup problem

Processing time Setup time Removal time

M/C 1 M/C 2 M/C 1 M/C 2 M/C 1 M/C 2

Lot 1 2 1 1 1 1 1
Lot 2 2 1 1 1 1 1

TABLE 2.9. Data for the illustrative sublot-attached setup problem

n j U j r j FT j VT j

Lot 1 2 4 0 1 1
Lot 2 3 5 0 1 1

In lieu of the above data, model GM3 can be written as follows.
Minimize: Cmax
Subject to:

Makespan Constraint:

Cmax ≥ Cn j j2 + RTj2, ∀i = 1, . . . n j , j = 1, 2.

Item Allocation Constraint:
n j∑

u=1

su jk = U j , ∀ j = 1, 2, k = 1, 2.

Consistent Sublot Constraint:

si j1 = si j2, ∀i = 1, . . . , n j , j = 1, 2.

Sublot Size Constraint:

si jk ≥ 0, integer, ∀i = 2, . . . , n j , j = 1, 2, k = 1, 2.

Sequential Processing Constraint:

Ci j2 − p j2si j2 ≥ ci j1 + τ j2 + FTj + V Tj si j1, ∀i = 1, . . . , n j , j = 1, 2.

Intermingling Constraint for Machines 1 and 2:

(a) (i, j) precedes (i ′, j ′)
(
Ci ′ j ′k − p j ′ksi ′ j ′k

) − (
Ci jk − p jksi jk

) + G(1 − yi ji ′ j ′) ≥ RTjk + τ j ′k,

∀(i, j) and (i ′, j ′), i = 1, . . . , n j , j = 1, 2, i ′ = 1, . . . , n j ′ ,

j ′ = 1, 2, k = 1, 2 : if j = j ′, then i �= i ′.
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TABLE 2.10. Solution for the illustrative Example 2.3

Lot 1 Lot 2

Consistent sublot sizes
s1 s2 s1 s2 s3

1 3 1 2 2

Start time on machine 1 21 1 25 15 9
Start time on machine 2 27 12 30 23 17
Optimal sequence of lots (si j ) 21–32–22–11–12
Optimal makespan 32

(b) (i ′, j ′) precedes (i, j)
(
Ci jk − p jksi jk

) − (
Ci ′ j ′k − p j ′ksi ′ j ′k

) + Gyi ji ′ j ′

≥ RTj ′k + τ jk,∀(i, j) and (i ′, j ′), i = 1, . . . , n j , j = 1, 2,

i ′ = 1, . . . , n j ′ j ′ = 1, 2, k = 1, 2 : if j = j ′, then i �= i ′.

Station Capacity Constraint:

Ci j1 − p j1si j1 ≥ τ j1, ∀i = 1, . . . , n j , j = 1, 2.

The optimal solution is shown in Table 2.10. Note that in this solution, the sublots
of lot 1 are not processed continuously. The third and the second sublots of lot 2
are processed in between the second and the first sublots of lot 1. Note that the
numbering of the sublots of a lot is arbitrary.

2.2.5 m/N/{C,E,V}/{II,NI}/{CV,DV}/{Sublot-Detached Setup
and Sublot-Attached Removal Times, Sublot Transfer
Times, Intermingling}

The generic formulation of the sublot-attached setup (GM3) problem can be
adapted to the case when detached setups are present. We designate the result-
ing model as GM4. The changes that need to be incorporated are as follows.

1. The sequential processing constraint can be replaced with the following con-
straint.

Ci j (k+1) − p(k+1)si j (k+1) ≥ Ci jk + FTj + V Tj si jk,

∀i = 1, . . . , n j , j = 1, . . . , N , k = 1, . . . , (m − 1).

This constraint is similar to that for the case of sublot-attached setups, except
that the setup time for sublot i on machine (k + 1) is not considered since the
setup is detached.

2. The station capacity constraint is modified as follows.

Ci jk − p jksi jk ≥ τ jk, ∀i = 1, . . . , n j , j = 1, . . . , N , k = 1, . . . , m.
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This constraint ensures that if any sublot i of lot j is scheduled first on machine
k, then it can begin processing only after the setup has been completed.

Example 2.4 If the setup in Example 2.3 were detached, then the model GM4 can
be written as follows.

Minimize: Cmax
Subject to:

Makespan Constraint:

Cmax ≥ Cn j j2 + RTj2, ∀n j , j = 1, 2.

Item Allocation Constraint:
n j∑

u=1

su jk = U j , ∀ j = 1, 2, k = 1, 2.

Consistent Sublot Constraint:

si j1 = si j2, ∀i = 1, . . . , n j , j = 1, 2.

Sublot Size Constraint:

si jk ≥ 0, integer, ∀i = 2, . . . , n j , j = 1, 2, k = 1, 2.

Sequential Processing Constraint:

Ci j2 − p j2si j2 ≥ Ci j2 + FTj + V Tj si j1, ∀i = 1, . . . , n j , j = 1, 2.

Intermingling Constraint for Machines 1 and 2:

(a) (i, j) precedes (i ′, j ′)(
Ci ′ j ′k − p j ′ksi ′ j ′k

) − (
Ci jk − p jksi jk

) + G(1 − yi ji ′ j ′)

≥ RTjk + τ j ′k,∀(i, j) and (i ′, j ′), i = 1, . . . , n j , j = 1, 2,

i ′ = 1, . . . , n j ′ , j = 1, 2, i ′ = 1, . . . , n j ′ , j ′ = 1, 2,

k = 1, 2 : if j = j ′, then i �= i ′.

(b) (i ′, j ′) precedes (i, j)(
Ci jk − p jksi jk

) − (
Ci ′ j ′k − p j ′ksi ′ j ′k

) + Gyi ji ′ j ′

≥ RTj ′k + τ jk∀(i, j) and (i ′, j ′), i = 1, . . . , n j , j = 1, 2,

i ′ = 1, . . . , n j ′ , j ′ = 1, 2, k = 1, 2 : if j = j ′, then i �= i ′.

Station Capacity Constraint:

Ci jk − p jksi jk ≥ τ jk, ∀i = 1, . . . , n j , j = 1, 2, k = 1, 2.

The optimal solution is shown in Table 2.11. Note that in the optimal solution,
the sublots of lot 1 are not processed continuously. The second sublot of lot 2 is
processed in between the first and second sublots of lot 1.



2.2. Some Generic Mathematical Models 47

TABLE 2.11. Solution for the illustrative sublot-detached setup problem

Lot 1 Lot 2

Consistent sublot sizes
s1 s2 s1 s2 s3

2 2 1 3 1

Start time on machine 1 1 15 25 7 21
Start time on machine 2 10 22 29 17 26
Optimal sequence of lots (si j ) 11–22–21–32–12
Optimal makespan 31

2.2.6 The Case of Variable Sublots
Next, we consider the case of variable sublot sizes as a lot moves from one machine
to another. There are the following two ways in which a new sublot can be con-
figured for processing on a machine, after the items constituting that sublot have
been processed on the preceding machine.

Case (1). The items constituting a new sublot can be reconfigured to
form this sublot only after the completion of the entire sublots to
which they belong.

Case (2). The items constituting a new sublot can be reconfigured to
form this sublot without the completion of the entire sublots to
which they belong.

Consider Case (1) and the scenario of the generic model GM1. Constraints (3) and
(4) are no longer valid for this case. Also, the sequential processing constraints,
are impacted as follows:

(a) First sublot:

C1 jk − p jks1 jk − Ci ′ j (k−1) − FTj − V Tj si ′ j (k−1) − t jk

+ G(1 − xi ′1 jk) ≥ 0,∀i ′ = 1, . . . , n j , j = 1, . . . , N , k = 2, . . . , m.

(b) For sublot 2, . . ., n j :

Ci jk − p jksi jk − Ci ′ j (k−1) − FTj − V Tj si ′ j (k−1) + G(1 − xi ′i jk) ≥ 0,

∀i = 2, . . . , n j , i ′ = 1, . . . , n j , j = 1, . . . , N , k = 2, . . . , m.

Also, we need to add a new constraint, termed the variable sublot constraint,
as follows:



48 2. Generic Mathematical Models for the Flow Shop Lot Streaming Problem

Variable Sublot Constraint:

i ′−1∑
h=1

shj (k−1) −
i∑

h=1

shjk + Gxi ′i jk ≥ 0,

∀i = 1, . . . , n j , i ′ = 2, . . . , n j , j = 1, . . . , N , k = 2, . . . , m

x1i jk = 1,∀i = 1, . . . , n j , j = 1, . . . , N , k = 2, . . . , m,

where xi ′i jk = 1, if sublot i of lot j on machine k is started no earlier than the
completion time of the sublot i ′ of the same lot on machine k − 1, and = 0,
otherwise. Thus, in accordance with Constraint (a) above, if the first sublot of
a lot j on machine k starts no earlier than the completion time of sublot i ′ on
machine k − 1, then, the appropriate relationship between the starting time of this
sublot to the completion time of sublot i ′ and the requisite transfer and setup times
must be maintained; otherwise it is relaxed. In a similar manner, Constraint (b)
captures this relationship for any other sublot, other than the first sublot. However,
if a sublot i on machine k starts earlier than the completion time of a sublot i ′ on
machine k −1, then the sum of all the sublots until sublot i on machine k must not
exceed the sum of the sublots until sublot i ′ −1 on machine k −1. This is captured
by the variable sublot constraint.

The above development is applicable for the other generic models as well except
that in the case of sublot-attached setup, we need to include a setup time, τ jk , for
every sublot rather than just for first sublot. The corresponding constraint is as
follows:

Ci jk − p jksi jk − Ci ′ j (k−1) − FTj − V Tj si ′ j (k−1) − τ jk

+ G · (1 − xi ′i jk) ≥ 0 ∀i, i = 1, . . . , n j , j = 1, . . . , N , k = 2, . . . , m.

Next, consider Case (2). The sequential processing constraints for this case under
the scenario of generic model GM1 are as follows:

(a) First sublot:

C1 jk − p jks1 jk − Ci ′ j (k−1) + p j (k−1)si ′ j (k−1) − FTj − V Tj s1 jk − t jk

+ G(1 − xi ′1 jk) ≥ max

⎧⎨
⎩p j (k−1)

⎛
⎝s1 jk −

i ′−1∑
h=1

shj (k−1)

⎞
⎠ , 0

⎫⎬
⎭ ,

∀i ′ = 1, . . . , n j , j = 1, . . . , N , k = 2, . . . , m.

(b) For sublot 2, . . ., n j :

Ci jk − p jksi jk − Ci ′ j (k−1) + p j (k−1)si ′ j (k−1) − FTj − V Tj si jk

+ G(1 − xi ′i jk) ≥ max

⎧⎨
⎩p j (k−1)

⎛
⎝ i∑

h=1

shjk −
i ′−1∑
h=1

shj (k−1)

⎞
⎠ , 0

⎫⎬
⎭ ,

∀i = 2, . . . , n j , i ′ = 1, . . . , n j , j = 1, . . . , N , k = 2, . . . , m.
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Variable Sublot Constraint:

i ′−1∑
h=1

shj (k−1) −
i∑

h=1

shjk + Gxi ′i jk ≥ 0,

∀i = 1, . . . , n j , i ′ = 2, . . . , n j , j = 1, . . . , N , k = 2, . . . , m

x1i jk = 1,∀i = 1, . . . n j , j = 1, . . . , N , k = 2, . . . , m.

Note that, in this case, the definition of x is different from that for Case (1). In
particular, xi ′i jk = 1, if sublot i of lot j on machine k is started no earlier than the
starting time of sublot i ′ of the same lot on machine k − 1, and = 0, otherwise.
Accordingly, if the first sublot of lot j on machine k starts no earlier than the
starting time of sublot i ′ of the same sublot on machine k − 1, then the starting
time of sublot i on machine k should be no earlier than the starting time of sublot
i ′ on machine (k − 1) plus the processing time of the jobs from sublot i ′ to be

contained in sublot i on machine k, i.e.,

(
i∑

h=1
shjk −

i ′−1∑
h=1

shj (k−1)

)
pi ′ j (k−1), along

with the transfer and setup times. Note that the maximum operator is needed here

since
i ′−1∑
h=1

shj (k−1) could be larger than
i∑

h=1
shjk . The corresponding constraints for

the first sublot are shown in (a), and for other sublots in (b) above. However, in
case the sublot i of lot j on machine k starts earlier than the starting time of i ′ on
machine k −1, then the sum of all the sublots until sublot i on machine k must not
exceed the sum of the sublots until sublot i ′ −1 on machine k −1. This is captured
by the variable sublot constraint.

As alluded to earlier for Case (1), the above development is applicable for the
other generic models as well except that, in the case of sublot-attached setup, we
need to include setup time for all sublots as follows:

Ci jk − p jksi jk − Ci ′ j (k−1) + p j (k−1)si ′ j (k−1) − FTj − V Tj si jk − τ jk

+ G(1 − xi ′i jk) ≥ max

⎧⎨
⎩p j (k−1)

⎛
⎝ i∑

h=1

shjk −
i ′−1∑
h=1

shj (k−1)

⎞
⎠ , 0

⎫⎬
⎭ ,

∀i = 1, . . . , n j , i ′ = 1, . . . , n j , j = 1, . . . , N , k = 2, . . . , m.

The above models are illustrated using a three-lot, three-machine problem. The
data is given in Table 2.12. The results are depicted in Table 2.13. For the sake of
comparison, we have also given results for the case of consistent sublot sizes. As
expected, the makespan value obtained for Case (2) of the variable sublots is the
smallest, namely, 203, while that for Case (1) of the variable sublots is 208. For
the consistent sublots, the makespan value obtained is 213.
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TABLE 2.12. Data for the illustration of lot-attached setup

Processing time Setup time Removal time

M/C 1 M/C 2 M/C 3 M/C 1 M/C 2 M/C 3 M/C 1 M/C 2 M/C 3

Lot 1 2 1 2 1 2 2 2 1 2
Lot 2 2 4 1 2 1 3 2 2 4
Lot 3 4 2 2 2 2 1 1 2 1

n j U j r j FT j VT j

Lot 1 5 14 0 4 5
Lot 2 4 16 0 5 4
Lot 3 3 15 0 8 5

Above, we have presented fairly general mathematical models of the m-machine,
N -lot streaming problems. There are some mathematical models presented in the
literature that are suitable for the special cases of the lot streaming problem that
they consider. We present these next.

2.3 Mathematical Models for Special Cases

This section presents mathematical formulations for some special cases of the lot
streaming problem, each of which is further analyzed in the following chapters.
The key features of these models are summarized in Table 2.14.

2.3.1 2/1/C/{II,NI}/{CV,DV}/{Lot-Detached Setup, No-Wait}
This problem addresses the issue of finding the continuous optimal sublot sizes for
a single batch in a no-wait flow shop, in the presence of detached setup times [32].
In a no-wait flow shop, idle time can appear before the processing of any sublot
i on machine 1 or machine 2. The expression for the makespan in terms of �i
(see Fig. 1.10), the idle time on machine 2 immediately preceding the i th sublot,
is given as

Cmax = t2 + p2 · U + �1 +
n∑

i=2

�i ,

where t1 is the setup time on machine 1, t2 is the setup time on machine 2, �1 =
max {0, t1 + p1s1 − t2}, and �i = max {0, p1si − p2si−1}.
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TABLE 2.13. Solutions for the consistent and variable sublot cases
1. Consistent sublot case

Lot 1 Lot 2 Lot 3

Consistent sublot sizes s1 s2 s3 s4 s5 s1 s2 s3 s4 s1 s2 s3

Sublot size 1 5 2 4 2 3 4 5 4 6 5 4
Machine 1 Start time 64 66 76 80 88 96 102 110 120 2 26 46

Finish time 66 76 80 88 92 102 110 120 128 26 46 62
Sublot size 1 5 2 4 2 3 4 5 4 6 5 4

Machine 2 Start time 104 105 110 112 116 120 132 148 168 68 80 90
Finish time 105 110 112 116 118 132 148 168 184 80 90 98
Sublot size 1 5 2 4 2 3 4 5 4 6 5 4

Machine 3 Start time 160 162 172 176 184 193 196 200 205 119 131 141
Finish time 162 172 176 184 188 196 200 205 209 131 141 149

Optimal sequence of lots 3–1–2
Optimal makespan 213

2. Sublot availability case

Lot 1 Lot 2 Lot 3

Variable sublot sizes s1 s2 s3 s4 s5 s1 s2 s3 s4 s1 s2 s3

Sublot size 3 4 0 4 3 3 2 5 6 6 5 4
Machine 1 Start time 64 70 78 78 86 96 102 106 116 2 26 46

Finish time 70 78 78 86 92 102 106 116 128 26 46 62
Sublot size 7 0 0 0 7 5 5 4 2 5 6 4

Machine 2 Start time 104 111 111 111 111 121 141 161 177 69 79 91
Finish time 111 111 111 111 118 141 161 177 185 79 91 99

Machine 3 Sublot size 1 0 0 0 13 5 5 6 0 5 0 10
Start time 155 157 157 157 157 188 193 198 204 119 129 129

Finish time 157 157 157 157 183 193 198 204 204 129 129 149
Optimal sequence of lots 3–1–2

Optimal makespan 208

3. Item availability case

Lot 1 Lot 2 Lot 3

Variable sublot sizes s1 s2 s3 s4 s5 s1 s2 s3 s4 s1 s2 s3

Sublot size 1 0 0 0 13 1 0 0 15 1 0 14
Machine 1 Start time 64 66 66 66 66 96 98 98 98 2 6 6

Finish time 66 66 66 66 92 98 98 98 128 6 6 62
Sublot size 4 4 3 0 3 3 3 5 5 6 5 4

Machine 2 Start time 102 106 110 113 113 120 132 144 164 68 80 90
Finish time 106 110 113 113 116 132 144 164 184 80 90 98

Machine 3
Sublot size 1 0 0 5 8 6 5 3 2 6 5 5
Start time 148 150 150 150 160 183 189 194 197 112 122 132

Finish time 150 150 150 160 176 189 194 197 199 122 132 142
Optimal sequence of lots 3–1–2
Optimal makespan 203
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Let I represent the total idle time on machine 2. In order to minimize the
makespan Cmax, it is sufficient to minimize the total idle time I on machine 2.
This problem can be formulated as a linear program.

Minimize : I =
n∑

i=1

�i .

Subject to :
�1 ≥ t1 + p1s1 − t2
�i ≥ p1si − p2si−1, ∀i, i = 2, . . . , n

n∑
i=1

si = U

�i ≥ 0, ∀i, i = 1, . . . , n

si ≥ 0, ∀i, i = 1, . . . , n.

A solution to the above model will give the desired sublot sizes and the order of
their processing on the machines.

2.3.2 2/N/C/{II,NI}/{CV,DV}/{Lot-Attached/Detached Setup,
Sublot Transfer Times}

This problem addresses the issue of finding the continuous, optimal sublot sizes
and the sequence in which to process the lots in the presence of lot-attached/
detached setup times and variable sublot transfer times [36]. These transfer times
are made up of a fixed component FTj and a variable component V Tj , which
depends on the size of a sublot.

For ease of understanding, the situation on hand is depicted in Fig. 2.1 for
N = 1. In this figure, F and V represent fixed and variable transfer times; and
t1 and t2 are lot-detached setup times on machines 1 and 2, respectively. Note that
�1, the idle time on machine 2 before the start of sublot 1 on that machine can be

F V F V F V

M/C 1

M/C 2 p2s2 p2s3p2s1t2

p1s3p1s2p1s1t1

Cmax

FIGURE 2.1. Graphical depiction of sublot-attached transfer times
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expressed as follows:

�1 = max{0, t1 + p1 · s1 + V T · s1 + FT − t2}.
If we let t ′1 = t1 + FT, p′

1 = p1 + V T , and t ′2 = t2, then we have,

∆1 = max
{
0, t ′1 + p′

1 − t ′2
}
.

Similarly, �i , the idle time on machine 2 before the start of sublot i , can be given
as follows:

∆i = max

⎧⎨
⎩0, t1 + p1

i−1∑
u=1

su + p1si + V T si + FT − t2 − p2

i−1∑
u=1

su −
i−1∑
u=1

∆u

⎫⎬
⎭

= max

⎧⎨
⎩0, t ′1 + p1

i∑
u=1

su − t ′2 − p′
2

i−1∑
u=1

su −
i−1∑
u=1

∆u

⎫⎬
⎭ , ∀i = 2, . . . , n j ,

where p′
2 = p′

2 + V T .
Now, if we designate by I DS

j the total idle time on machine 2 under sublot-
detached setup for lot j , then a formulation for the problem of determining optimal
sublot sizes for lot j that minimizes the makespan (or, equivalently I DS

j ), can be
given as follows.

Minimize : I DS
j .

Subject to :
I DS

j ≥ t ′j1 − t ′j2 + p′
j1s1 j

I DS
j ≥ t ′j1 − t ′j2 + p′

j1(s1 j + s2 j ) − p′
j2s1 j

...

I DS
j ≥ t ′j1 − t ′j2 + p′

j1

n j∑
u=1

su j − p′
j2

n j −1∑
u=1

su j

n j∑
u=1

su j = U j

I DS
j ≥ 0

si j ≥ 0, ∀i, i = 1, . . . , n j .

In the case of lot-attached setups, the only change that we need to make is in the
determination of �1, which now becomes,

∆1 = max{0, t1 + p1 · s1 + V T s1 + FT }.
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Accordingly, the formulation for the lot-attached setup is as follows:

Minimize : I AS
j .

Subject to :
I AS

j ≥ t ′j1 + p′
j1s1 j

...

I AS
j ≥ t ′j1 − t ′j2 + p′

j1

n j∑
u=1

su j − p′
j2

n j =1∑
u=1

su j

n j∑
u=1

su j = U j

I AS
j ≥ 0

s1 j ≥ 1
si j ≥ 0, ∀i = 1, . . . , n j ,

where I AS
j is the total idle time on machine 2 under sublot-attached setup for lot j .

Once the sublot sizes have been obtained for each lot for either the lot-detached
or lot-attached setup case, the lots are sequenced in accordance with the Johnson’s
rule [19]. This is further explained in Chap. 3.

A slightly different version of the above formulation is presented in [8] for the
detached setup case, which includes removal time for each lot, and is based on the
concept of run-in and run-out times.

2.3.3 2/1/C/II/CV/
∑n

i=1 siCi2

This problem can be described as follows: Given a two-machine flow shop with
a single lot, determine the continuous and consistent sublot sizes such that the

total weighted sublot completion time, i.e.,
n∑

i=1
si Ci2, is minimized [31]. This is

essentially a sublot sizing problem, and can be formulated as a linear program as
follows.

Minimize : F(s, C) ≡
n∑

i=1

si Ci2.

Subject to :
Cik ≥ Ci−1k + p2si , ∀i = 2, . . . , n, k = 1, 2, (2.1)
Ci2 ≥ Ci1 + p2si , ∀i = 2, . . . , n, (2.2)
C11 ≥ s1 p1, (2.3)

n∑
i=1

si = U , (2.4)

si ≥ 0, ∀i = 1, . . . , n, (2.5)
Ci,k ≥ 0, ∀i = 2, . . . , n, k = 1, 2. (2.6)
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As mentioned above, the objective function minimizes the total weighted sublot
completion time. Constraint (2.1) ensures that sublots on any machine are pro-
cessed only after the preceding sublot has finished processing. Constraint (2.2)
captures the fact that machine 2 processes sublots only after it has finished process-
ing on machine 1. Constraint (2.3) ensures that the completion time of the first
sublot is greater than or equal to its processing time. Constraint (2.4) imposes the
requirement that the sublot sizes add up to the lot size. Constraint (2.5) and (2.6)
represent the nonnegativity of the sublot sizes and the completion times.

2.3.4 2/1/C/II/CV/
∑n̄

i=1 siCi2, Sublot-Attached Setup
This problem is like the one in Sect. 2.3.3 except that, now, the sublot-attached
setups are present and also the number of sublots is not known a priori [5]. Let
n̄ be an upper bound on the number of sublots. A mathematical model of this
problem is as follows.

Minimize : F(s, C) ≡
n̄∑

i=1

si Ci2 (2.7)

Subject to :

Ci2 = i · t2 + p2

i∑
j=1

s j + Ii , ∀i = 1, . . . , n̄, (2.8)

I1 = t1 + p1s1

Ii ≥ Ii−1, ∀i = 2, . . . , n̄,
(2.9)

Ii ≥
⎛
⎝i t1 + p1

i∑
j=1

s j

⎞
⎠ −

⎛
⎝(i − 1)t2 + p2

i−1∑
j=1

s j

⎞
⎠ , ∀i = 2, . . . , n̄,

(2.10)
M∑

i=1

si = U, (2.11)

si ≥ 0, ∀i = 1, . . . , n̄. (2.12)

The objective function F(s, C) seeks to minimize the total weighted sublot com-
pletion time of all the n̄ possible positive sublots. Constraint (2.8) defines the
completion time of any sublot i on machine 2 as the sum of

(i) Setup times of all previous sublots including sublot i on machine 2
(ii) Processing times of all previous sublots including sublot i on machine 2

(iii) Cumulative idle time appearing before sublot i on machine 2

Constraint (2.9) defines the idle time appearing before sublot 1 on machine 2 as
the sum of its setup and processing time on machine 1. Constraint (2.10) defines
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the cumulative idle time on machine 2 for sublots 2, . . ., n̄. The following two
cases are possible:

(i) The cumulative idle time remains the same i.e., Ii = Ii−1, implying that sublot
(i − 1) finishes processing on machine 2 later than the completion of sublot i
on machine 1

(ii) The cumulative idle time increases implying that sublot (i−1) finishes process-
ing on machine 2 before the completion of sublot i on machine 1

Constraint (2.11) ensures that the sum of the sublot sizes does not exceed the given
lot size. The last constraint restricts the sublot sizes to be nonnegative.

2.3.5 3/1/C/{NI,II}/{CV,DV}/{No Setup}
This problem addresses the sublot sizing problem for a three-machine flow shop
by minimizing the completion time of the last sublot on machine 3 when the sublot
sizes are consistent [35]. Let Cik denote the completion time of the i th sublot on
machine k. Then, we have

Minimize : C3n

Subject to :
C11 ≥ s1 p1 (2.13)
Cik ≥ Ci,(k−1) + pksi , ∀i = 1, 2, . . . , n, k = 2, 3, (2.14)
Cik ≥ C(i−1),k + pksi , ∀i = 2, . . . , n, k = 1, 2, 3, (2.15)

n∑
i=1

si = U , (2.16)

si ≥ 0, ∀i = 1, 2, . . . , n.

Constraints (2.14) and (2.15) ensure that any sublot i begins processing on machine
k after its completion on the previous machine or the processing of the (i − 1)th
sublot on machine k, whichever is maximum. Constraint (2.16) imposes that the
total number of items in all sublots equals U . The no-idling and discrete version
can be obtained by replacing the inequalities with equalities and by restricting the
sublot sizes to take integer values, respectively.

2.3.6 m/1/C/II/CV/
∑2

i=1 xiCim

We, now, consider the problem of minimizing the total weighted sublot completion
time in an m-machine flow shop consisting of a single lot [34]. The number of
sublots is restricted to two on each machine, the sublots sizes are consistent and
can take real values. Let x1 and x2 = (1 − x1) be the proportion of work allocated
to the first and second sublots, respectively. Let Ci,k denote the completion time of
the i th sublot on machine k and pk be the processing time per item on machine k.
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The mathematical formulation for this problem is as follows.

Minimize : F(x1, x2) = (x1C1m + x2C2m).

Subject to : C11 ≥ x1 p1,

C2k ≥ C1k + x2 pk, ∀k = 1, . . . , m,

Cik+1 ≥ Cik + xi pk+1, ∀i = 1, 2; k = 1, . . . , (m − 1),

x1 + x2 = 1,

Cik ≥ 0, ∀i = 1, 2, k = 1, . . . , m and x1, x2 > 0.

The completion time of the sublots can be written as

C1m = x1

m∑
k=1

pk and

C2m = max
1≤k≤m

{
x1

k∑
l=1

pl + x2

m∑
l=k

pl

}
.

Making the above substitutions along with x2 = 1 − x1, in the expression for
flowtime, we have

F(x1) = x2
1

m∑
k=1

pk + (1 − x1) max
1≤k≤m

{
x1

k∑
l=1

pl + (1 − x1)

m∑
l=k

pl

}
.

Simplification of the above expression gives

F(x1) = max
1≤k≤m

{
x2

1

((
2

m∑
l=k

pl

)
− pk

)
+ x1

( k∑
l=1

pl − 2
m∑

l=k

pl

)
+

m∑
l=k

pl

}
.

Let

ak =
(

2 ·
m∑

l=k

pl

)
− pk bk =

( k∑
l=1

pl − 2
m∑

l=k

pl

)
and ck =

m∑
l=k

pl .

Therefore,
F(x1) = max

1≤k≤m

{
ak x2

1 + bk x1 + ck

}
.

Hence, an equivalent formulation can be written as,

Minimize : F(x1)

Subject to :
F(x1) ≥ ak x2

1 + bk x1 + ck, k = 1, . . . , m
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where

ak =
(

2
m∑

l=k

pl

)
− pk,

bk =
( k∑

l=1

pl − 2
m∑

l=k

pl

)
, and

ck =
m∑

l=k

pl .

2.3.7 m/1/E/II/CV/Sublot-Attached Setup, Transfer
Times/Unified Cost Function

We now consider a hybrid objective function consisting of a weighted sum of
the makespan (Cmax), (sublot) mean flow time (MFT), average work-in-process
(WIP), sublot-attached setup (SAS), and transfer time (TT), in an m-machine flow
shop with a single lot and continuous and equal sublot sizes [25].

The problem is to determine an optimal number of sublots (n) so as to mini-
mize the above hybrid cost function. This problem can be formulated as an integer
program as follows.

Minimize : Z(n) ≡ c1Cmax(n) + c2MFT(n) + c3WIP(n) + c4tk(n) + c5TT(n).

Subject to:

Cmax(n) =
{

U
n

m∑
k=1

pk +
m∑

k=1

tk

}
+ (n − 1) max

1≤k≤m

{
U
n

pk + tk

}
,

MFT(n) = U
n

m∑
k=1

pk +
m∑

k=1

tk + n − 1
2

max
1≤k≤m

{
U
n

pk + tk

}
,

WIP(n) = U

⎧⎪⎪⎨
⎪⎪⎩

U
n

m∑
k=1

pk +
m∑

k=1
tk + n−1

2 max
1≤k≤m

{U
n pk + tk

}

U
n

m∑
k=1

pk +
m∑

k=1
tk + (n − 1) max

1≤k≤m

{U
n pk + tk

}

⎫⎪⎪⎬
⎪⎪⎭

,

SAS(n) = n
m∑

k=1

tk,

TT(n) = n(m − 1)TT,

1 ≤ n ≤ U and integer.

2.4 Chapter Summary

In this chapter, we have presented some generic mathematical models for the flow
shop lot streaming problem. These generic models capture the various important
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features that may be encountered in practice. These include lot-attached (detached)
setup, sublot-attached (detached) setup, lot removal time, and sublot transfer time.
The removal time of a lot is assumed to be attached to the last sublot of a lot and is
independent of the sequence in which the lots are processed or the size of the last
sublot. The sublot transfer time, on the other hand, is assumed to be comprised of
two components, one being fixed and identical for all the sublots of a lot while the
other depends on the sublot size. The transfer time and removal time differ in that,
during the occurrence of the former, the machine from where the transfer occurs is
free to process another sublot, while, when the latter is encountered, the machine is
occupied and cannot process the next lot. We also consider the situations of equal,
consistent, and variable sublot sizes. In the case of variable sublots, as a lot moves
from one machine to another, a new sublot can be formed in two ways. According
to one of these ways, the jobs constituting a new sublot can be reconfigured to
form this sublot only after the completion of the entire sublots from the previous
machine to which they belong. The other way is for the jobs constituting a new
sublot to be reconfigured to form this sublot without having completed the entire
sublots to which they belong. We present models for both of these situations. We
also consider situations in which the sublots belonging to different lots may or
may not be intermingled.

We have provided illustrations for the use of several of the models that we have
developed, which depict optimal sublot sizes and the sequence in which to process
the lots to achieve minimum makespan values. These models are integer programs
due to the presence of disjunctive constraints (for determining the sequence in
which to process the lots) and the requirement of integer sublot sizes. They are
solved using the CPLEX solver.

Mathematical models for some special cases of the flow shop lot streaming
problem have been discussed in the literature. We have also presented these models
in this chapter.


