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Four hundred and fifty years ago, Eustachius described the adrenal glands in his
Atlas of Anatomy. Two centuries later, Winslow gave a more complete description, and
a hundred years later, only in the middle of last century, the physiological significance
of the adrenal glands became apparent, with the description of adrenal insufficiency by
Addison and the conclusive experimental evidence produced by Brown-Sequard.  Up to
the 1930s, the products of the adrenal cortex and their roles were completely unknown.
In 1950, the Nobel prize in Medicine or Physiology was awarded to Kendal, Reichstein,
and Hench for the isolation, identification, and first therapeutic use of cortisone.  It is
tempting to compare the pace of data acquisition and concept generation in the adrenal
field to that of the technological development of humanity. Indeed, new and exciting
concepts in the field of adrenal physiology and pathophysiology have been emerging in
an exponential fashion. This tremendous influx of new knowledge is without parallel in
the history of adrenal gland studies. Our aim in editing Adrenal Disorders was first to
select from the existing huge pool of novel information the most relevant to clinical
practice and second to incorporate this knowledge into the existing body of clinical
knowledge. We have recruited experts who have been active contributors, with the con-
viction that the best scientist to explain a new concept is frequently the one involved in
its generation.

The first part of Adrenal Disorders concerns new developments in our understanding
of the physiology of the adrenal cortex and medulla. In the first section of this part of the
book, we have included chapters on ontogeny, on steroidogenesis, and on the generation
of adrenal zonation. The second section deals with the newer concepts regarding the
secretion and metabolism of adrenal products. Thus, we have included chapters on the
pharmacology and catabolism of glucocorticoids, on the physiologic role of 11β-
hydroxysteroid dehydrogenase system, on adrenal androgens, and on StAR protein.
Finally, we have included two chapters on the physiology of the adrenal medulla and the
significance of the intra-adrenal paracrine/autocrine regulatory networks, composed of
locally produced cytokines, neuropeptides, steroids, and catecholamines.

The second part of Adrenal Disorders  concerns new developments in our understand-
ing of the diseased adrenals. The first section deals with disturbances in the homeostasis
of cortisol production. In the first chapter, a concise overview of hyper- and
hypocortisolism is given. Two chapters follow that present new data on ACTH resistance
and the ectopic ACTH syndromes. The ensuing chapters analyze the different Cushing’s
and pseudo-Cushing’s syndromes and their differential diagnoses, including the com-
bined CRH/dexamethasone test, bilateral simultaneous inferior petrosal sinus sampling,
and the desmopressin test. The second section is devoted to new concepts regarding
adrenal tumors, including the roles of oncogenes/tumor suppressor genes in adrenocor-
tical tumorigenesis, and novel, albeit yet unsatisfactory therapeutic approaches in adrenal
cancer, as well as a chapter on adrenal incidentalomas. The third section includes chapters
on hereditary adrenal diseases, including congenital adrenal hyperplasia, micronodular
adrenal disease, congenital lipoid adrenal hyperplasia, congenital adrenal hypoplasia,
and two chapters with novel, integrated information on the involvement of the adrenals
in two systemic conditions, HIV-1 infection, and generalized obesity. The next section
deals with mineralocorticoids and the syndromes of mineralocorticoid excess and aldos-
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terone synthase deficiency. Adrenal Disorders ends with an extensive chapter describing
newer developments in the field of adrenomedullary tumors.

The editors are indebted to the authors for their hard work and willingness to write the
chapters of this book. We recognize today’ s importance of dedicating most of an
investigator’s effort to the production and publication of primary data, and this doubles
our gratefulness. Thanks to the authors, Adrenal Disorders is current, which will hope-
fully make it useful to other adrenal investigators and to colleagues who apply the knowl-
edge presented in their research, teaching, or clinical practice.

Andrew N. Margioris, MD
George P. Chrousos, MD
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INTRODUCTION

Steroid hormone biosynthesis by the fetal adrenal gland is crucial to the integrity
and continuation of pregnancy, growth of the fetal and maternal tissues, as well as
perinatal homeostatic adaptation for extrauterine survival. The adrenal cortex in the
primate undergoes a remarkable morphological and functional remodeling such that
the fetal adrenal cortex transforms into an adult adrenal cortex capable of independent
glucocorticoid and mineralocorticoid biosynthesis. This architectural and functional
transition from a fetal to an adult adrenal cortex ensures self-sufficient existence of
the neonate.

The fetal zone of the adrenal cortex, which is unique to the fetal adrenal, atrophies
soon after birth (1–5). This predominant zone, which forms 80–90% of the fetal adrenal
cortex synthesizes dehydroepiandrosterone sulfate (DHEA-S), the precursor hormone
for estrogen biosynthesis by the placenta (6–9). During late gestation, placental estrogen
promotes fetal adrenal cortisol biosynthesis, which supports the growth and maturation
of various fetal tissues including the lung, thyroid, liver, and the gut (9,10). This
placental estrogen is also instrumental in regulating fetal cortisol levels throughout
pregnancy. In addition to feto-placental steroidogenesis, estrogen plays a critical role
in the maintenance of pregnancy, regulation of maternal cardiovascular system, control
of uteroplacental blood flow and neovascularization of the placenta, maintenance of
uterine quiescence, and progesterone-mediated immunosuppression to allow implanta-
tion of the embryo in the uterus (9).
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The steroidogenesis and growth of the fetal adrenal cortex are regulated by endocrine,
paracrine and autocrine factors (Fig. 1). These include placental chorionic gonadotropins
(4,5,11–13) the fetal pituitary adrenocorticotropic hormone (ACTH) (4,7,13–18), the
local adrenal cortical growth factors (19) such as basic fibroblast growth factor (bFGF)
(20–25), epidermal growth factor (EGF) (26), and its homolog—transforming growth
factor α (TGFα) (19), insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) (27–32),
transforming growth factor β (TGF-β) family of peptides including activin, inhibin,
and TGF-β1 (33–40), as well as nuclear receptors—steroidogenic factor 1 (SF-1)
(41–47), and dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region
on the X-chromosome gene 1 (DAX-1) (48,49), and estrogen receptor (ER), which
mediates the actions of estrogen (50,51).

Steroidogenic factor 1 (SF-1) is a tissue- and cell-specific orphan nuclear receptor
that is pivotal to the transcriptional regulation of several genes encoding steroidogenic
enzymes (52–61). Targeted disruption of SF-1 gene in the mouse has demonstrated
that this gene is crucial to adrenal and gonadal development in this species (41,43,62).
The newborn mice with the targeted disruption of the SF-1 gene had adrenal insufficiency
secondary to agenesis of the adrenal glands. These newborn mice were rescued following
replacement therapy with glucocorticoids and mineralocorticoids. This postnatal picture
is similar to the clinical picture of neonates and infants with non-X-linked congenital
adrenal hypoplasia. Similar to the SF-1-gene-disrupted mice, infants with this disorder
have aplastic adrenal glands. Recently, a patient was described with a heterozygous
mutation located in the “P” box of the DNA-binding domain of the hSF-1 gene, which
resulted in congenital adrenal hypoplasia, adrenal insufficiency, and XY sex reversal
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(63). Thus, similar to its role in the mouse, SF-1 has a pivotal role in human adrenal
and gonadal development.

DAX-1 is also an orphan nuclear receptor, which plays key roles in the development
of adrenal gland and the gonads (48,49,64). Studies on patients with X-linked adrenal
hypoplasia congenita (AHC) with hypogonadotropic hypogonadism have shown that
these patients have mutations and deletions in the DAX-1 gene (65–69). Targeted
disruption of DAX-1 gene in mice revealed that, similar to the adrenal glands in children
with DAX-1 gene mutations resulting in AHC, the adrenal glands of these mice had
persistent fetal adrenal cortical zone. However, unlike the syndrome of X-linked AHC
in humans, these mice did not require steroid replacement for survival as their adrenal
glands had normal zona glomerulosa and fasciculata (70).

SF-1 and DAX-1 are both expressed in the tissues of hypothalamic-pituitary-adrenal/
gonadal axis (71). In addition, recent studies have demonstrated that these two receptors
may interact to direct steroidogenesis by regulating the expression of crucial target
genes, such as steroidogenic acute regulatory protein (StAR) (72).

Thus, the development of the fetal adrenal gland and its transition into an adult
gland capable of supporting independent existence of the organism is a complex process
that involves a multitude of factors. In this chapter, in addition to a brief review of
the current literature on adrenal organogenesis and steroidogenesis, the roles of nuclear
receptors SF-1, DAX-1, and ER in these processes are discussed. For recent excellent
reviews on fetal adrenal and placental steroidogenesis, the reader is referred to the
papers on these topics by Pepe and Albrecht (8,9) and Mesaino and Jaffe (7).

FETAL ADRENAL ORGANOGENESIS AND STEROIDOGENESIS

Fetal adrenal development and steroidogenesis are well-orchestrated and temporally
regulated processes. The development of fetal adrenal relies on cellular hyperplasia,
hypertrophy, migration, and apoptosis (7,13,16,38,73–78). Steroidogenesis by the fetal
adrenal is dependent on maternal factors, the feto-placental unit, and most importantly,
on the placental estrogen biosynthesis from precursor fetal DHEA-S (9,79). This placen-
tal estrogen sustains and maintains the pregnancy, modulates DHEA-S production by
the fetal adrenal, and regulates the function of the fetal hypothalamic-pituitary-adrenal-
axis (HPAA). Thus, the fetal adrenal organogenesis and steroidogenesis are closely
interlinked and coordinated to ensure the maturation and function of the fetal adre-
nal cortex.

Fetal and Neonatal Organogenesis
To determine the developmental pattern of the human adrenal gland, Sucheston and

Cannon (80) studied adrenal glands from 58 autopsy specimens ranging in age from
1 mo to 69 yr. Their study revealed that the adrenal gland in the human is derived
from celomic epithelium at 3–4 wk of gestational age. Between 4–10 wk of gestation,
these celomic epithelial cells proliferate, migrate, and differentiate into two distinct
zones, the inner fetal zone, which forms 80–90% of the cortex and the outer definitive
zone, which forms the rest of the fetal adrenal cortex. Most of the fetal adrenal growth
and remodeling that starts around the tenth week of intrauterine life and continues until
1 yr of postnatal age. Between 28–30 wk of gestation, the zona glomerulosa, outer
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Fig. 2. Please provide caption. Please provide caption. Please provide caption. Please provide caption.
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zona fasciculata, fetal cortex, and medulla are delineated. Soon after birth, the fetal
zone atrophies and disappears by 3 mo of postnatal life. During the second year
of life, a poorly organized zona reticularis is discernable and attains its permanent
characteristics by 11–12 yr of age. The fetal adrenal does not have an adrenal medulla
as a distinct entity. The adrenal medulla appears in the first few postnatal weeks
following the involution of the fetal zone. By the fourth week of postnatal life, the
chromaffin cells cluster at the center of the gland, and it is not until 12–18 mo of age
that the infant has the medulla with the adult-type architecture (81). The adrenal gland
attains its adult architecture by 15 yr of age.

Johannisson studied 57 human fetal adrenal cortices at various gestational ages by
both light and electron microscopy (73). Adrenal glands from three full-term anencephal-
ics were included in these 57 cases. These studies show that in 1–1.5-cm fetus, corres-
ponding to a gestational age of 5–6 wk, the adrenocortical cells are immature and
show poor differentiation of the endoplasmic reticulum, the Golgi apparatus, and the
mitochondria. Between 6–7 wk of gestation, these cells form two distinct zones—an
outer zone and an inner zone. Although the cells of the outer zone remain immature,
those of the inner zone show an increase in the cytoplasmic organelles, which indicates
both a functional and structural differentiation and maturation. During the second
trimester, a transitional zone located between the outer and inner zone appears, and it
consists of two types of “dark” cells with differences in the agranular endoplasmic
reticulum. In the second and third trimester of pregnancy, the definitive zone cells
show maturation, which correlates with increasing functional activity of this zone. The
cells of this transitional zone are capable of synthesizing cortisol and are the precursor
cells of the zona fasciculata of the adult adrenal (13).

The cellular processes of, hyperplasia, cell-migration, hypertrophy, and apoptosis
govern the growth and remodeling of the human adrenal gland (Fig. 2). By the eighth
week of gestation, when the two zones of the fetal adrenal are discernible, cellular
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mitosis and hyperplasia are limited to the definitive zone (73). This zone is thought to
be the germinal/stem-cell compartment, which gives rise to inner cortical zones. Studies
by Keene and Hewer, Crowder, and Jirasek show that cells from the definitive zone
migrate in a centripetal fashion to invade the outer layers of the fetal zone (1,81,82).
However, recent studies by Morley et al. in the mouse embryo using mouse 21-
hydroxylase/β-galactosidase transgene experiments show that in this species the centrip-
etal migration of cells in the fetal adrenal is only established in the later stages of
embryonic life or early postnatal life (78).

In contrast to the definitive zone, the fetal zone shows mostly hypertrophy and
minimal mitosis, forms the bulk of the fetal adrenal gland, and accounts for 80% of
its weight. Unlike other species, the fetal adrenal in the humans and other higher
primates shows maximal rate of growth during mid- and late gestation. Most of this
growth occurs in the inner fetal zone of the adrenal cortex. By 20 wk of gestation, the
fetal adrenal weight is similar to that of the fetal kidney. By 30 wk, the gland rapidly
enlarges and becomes 10–20 times the size of the adult adrenal gland. Between 30 wk
and term, it doubles in size and weighs 3–4 grams at birth (1,82). In addition to cellular
hyperplasia, centripetal migration, and hypertrophy, apoptosis also contributes to the
remodeling of fetal adrenal into an adult organ. Both morphologic and DNA-based
techniques show that apoptosis, which occurs mainly in the central part of the cortex,
is more marked in the fetal zone as compared to the definitive zone (38,82). During
the first postnatal week, the fetal zone undergoes rapid involution and disappears by
the third month of postnatal life. As the fetal zone involutes by apoptosis, the fetal
definitive and transitional zones form the zona glomerulosa and fasciculata, respectively
(13). The innermost cells of the transitional zone form the zona reticularis of the adult
adrenal cortex. This remodeling continues all through the first year of life.

The growth, development, and function of the fetal adrenal cortex is governed not
only by the various cellular processes, aforementioned, but also by the feto-placental
steroidogenesis regulated by endocrine factors, a multitude of paracrine growth factors,
and autocrine nuclear receptors.

Fetal Adrenal Steroidogenesis
The complex coordination of fetal adrenal, placental, and maternal steroidogenesis

is the hallmark of the feto-placental unit. The feto-placental unit ensures the survival
and maturation of the fetus. Several studies have shown that baboon and human
pregnancy share a great degree of similarity in the structure, function, and steroidogene-
sis of the feto-placental unit (8,9,83–86). Therefore, studies on regulation of placental
and fetal steroidogenesis in primate pregnancy provide an excellent model to understand
temporal events related to steroidogenesis of the human feto-placental unit. The discus-
sion that follows is based on in vitro and in vivo studies on primate and human pregnancy.

Morphological features of steroidogenesis in the fetal adrenal cells is first observed
at 6–8 wk of gestational age (7,74). The temporal relationship between ambiguous
external genital development in female infants with congenital adrenal hyperplasia
because of 21-hydroxylase deficiency and the development of the fetal adrenal cortex
indicates that the feedback loop of the fetal HPAA is functional prior to the tenth week
of gestational life. Between 8–10 wk of gestation, the fetal zone, which forms 80% of
the fetal adrenal cortex, synthesizes DHEA-S, the main precursor of estrogen synthesis
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by the placenta (79). This placental estrogen is crucial to the maintenance of pregnancy,
the maturation of the fetal and maternal tissues, and immunosuppression leading to
implementation of the placenta and the fetus (9).

Estrogen also plays a very significant role in placental and fetal steroidogenesis
through stimulation of placental progesterone production, modulation of DHEA-S pro-
duction by the fetal adrenal, and regulation of the HPPA, all of which ensure integrity
of the pregnancy and neonatal self-sufficiency (87).

In addition to estrogen, fetal steroidogenesis is essential for the maintenance of
pregnancy and maturation of fetal organs (9,10,19). In humans as in the other primates,
there is substantial transplacental transfer of maternal cortisol to the fetus throughout
gestation. The fetal cortisol level is dependent on the fetal cortisol production and
metabolic clearance rate, the transplacental transfer of maternal cortisol, as well as the
estrogen-mediated conversion of cortisol to cortisone by both the fetus and the placenta.
Whereas the fetal zone is the principal site of DHEA-S synthesis, the outer definitive
zone of the fetal adrenal mainly produces cortisol (16,88). The fetal cortisol level,
which increases with gestational age, plays a significant role in the maturation of the
fetal organs (8).

The uptake of maternal low-density lipoproteins by the syncytiotrophoblast provides
the substrate necessary for placental steroidogenesis (89,90). The placental synthesis
of pregnenalone and progesterone from this maternal cholesterol, is regulated by the
estrogen derived from fetal DHEA-S. During early and midgestation, the fetus obtains
its cortisol from maternal sources, either through transplacental transfer of maternal
cortisol or through the conversion of placental progesterone to cortisol by the fetal
adrenal. The fetal zone of the adrenal cortex produces the DHEA-S under the regulation
of fetal ACTH (16,88,91). Carr and Simpson (92) have demonstrated that in the fetus,
the liver produces significant amounts of cholesterol, which is provided as circulating
LDL substrate to the adrenal for steroidogenesis. The fetal zone produces DHEA-S
from this cholesterol. These investigators have proposed that the positive feedback
system that includes the fetal liver, fetal adrenal, and the placenta is responsible for
the exponential increase in steroidogenesis by the fetoplacental unit (90). The fetal
DHEA-S forms the main substrate for estrogen biosynthesis through placental aromati-
zation of fetal DHEA-S to estrogen (7,93). This fetal DHEA-S-based estrogen production
by the placenta is a delicately balanced mechanism. Studies in baboon pregnancy show
that estrogen exerts a negative feedback control on the fetal DHEA-S synthesis by
suppressing the fetal adrenal responsiveness to ACTH (83,94,95).

Estrogen upregulates both low-density lipoprotein (LDL) receptor and P450scc
enzyme expression in the placenta, thus increasing placental syncytiotrophoblast LDL
uptake and p450scc activity (85,96). These estrogen-mediated actions are developmen-
tally regulated in an autocrine and/or paracrine manner in the placenta. Thus, although
in early and midgestational periods the fetal adrenal does not significantly contribute
to direct cortisol synthesis, it does so indirectly by producing DHEA-S.

In contrast, during late gestation and prior to birth, the fetal adrenal is the major
source of cortisol biosynthesis (88). The major substrate for cortisol synthesis by the
fetal adrenal is LDLs derived from the fetal liver (97). In addition, placental progesterone
also contributes to this cortisol biosynthesis by the fetal adrenal, although in late
gestation the conversion of placental progesterone to cortisol is minimal (98). The
estrogen-induced regulation of placental and fetal 11β-hydroxysteroid dehydrogenase
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(11βHSD) increases with advancing age and leads to increased oxidation of cortisol
to cortisone, thereby effectively decreasing fetal cortisol levels. This, in turn, regulates
the fetal HPAA resulting in an increase in ACTH-stimulated cortisol synthesis by the
fetal adrenal. In addition, estrogen through regulation of 11βHSD and cortisol synthesis,
plays an important role in the maturation of the hypothalamic-pituitary adrenal axis
(9,99,100) (Fig. 3).

The differences in steroid biosynthesis by the fetal zone and definitive zone are
based on the temporal and spatial expression of branch-point enzymes P450 17α-
hydroxylase/17,20 lyase (P450c17) and 3β-hydroxysteroid dehydrogenase (3βHSD)
(7,16,101,102) (Fig. 4a, b). The differential expression of these enzymes in the fetal
zone and the definitive zone determines whether the fetal adrenal gland converts pregne-
nalone to DHEA-S or cortisol. In situ hybridization, as well as immunocytohistochemis-
try studies, show that, all through gestation P450scc is expressed in all of the fetal
adrenal cortex. Throughout gestation, the fetal zone does not show expression of 3βHSD
in vivo, but does show p450c17 expression. Interestingly, the cells of this zone do
show expression of this enzyme when they are exposed to supraphysiological doses
of ACTH in vitro. In contrast, the definitive zone cells do not express p450c17 enzyme,
but between 22–24 wk of gestation show 3βHSD expression. By 28 wk, this enzyme
is expressed in the entire definitive zone and extends into the transitional zone. Thus,
the fetal zone mainly produces DHEA-S and is unable to synthesize cortisol due to a
lack or block of 3βHSD. On the other hand, the cortisol synthesis, which mainly occurs
during late gestation and near-term, is limited to the definitive zone. Thus, the temporal
expression of steroid hydroxylase enzymes in the definitive, transitional, and fetal zones
of the adrenal cortex is central to steroidogenesis by these zones (103,104).

MOLECULAR MECHANISMS

The twin processes of adrenal organogenesis and steroidogenesis are both governed
by underlying molecular mechanisms that not only regulate the growth and function
of the fetal adrenal, but also have a pivitol role in the remodeling of the fetal adrenal
into a self-sufficient and life-sustaining adult adrenal cortex. Endocrine, paracrine, and
autocrine factors are central to these molecular mechanisms. These factors include
human chorionic gonadotropin (HCG) and ACTH, several growth factors including
bFGF, EGF, TGF-α, IGF-1 and -2), and members belonging to the TGF-β family of
proteins including activin, inhibin, and TGF-β1, and the nuclear receptors SF-1, DAX-1,
and ER.

HCG and ACTH
The growth of the fetal adrenal in the first trimester of pregnancy is regulated by

HCG (4,5). Although evidence suggests that the HPAA axis is functional by about the
tenth week of intrauterine life, HCG appears to play a significant role in adrenal growth
during early gestation. In vitro studies by Seron-Ferre et al. on fetal adrenals between
12–17 wk gestational age show that HCG significantly increased DHEA-S secretion
(11,16). Furthermore, studies in anencephalic fetuses have shown that the adrenal gland
develops normally up to the fifth month of gestation (105), thus supporting the role of
HCG in early fetal adrenal cortical development.

ACTH plays a pivotal role in the growth, differentiation, and steroidogenesis of the
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Fig. 4. Please provide caption. Please provide caption. Please provide caption. Please provide caption.
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provide caption.

fetal adrenal cells (11,13,15–18,88,106–111). After the twentieth week of gestational
age, ACTH-mediated effects are of paramount importance in further growth of the fetal
adrenal (88). Studies of anencephalic fetuses shows that after the first 15 wk of gestation
in the absence of ACTH, the fetal zone of the adrenal gland fails to develop, which
results in a marked decrease in maternal estrogen levels. The growth of anencephalic
fetal adrenals can be partially restored by administration of ACTH to these fetuses
(73). In contrast, syndromes of excessive ACTH production such as Cushing’s disease
caused by ACTH producing tumors of the pituitary and congenital adrenal hyperplasia
caused by steroidogenic enzyme deficiencies lead to hyperplastic adrenal glands.
Although in vitro studies show that ACTH is not a direct mitogen for adrenocortical
cells grown in culture (110,112), it indirectly influences the growth of these cells in
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vivo (113–115). These indirect effects of ACTH on fetal adrenal glands are governed
by growth factors, which, in addition to mediating the effects of ACTH, also act directly
on the fetal adrenal to modulate its growth.

Growth Factors
Several growth factors including, bFGF, EGF, IGF 1 and 2, TGF-α, and members

belonging to the TGF-β family of proteins including activin, inhibin, and TGF-β1 play
a role in steroidogenesis, growth, and development of the adrenal gland (19). These
peptide growth factors are produced both by the placenta and the fetus. In conjunction
with ACTH, these growth factors play a role in the differential steroid biosynthesis by
the two zones of the fetal adrenal.

Basic Fibroblast Growth Factor

bFGF belongs to a family of mitogenic proteins. Cultured fetal adrenal cells from
midgestational human fetus showed that bFGF increases the proliferation of both the
definitive and fetal zone cells (21,22), as well as adrenal cortex-derived capillary
endothelial cells (23). However, its effect on cells of the definitive zone is twice that
on the cells of the fetal zone (21). In addition to direct mitogenic effects on fetal adrenal
cells, bFGF has indirect mitogenic effects, which are mediated through ACTH (25).
ACTH not only increases the expression of bFGF leading to increased cell proliferation,
but it also increases angiogenesis and vascularization of the fetal adrenal cortex (19).

EGF, TGF-a, and EGF Receptor

EGF and TGF-α are paracrine intracellular signaling molecules that belong to a
larger family of mitogenic proteins (116–118). These two growth factors share sequence
homology, activate the EGF receptor, and have similar biological functions.

Studies have shown that EGF is mitogenic to the midgestational cultured fetal adrenal
cortical and definitive zone cells (21,22), but not to cultures of adult bovine adrenal
cortical cells (22,119). Both EGF and TGF-α and other EGF receptor ligands mediate
their actions through the EGF receptor. Whereas, the expression of EGF, TGF-α, and
EGF receptor in human fetal adrenals was detected by RT-PCR, immunostaining only
showed the expression of TGF-α and EGF receptor. These studies indicate that in the
fetal adrenal instead of EGF, TGF-α may be the main peptide growth factor acting
through the EGF receptor (19,120). In vivo studies in late gestational-rhesus monkeys
show that treatment with EGF significantly increases the weight and width of the
definitive zones, as well as the amount of 3βHSD protein in both the definitive and
transitional zones of the fetal adrenal (121). However, this increase in weight is caused
by cellular hypertrophy and not hyperplasia. Luger et al. examined the effects of EGF
on primate HPAA by giving mouse EGF to rhesus monkeys. They determined that
mEGF increased the plasma levels of ACTH and cortisol in a dose-dependent manner.
However, further studies showed that EGF stimulates hypothalamic CRH release, but
does not cause pituitary ACTH release (26). Thus, in addition to its direct effects on
the fetal adrenal cells, EGF may influence the growth and steroidogenic activity of
these cells by increasing the 3βHSD protein and regulating the HPAA.

Insulin-Like Growth Factors 1 and 2

The endocrine, paracrine, and autocrine roles of IGF-1 and IGF-2 in proliferation
and differentiation of steroidogenic cells is well established (30,122). Growth hormone
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regulates IGF-1 levels, which mediates many of the somatotropic effects of growth
hormone (123). Northern blot and RT-PCR studies show that IGF-1 and 2, their
receptors, as well as binding proteins, are all expressed in human fetal adrenals (27,32).
However, in situ hybridization studies by Mesiano et al. have shown IGF-1 is expressed
only in the adrenal capsule, whereas IGF-2 is expressed by all cortical cells (124).
Recent studies on adult bovine adrenal cortical cells show that IGF-1 increases the
effects of ACTH on these cells (28). Specifically, in the bovine species, IGF-1 enhances
adrenal responsiveness to ACTH by increasing the ACTH receptors (125). Human
studies have shown that in addition to increasing the adrenal responsiveness to ACTH,
IGF-1 also increases the activity of 17α, 21-, and 11β-hydroxylases, thereby enhancing
steroidogenic activity of the adrenal (31).

Whereas IGF-1 has important roles in the postnatal steroidogenic tissues, IGF-2 has
a central role in the growth and development of the fetal tissues. In most fetal tissues
including the fetal adrenals where IGF-2 is detectable, its level of expression is higher
than that of IGF-1 (27,32). ACTH and IGF-2 are closely interlinked in the growth and
development of the adrenal cortex. In situ hybridization studies show that IGF-2 mRNA
is highly expressed in the cortical cells. Studies using cultured fetal adrenal cells have
shown that these cells retain their ability to express IGF-2 in response to ACTH (13,126).
This effect of ACTH on IGF-2 is limited to the fetal cortex and is not seen in early
postnatal period. Whereas ACTH increases IGF-2 expression, IGF-2 increases the
responsiveness of the adrenal cortical cells to ACTH. Studies also show that in conjunc-
tion with estrogen, IGF-2 promotes ACTH-stimulated DHEA-S synthesis. In addition,
it also regulates the steroidogenic enzymes p450scc, p450c17, and 3βHSD in the fetal
adrenal. These key enzymes are central to both cortisol and androgen biosynthesis by
the fetal adrenal (127). Thus, IGF-2 is a key growth factor in the fetal adrenal develop-
ment and steroidogenesis.

Transforming Growth Factor b Family of Growth Factors:
Activin, Inhibin, and TGF b1

Activin and inhibin are glycoproteins that belong to the TGF β family of proteins
(35). These proteins form homo- or heterodimers and are composed of α-, βA-, and
βB-subunits. The α-subunit, which is a part of the inhibin molecule only, heterodimerizes
with βA- and βB-subunits to form inhibin A and B, respectively. Whereas the subunits
βA, βB homodimerize to form activin-A (βAβA) and activin-B (βBβB) they heterodim-
erize to form activin-AB (βAβB). Immunocytohistochemistry and in situ hybridization
studies show that all the three subunits—α, β and βB, are expressed in the fetal and
adult adrenal cortex (36,37). In situ hybridization studies on cultured fetal adrenal
cortical cells show that ACTH upregulates the expression of the α, and βA subunit-
mRNA whereas, the βB unit mRNA expression is not affected. These data suggest
that ACTH stimulates the production of inhibin-A, as well as that of activin-A.

In addition to regulating the secretion of FSH by the pituitary, activin also has a
paracrine role in the granulosa cells of the ovary and in the fetal adrenal cortical cells,
which are both derived from the celomic epithelial cells. Although both of these tissues
show expression of activin, the function of activin in the adrenal cortical and ovarian
granulosa cells is not the same. Whereas, recombinant human activin-A promotes
granulosa cell proliferation, it inhibits fetal zone cell proliferation (36,37). Activin also
increases the ACTH-stimulated production of cortisol by the fetal zone cells, however,
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it has no effect on DHEA-S production by these cells. In contrast, activin had no effect
on growth or steroidogenesis in definitive or adult adrenal cortical cells. Interestingly,
recombinant human inhibin had no effect on either the growth or function of these
cells. A recent study by Spencer et al. also shows that activin promotes apoptosis in
the inner-cortical compartment of the adrenal suggesting that it may be responsible for
the involution of the fetal adrenal cortex during the postnatal period (38).

The paracrine/autocrine role of TGF-β1 in the adrenal cortex is well-established.
TGF-β1 acts by binding to its specific receptor on the fetal adrenal cells and this binding
is upregulated by ACTH (40). In the human fetal adrenal, TGF-β1 appears to be a
negative regulator of fetal and definitive zone cell proliferation and steroidogenesis
(128). Studies in bovine and ovine adrenal cortical cells show that it decreases the
expression of p450scc and 17a-hydroxylase expression in both basal, as well as the
ACTH-stimulated cells (33,34). Studies by Stankovic et al. show that this peptide factor
inhibits basal, as well as ACTH-stimulated steroid biosynthesis by the fetal adrenal
cells including DHEA-S and cortisol production in response to foskolin and dibutyryl
cAMP (39). In addition, these authors also show that it interferes with the ACTH-
stimulated expression of p45017α mRNA in both the fetal and definitive zone cells.
Interestingly, whereas TGF-β1 has no effect on ACTH receptor or p450scc expression,
it promotes the ACTH-stimulated expression of 3βHSD (129). Thus, both activin and
TGF-β1 are negative paracrine regulators of growth and steroidogenesis in the fetal
adrenal cortex.

Nuclear Receptors
SF-1, DAX-1, and ER are members of the nuclear hormone receptor superfamily

of proteins that have a common modular architecture (130–133). These nuclear receptors
have six functional domains. The A/B domain has a transactivation function and is
highly variable in both sequence and length. The C domain is highly conserved and
it is the DNA-binding domain (DBD), which is characterized by the presence of two
zinc-fingers. The highly variable D domain may have nuclear localization signals and/
or a transactivation function. The E domain is complex in function. In addition to ligand
binding, it also has specific regions for dimerization, nuclear localization, transactivation,
intermolecular silencing, and repression. Although the specific function of the F region
remains to be established, research has shown that this region is highly variable. The
members of this family are transcription factors, which in addition to maintaining
biological function, govern the expression of genes that regulate cellular growth, differ-
entiation, and apoptosis.

SF-1 and DAX-1 are crucial to adrenal organogenesis and steroidogenesis. These
nuclear receptors are classified as orphan receptors as their ligands are unknown (134).
DAX-1 is a unique member of the nuclear receptor family of proteins. Unlike other
members of this family, the transactivating A/B domain, the DNA-binding C domain,
and the hinge region or the D domain of the DAX-1 protein are replaced by 3.5 tandem
repeats of a 65–67 amino acid motif (135,136). Although DAX-1 differs markedly in
its N-terminal domain, it is also included in this family of proteins as it has a well-
conserved ligand-binding domain, which is similar to that of other members of this
superfamily. ER regulates gene transcription by binding to its ligand estrogen (137,138),
although recent studies show that ER can also regulate gene transcription in a ligand-
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independent manner through the transactivating function located in its A/B domain
(139,140).

Steroidogenic Factor 1 (SF-1)

Steroidogenic factor 1 (SF-1) is the mouse homolog of fushi tarazu factor 1 (52,141),
a cell-specific orphan nuclear receptor in the Drosophila, proposed to regulate the
expression of fushi tarazu (ftz-F1) homeobox gene (142,143). The gene encoding SF-1
in the mouse was also named ftz-F1. In situ hybridization studies in the mouse embryos
demonstrated that SF-1 was expressed in the gonads, the diencephalon, the urogenital
sinus, and the developing adrenal cortex (54,60,144,145). In the adult animal, this gene
is expressed in the steroidogenic cells of the adrenal glands and the gonads (45,146),
in the gonadotropic cells of the pituitary (147,148), and in the ventromedial nucleus
of the hypothalamus (VMH) (149,150). Targeted disruption of the ftz-F1 gene in mice
established its essential role in the organogenesis of these tissues (41–43,151). Thus,
these mice had agenesis of their adrenal glands, gonads, and the VMH, resulting in
complete congenital adrenal insufficiency and male-to-female sex reversal.

Homologs of SF-1 gene have been identified in several species (52,152–154) includ-
ing the human (155,156). It is significant to note that all SF-1 cDNAs identified and
characterized to date from various species showed a very high degree of sequence
conservation in their various functional domains (155,156). In several species, ftz-F1
genes encode at two or more transcripts (154,157–159). It is noteworthy that in the
mouse four distinct alternatively spliced products are derived from the ftz-F1 gene
(154). These four different transcripts, ELPs 1, 2, 3, and SF-1, are generated by
alternative use of nested promoters and splice sites. Functional studies of these tran-
scripts, using cotransfection experiments in NIH-3T3 cells, showed that although ELP
1 isoform, which lacks the AF2 domain, repressed the transcription of a reporter
construct containing the SF-1/ELP response element, ELP Isoforms 2 and 3 activated
transcription of this construct. Also, the ELP3 isoform in this species, which is expressed
in the pituitary, is controled by a promoter different than the one that controls the SF-1
isoform, which is expressed in the steroidogenic tissues. In the zebra fish (159), two
isoforms of this receptor function differently. The nontruncated form of this receptor
(zFF1A) not only stimulates the gonadotropin β-subunit promoter, but also synergizes
with ER to further activate this promoter. The C-terminally truncated version (zFF1B),
however, does not synergize with ER to regulate the gonadotropin b-subunit promoter,
but it does function as repressor. These data suggest that the isoforms have differential
species-specific tissue expression, regulation, and function.

To determine the role of SF-1 in humans, we recently isolated and characterized
human steroidogenic factor 1 (hSF-1) by heterologous probing of a λgt11 fetal adrenal
cDNA library, using a mouse SF-1 cDNA probe that did not include the region coding
for the zinc finger domain (155). The human cDNA sequence showed a high degree
of homology (>95%) found in both the bovine and murine sequences. The zinc fingers,
the FTZ-1 box and the AF2 domains showed 100% conservation of the derived amino
acid residues with a lesser degree of homology in the ligand-binding/dimerization
domains (Fig. 5).

Following the cloning and sequencing of hSF-1 cDNA, we defined the sites of hSF-1
mRNA expression in human tissues by both Northern blot and in situ hybridization
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Fig. 5. Please provide caption. Please provide caption. Please provide caption. Please provide caption.
Please provide caption. Please provide caption. Please provide caption. Please provide caption. Please
provide caption.

analyses (160). These studies revealed high hSF-1 mRNA expression in the adrenal
cortex, ovaries, testes, and the spleen. Northern blot analysis of these tissues revealed
a main message of 3.5 kb. Interestingly, the spleen showed three additional transcripts
of 2.4 kb, 4.4 kb, and 8.0 kb. Specifically, the additional 4.4 kb transcript was also
seen in several peripheral tissues, the CNS and several components of the limbic system,
as well as the myeloid and lymphoid cancer cell lines. The human gene encoding SF-1
is highly homologous to that of other species, and the pattern of hSF-1 expression in
the adrenal glands and gonads is similar to that seen in the mouse and the cow. The
expression of SF-1 in the steroidogenic tissues in the human parallels that of the mouse.
Although in the human CNS, unlike in the mouse, the expression of hSF-1 mRNA is
not limited to the hypothalamus, as is the case in the mouse. The species-specific wide-
spread distribution of SF-1 in the human CNS and the strong expression of SF-1 in
the reticuloendothelial network of the human spleen suggest that SF-1 may have a
more comprehensive role in the human than in other species.

Northern blot analysis of the human placenta did not reveal hSF-1 message after a
16-h exposure, however, a weak signal was noted after 8 wk of exposure. SF-1 message
expression in the bovine and human placenta was previously reported, using the highly
sensitive RT-PCR technique (161). The apparently low expression of hSF-1 in human
placenta suggests that it may not have a major role in placental steroidogenesis. This
view is supported by previous studies that demonstrated expression of SF-1 mRNA in
BeWo human choriocarcinoma cells only by the highly sensitive RT-PCR technique,
nonexpression of the StAR gene in the placenta (162), expression of P450 side-chain-
cleavage enzyme in the placenta of SF-1-deficient mice (43), use of SFRE-deficient
aromatase promoter 1.1 for placental aromatase gene transcription (163), and regulation
of placental p450scc gene transcription by a 55-kDa protein that is expressed in the
placenta, but not in the adrenal cortex (164). The data from these studies along with
our own data suggest that alternative pathways of steroid metabolism or functional
homologs of hSF-1 may be operational in human placental steroidogenesis.
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In situ hybridization studies of normal architecture adrenal gland showed similar
distribution of SF-1 mRNA signal in all the three zones of the adrenal cortex (160).
However, within each cortical zone, the signal distribution was heterogeneous. Interest-
ingly, in our in situ hybridization studies of a normal nodular variant of the adrenal
gland, we detected a very high SF-1 gene expression in the proliferative nodules. Sasano
et al., using immunohistochemistry also demonstrated the heterogeneous distribution
of the signal of Ad4BP, the bovine homolog of SF-1, within each of the three cortical
zones of normal, neoplastic, and atrophied human adrenal glands (165). These data
suggest that, in addition to regulation of steroidogenesis, SF-1 may also have a role
in regulating the growth and proliferation of adult adrenal cortical cells.

In situ hybridization studies in the ovary demonstrated that hSF-1 mRNA was
abundant in granulosa cells at all stages of follicular development, except for primordial
follicles, and was also present in corpora lutea. Both the theca internal and thecatet
external cells surrounding the graafian follicles also expressed hSF-1 mRNA. hSF-1
mRNA, however, was also seen in atretic follicles, which normally are not steroidogenic.
A recent study showed that enhanced SF-1 expression is associated with GC differentia-
tion, and that it inhibits TPA-induced mitosis of these cells (166). Given its role in GC
cell differentiation and its increased expression in the adrenal nodules, as seen in our
in situ hybridization studies, it is conceivable that SF-1 may also govern the fetal
adrenal cell proliferation, differentiation, and apoptosis.

In the adult testis, hSF-1 expression was seen in both the interstitial cells and the
inner border of the seminiferous tubules, suggesting expression in the steroidogenic
Leydig cells and the germinal epithelium. Our results suggest that in the human testis,
in addition to steroidogenesis, hSF-1 may also have a role in the function of spermato-
genesis.

The data in other species and our human tissue expression studies of this gene
suggest that SF-1 isoforms may be present in the human, and it is conceivable that
these isoforms have differential tissue expression, function, and regulation. It is therefore
also conceivable that mutations, deletions, or rearrangement of the genes encoding
hSF-1 or putative hSF-1 isoforms may result in aberrant or truncated proteins with
disrupted function leading to defective fetal adrenal organogenesis and steroidogenesis.
Ultimately, this could manifest as the clinical syndrome of non-X-linked autosomal
recessive congenital adrenal hypoplasia, or dysregulated steroidogenesis. Thus, SF-1
may be pivotal to the organogenesis of the fetal adrenal gland, including its remodeling
into a self-sufficient neonatal organ.

Previous studies have revealed that SF-1 plays a pivotal role in the transcriptional
regulation of several genes coding for steroidogenic enzymes (56,61,167–179). It is
becoming increasingly clear that as a transcription factor SF-1 is crucial to adrenal
steroidogenesis at more than one level. In addition to its role as a regulator of steroid
hydroxylase enzyme expression, SF-1 also has a role in stimulating the promoter
activities of genes encoding the ACTH receptor (180,181), steroidogenic acute regula-
tory (StAR) protein (182,183), and the scavanger receptor-type class BI (SR-BI)
(184,185). Whereas the StAR protein is crucial to the translocation of cholesterol from
the outer to the inner mitochondrial membrane for its conversion to pregnenolone,
the SR-BI/CLA-1 protein mediates the selective transport of lipids from high-density
lipoproteins (HDL) to steroidogenic cells and thus, provides these cells with the choles-
terol substrate for steroidogenesis (184). Similar to its expression in the rodents, in the
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human, SR-BI mRNA is highly expressed in the adrenal and the ovary. Interestingly,
its expression in the fetal adrenal is estimated to be 50 times greater than its expression
in the adult adrenal gland. SR-BI receptor is highly expressed in the fetal zone of the

AU: sentenceadrenal cortex, where DHEAS is synthesized. Fetal adrenal gland also expresses LDL
correct here?and LDL receptor (LDLR). Although the relative role of SR-BI and LDLR in providing

cholesterol to fetal adrenal cells for steroidogenesis is not known, studies show that in
addition to HDL, SR-BI also binds to LDL (186,187). Thus, SR-BI may also have a
role in providing LDL to the fetal adrenal for steroidogenesis. Clearly, not only is SF-1
critical for the constitutive activity of the human ACTH receptor-gene promoter, but
it also regulates the genes that are important in providing the substrate, cholesterol,
for adrenal and gonadal steroid biosynthesis. Furthermore, SF-1 is a global regulator
of steroid hydroxylase enzymes. Collectively, these studies establish SF-1’s role at
multiple levels of the HPAA axis and underscore the central role of SF-1 in fetal
adrenal steroidogenesis.

SF-1 also plays a critical role in the regulation of genes crucial to development, and
maintenance of the reproductive function. SF-1 regulates the genes coding for aromatase
(53,188–192), Mullerian inhibiting substance (193,194), oxytocin (195,196), prolactin
receptor (197), the α-subunit of the glycoprotein hormones (198), the β-subunit of
luteinizing hormone (199,202), gonadotropin-releasing hormone receptor (203). SF-1
may regulate the expression of DAX-1. Recent cotransfection studies in NCI-H295
cells using wild-type and deletional SF-1 mutant expression vectors show that a func-
tional SF-1 response element is present in the DAX-1 promoter, which enhances the
activity of this promoter (204). Also, SF-1 and chicken ovalbumin upstream promoter-
transcription factor (COUP-TF) modulate the expression of DAX-1 (205). Whereas
SF-1 stimulates murine DAX-1 promoter, COUP-TF inhibits its activity.

Recent studies suggest that similar to other members of the nuclear receptor superfam-
ily SF-1 also interacts with cofactors such as SRC-1 and CBP/p300 to regulate gene
transcription. Most nuclear receptors contain two transactivation domains, called AF1
and AF2 domains, located in the N-terminal and C-terminal regions, respectively (206).
Unlike other members of this superfamily, our studies show that in the human, as in
other species, SF-1 does not have an AF-1 domain in the N-terminal region (155).
However, it has a unique region termed the Ftz-F1 box followed by a proline-rich
region located just downstream from the DNA-binding domain. Whereas the Ftz-F1
box facilitates the binding of SF-1 to its response elements in the target DNA (207),
the proline-rich region is proposed to contribute to transcriptional activation (208).
More recently, Li and colleagues have shown that the Ftz-F1 box together with the
proline-rich region termed the FP region, functions in nuclear localization and interaction
with basic transcription factor TFIIB and c-jun (209). Our studies also show that in the
human SF-1, the carboxy-terminal-AF2 domain, which forms an amphipathic α-helix, is
conserved. The AF2 region, which is essential for protein–protein interaction between
SF-1 and the cofactors (210, 209, 211), is also important in protein kinase-C potentiation
of SF-1-regulated reporter gene activity (212). Jacob et al. show that expression of
AF2 mutants of SF-1 in the presence of PKA-C drastically inhibited the transcriptional
activation of endogenous SF-1 (212). Thus, the AF2 mutant has a dominant negative
effect suggesting that the AF2 domain of SF-1 is essential for the activation of SF-1
by cAMP-dependent PKA mediated signaling pathway. Ito et al., using cotransfection
experiments in JEG-3 cells, show that although SRC-1 and CBP/p300 act synergistically
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to potentiate the transcription by SF-1, CBP/p300 in of itself is unable to enhance SF-1
mediated activity of the reporter gene (213). However, Monte et al. show that in NCI-
H295 cells the SF-1-mediated activity of p450scc gene promoter, which has multiple
SF-1 binding sites, is enhanced by CBP/p300. These experiments suggest that SRC-1
is also a cofactor for SF-1 and that the interactions between SF-1 and CBP/p300 are
cell and promoter specific (214). The interaction of SF-1 with other proteins, as well
as cofactors, may play a significant role in adrenal steroidogenesis. Liu and colleagues
have shown that an interaction between SF-1 and Sp1 is necessary for the regulation
of the cholesterol side chain cleavage enzyme (p450scc) gene expression. This may
either be a direct protein–protein interaction between these two transcription factors,
or it may be mediated through coactivator CBP/p300 (215). SF-1 and DAX-1 interactions
may involve competition for shared coactivator proteins, such as SRC-1 and CBP/
p300 (213,216). Thus, the interactions of SF-1 with cofactor proteins expands SF-1’s
repertoire of strategies for target gene regulation.

DAX-1

Adrenal hypoplasia congenita (AHC) was mapped to Xp21 by studies in male patients
with contiguous gene deletion syndrome (217–220). These patients have complex
glycerol kinase deficiency, X-linked AHC, and/or Duchenne muscular dystrophy caused
by gene deletions in the Xp21 locus. Following the isolation of DAX-1 gene, mutations
in this gene were identified in patients with X-linked AHC and hypogonadotropic
hypogonadism (48,221). The gene-encoding DAX-1 (Ahch gene) consists of two exons
separated by an intron. DAX-1 is a unique member of the nuclear receptor family of
proteins. Unlike other members of this family it differs markedly in its N-terminal
region, which does not have the classical DNA-binding domain. In the DAX-1 protein,
the transactivating A/B domain, the DNA-binding C domain and the hinge region or
the D domain are replaced by a 3.5 tandem repeats of a 65–67 amino acid motif whereas
the ligand-binding domain or the E domain is homologous to the E domain of other
family members. Within this E domain are regions II and III that are thought to play
important roles in ligand binding, dimerization, and transactivation. These regions are
also well-conserved in the DAX-1 protein (48,135,136,222). In addition, similar to
other members of this family such as ER, retinoic acid receptor (RAR), retinoic X
receptor (RXR), thyroid receptor (TR), and SF-1 (155,223–226), the AF2 domain in
the carboxy terminal region of DAX-1 is well-conserved (49). Recent studies in patients
with X-linked AHC, have revealed truncations or mutations of DAX-1 gene in this
C-terminal region (216,227,228), thus establishing its critical role in adrenal organo-
genesis.

DAX-1 gene expression is tissue specific and this expression is developmentally
regulated. It is highly expressed in the fetal and the adult adrenal gland, ovaries, testes,
pituitary, and the hypothalamus (48,49,64,229,230). It is significant that SF-1 and
DAX-1 show parallel tissue expression, which suggests that these two transcription
factors may coregulate adrenal and gonadal organogenesis, as well as steroidogene-
sis (71).

The mitochondrial StAR protein, which plays a pivotal role in the translocation of
cholesterol from the outer to the inner mitochondrial membrane was recently isolated
and characterized from LH-induced mouse MA-10 Leydig tumor cells (231,232). In
gonadal and adrenal cells, there is a direct correlation between the expression of StAR
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gene and steroidogenic activity (231). Tropic hormones, ACTH and LH, regulate steroid
biosynthesis by increasing the translocation of cholesterol from the outer to the inner
mitochondrial membrane. Subsequently, the cholesterol side chain cleavage enzyme
(p450scc), which resides in the inner mitochondrial membrane, catalyses the conversion
of cholesterol to pregnenolone. Although the exact mechanism underlying this tropic
hormone-stimulated acute steroidogenic response is not clear, recent studies have shown
that the tropic hormone-stimulated expression of StAR mRNA and protein was within
a time frame concomitant with acute steroid biosynthesis (231,233). Furthermore, recent
studies on patients with lipoid congenital adrenal hyperplasia showed that these patients
are unable to synthesize adrenal and gonadal steroids due to mutations in the StAR
gene, thus confirming the critical role of this gene in steroid biosynthesis (234,235).

Recent studies have shown that DAX-1 blocks steroidogenesis not only by inhibiting
the activity of StAR, but also by inhibiting the expression of p450scc and 3β-HSD
expression (236). Using transient cotransfection experiments, Zazapoulos et al. have
recently demonstrated that despite the unique N-terminal region of DAX-1, which does
not have any known DNA-binding motif, DAX-1 binds to the StAR promoter to act
as a powerful repressor of both basal and cAMP-stimulated activity of the StAR promoter
(72). These investigators also show that DAX-1 represses StAR gene expression by
binding with equal efficiency to both hairpin structures and stems composed of 10–24
nucleotides in the StAR promoter. It is interesting to note that even though the presence
of the loop structure in the StAR promoter is crucial to binding of the DAX-1 protein
to the promoter, the sequence of the loop itself influences the binding efficiency of
DAX-1. Loops rich in thymines or cytosines show increased binding as compared to
loops rich in adenines. This study directly links DAX-1 to the StAR protein-mediated
regulation of acute steroid biosynthesis in the adrenals and the gonads.

X-linked AHC, is a life-threatening disorder that mostly presents in infancy although
it can also present later in childhood. It is characterized by adrenal insufficiency
manifesting as glucocorticoid and mineralocorticoid deficiency in males and these
infants show a blunted or absent adrenal steroid response to ACTH stimulation. Appro-
priate replacement therapy with glucocorticoids and mineralocorticoids ensures survival

AU: HH orof these children. These children also develop hypogonadotropic hypogonadism (HH)
HHG as statedat puberty. The permanent zone of the adrenal cortex is absent in AHC, and there is
on p. 21? pls
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persist resulting in adrenal insufficiency (48,65,221). Studies in families with AHC
show that DAX-1 mutations are responsible for both AHC and HH (66). Microdeletions,
insertions, point mutations, microduplications, and base substitutions in the DAX-1
gene resulting in frameshifts and truncated DAX-1 proteins have all been described in
patients with isolated AHC and hypogonadotropic hypogonadism. In addition to inher-
ited forms of this disorder, de novo mutations of the DAX-1 gene have also been
reported in this disorder (237). Mutations in the DAX-1 gene have been found both
in the unique N-terminal, as well as the C-terminal domains of the DAX-1 protein
(48,49,67,68,238). Recent studies have shown that the silencing activity of the DAX-1
protein, which resides in the C-terminal region may be crucial to the pathogenesis of
X-linked AHC (216,228). It is significant to note that in patients with AHC all the
naturally occurring DAX-1 deletional mutants reported to date show deletions of this
silencing domain of the DAX-1 protein. Interestingly, even among patients harboring
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the same DAX-1 mutation, there is a great degree of variability in expression of adrenal
insufficiency including the age of onset and the severity of clinical symptoms. This
variability in the clinical expression of the disease could be explained on the basis of
the variability of adrenal organogenesis found in patients within the same kindred with
the same DAX-1 mutation. Later in life, these children also develop hypogonadotropic
hypogonadism (HHG). This HHG is either caused by a pituitary defect in gonadotropin
production or caused by a hypothalamic defect in GnRH production or a combination
of the two (66).

Targeted disruption of DAX-1 gene in the mouse has revealed that the development
of the fetal and adrenal cortical zones in the wild-type and the DAX-1 gene deleted
mouse are similar until sexual maturation (70). At puberty in the DAX-1 gene-deleted
adult mouse, the fetal adrenal zone fails to regress. This failure of the fetal zone to
regress is similar to the persistence of fetal zone cells in adrenals of patients with
DAX-1 mutations. However, unlike these patients, the DAX-1 gene knockout mice
have normal zona glomerulosa and fasciculata and do not require corticosteroid replace-
ment for survival. Thus, the role of DAX-1 in mice and humans in adrenal organogenesis
is not identical.

Estrogen Receptor (ER)

Estrogens have a key role in cell growth, differentiation, and function of diverse
tissues, including bone, liver, the cardiovascular system, central nervous system, and
the reproductive system. Estrogen actions are mediated through ERs, which are members
of the steroid-receptor superfamily (137,239,240). In addition to the previously charac-
terized ER, now called ERα, a homolog of ERα, called ERβ, was recently characterized
both in the rat and the human (241–243). These ERs are expressed in a tissue-specific
manner. ERα is expressed in the female reproductive system as well as in the placenta
(9). In adult humans, ERβ expression was found in the testes, ovary, and pituitary
gland (243–246). In the human fetus, semiquantitative RT-PCR revealed that ERβ was
highly expressed not only in the ovaries and testes, but also in the spleen and adrenal
glands (247). In contrast, the expression of ERα was very low in the fetal spleen and
absent in the fetal adrenal. Recent transfection studies show not only that these two
subtypes of estrogen receptor signal differently, based on the ligand and the response
element, but also that they may have different roles in gene regulation (248,249). These
ERs, primarily nuclear proteins, bind to their recognition sites either as homodimers
or as ERα and ERβ heterodimers (137,138,250). Studies have shown that ERα can
bind to its palindromic DNA recognition sequence both in the presence and in the
absence of its ligand, estrogen (139,251). This ligand-independent ERα action is cell-
and promoter-specific, and it is attributed to transactivation function 1 (TAF-1), located
in the A/B region of the receptor (139,252–254). Transactivation function 2 (TAF-2)
of this receptor is located in the carboxy terminal end of the E-domain and is ligand-
dependent (252). ER can also modulate its target gene transcription by participating
in protein–protein interaction with activator or repressor proteins (255–258).

As discussed earlier in this chapter under the section on steroidogenesis, estrogen
is central to fetal steroidogenesis. Through this role, it also regulates fetal adrenal
organogenesis and maturation. These actions of estrogen are mediated through its
receptor ER isoforms that are expressed both in the placenta and the fetal adrenal.
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Steroid Receptor Interactions in the Regulation of Target Genes
Recent studies have demonstrated that the mechanism of steroid-receptor interaction

plays a significant role in the regulation of target gene expression. These nuclear
hormone receptors use several mechanisms to elicit their actions (132,259–262). They
mediate gene transcription by binding to their respective highly conserved and specific
enhancer sequences called hormone response elements (HREs), located in the target
genes (130,263). Although they primarily recognize specific HREs, these receptors can
also bind competitively to other steroid receptor HREs that are similar to their own.
Furthermore, they can also bind to overlapping response elements or they can regulate
gene transcription through protein–protein interaction with other transcription factors
or with a common cofactor (256,264–267). Finally, the generation of protein isoforms,
either by alternative splicing of the pre-mRNA or by gene homologs, expands steroid
receptors’ repertoire of strategies to fine-tune gene expression (268–270).

Oxytocin and c-fos gene promoters, which are regulated by a number of steroid
receptors, illustrate the mechanism of steroid-receptor interactions in target gene regula-
tion. In rat and human oxytocin genes, a composite hormone response element confers
responsiveness to ER, retinoic acid receptor (RAR), thyroid receptor (TR), and orphan
nuclear receptors SF-1 and COUP-TF (196). Proto-oncogene c-fos functions as a master
switch, directs cell proliferation, differentiation, and apoptosis; integrates cytoplasmic
signal transduction pathways with gene transcription; and governs signal processing
in neuronal cells (271,272). Whereas steroid receptor ER, retinoic acid receptor(s), and
vitamin D receptors regulate the c-fos gene at a transcriptional level, other steroid
receptors, such as the glucocorticoid receptor, interact with the protein products of
these proto-oncogenes to regulate gene transcription (271). Similarly, the modulation
of murine DAX-1 gene promoter by SF-1 and COUP-TF is yet another example of
coregulation of target genes by nuclear receptors (205). Synergistic interaction between
SF-1 and ER in the regulation of the salmon IIβ subunit gene has been recently reported
(199). Also, recent studies with SF-1-expressing R2C (Leydig tumor) cells cotransfected
with murine StAR promoter luciferase construct, showed increased reporter gene activity
with the addition of estradiol (273). These reports point to SF-1 and ER interactions
in the regulation of their target genes.

SF-1 and ER Interactions. As aforementioned, protein regulates the key first step
in acute steroidogenic response to tropic hormone stimulation by translocating choles-
terol from the outer to the inner mitichondrial membrane. Furthermore, mutations in
the StAR gene lead to congenital lipoid adrenal hyperplasia. Recent studies on the
transcriptional regulation of StAR gene have established hSF-1 as a key regulator of
basal and cAMP-mediated StAR gene expression (183,274). The human StAR promoter
has multiple hSF-1 response elements (SFREs), which are essential for cAMP-dependent
activation of the StAR gene (161,182,183). Mutation of both the proximal and distal
sites in the StAR promoter abolishes SF-1-directed StAR activity. In addition, electromo-
bility shift assays reveal that whereas the distal site, which has a SF-1 consensus
sequence, binds to SF-1 expressed in COS-1 cells, the mutated distal site does not do
so. The proximal site, an ER consensus half-site, also binds to SF-1, but with lesser
degree of affinity than the distal site. However, cotransfection studies reveal that the
mutated proximal site abolishes SF-1-stimulated StAR promoter activity by 91%,
whereas mutated distal site reduced this activity by only 80% (161).

Our transient cotransfection studies done in HeLa cells using the human SF-1 expres-
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sion vector and human StAR promoter also show that hSF-1 is a regulator of the human
StAR promoter through these SFREs. Data from these studies also show that in the
absence of either hSF-1 or cAMP, human ERα (hERα) stimulates StAR promoter.
These studies suggest that hSF-1 and ER not only independently stimulate the StAR
promoter-activity, but also that hSF-1 has a downregulating effect on ER’s ability to
stimulate StAR promoter activity (46). Thus, hSF-1 and ER may coregulate StAR
promoter activity, thereby regulating adrenal steroidogenesis and organogenesis. Fur-
thermore, StAR may not be the only common target gene that hSF-1 and ER coregulate
in fetal adrenal steroidogenesis.

Estrogen modulates fetal adrenal steroidogenesis in several ways. Whereas estradiol
indirectly increases the fetal adrenal DHEAS production by enhancing the ACTH-
stimulated production of this estrogen precursor (127), it directly inhibits the production
of DHEAS by downregulating the steroidogenic enzyme p450c17 (275). Interestingly,
recent studies have shown that SF-1 is also a transcription factor for the gene encoding
this enzyme (61,173,176,276,277). Also, both SF-1 (41,54) and ERβ (247) are expressed
in the fetal adrenal gland. Therefore, SF-1 and ER may potentially coregulate p450c17
gene expression and modulate DHEA synthesis in the fetal adrenal. In addition, ER
also upregulates the expression of p450scc (278), which is also a SF-1 target gene
(167,169,171). Therefore, these two receptors may coregulate fetal adrenal steroid
biosynthesis at multiple levels.

SF-1 and DAX-1 Interactions. Orphan nuclear receptors SF-1 and DAX-1 are
coexpressed in the developing hypothalamus, pituitary, gonads, as well as the adrenal
glands (71). SF-1 and DAX-1 gene knockout studies in the mouse and mutations of
human SF-1 (63) and the DAX-1 (48,221) genes resulting in the syndrome of non-X-
linked and X-linked AHC, respectively, suggest that these two transcription factors are
closely connected to the development and function of steroidogenic organs. Recent
studies suggest that SF-1 and DAX-1 act in consort to control steroidogenesis by
regulating the StAR gene promoter (213). Although SF-1 stimulates the StAR promoter
activity by binding to the multiple SFREs (183), the DAX-1 protein acts as a repressor
of StAR gene activity by binding to hairpin structure and loops in the StAR promoter
(72). Furthermore, recent studies using cotransfection experiments and deletion con-
structs of DAX-1, suggest that DAX-1 inhibits SF-1-mediated transactivation of target
genes (216). In addition, these studies also suggest that the carboxy terminal domain
of the DAX-1 is responsible for this inhibitory function. These studies also suggest
that a protein–protein interaction between SF-1 and DAX-1 or competition for a common
coactivator are possible mechanisms responsible for DAX-1 mediated inhibition of
SF-1 responsive gene activity.

A large number of the DAX-1 truncated mutants have been identified in patients
with X-linked AHC. What is most interesting is that in all these truncated mutants the
putative carboxy terminal inhibitory domain is deleted (216,227). Furthermore, two
naturally occurring mutations of DAX-1 gene: one with amino acid substitution (R267P)
and the other with single-amino-acid deletion (∆ V269) also showed a reduced DAX-1
inhibitory activity. These patients with DAX-1 mutations resulting in AHC provide
compelling evidence that loss of this inhibitory effect of DAX-1 on developmentally
regulated target genes may contribute to the pathogenesis of AHC (228). A recent
study suggests that DAX-1 recruits N-CoR (nuclear receptor corepressor) to SF-1
(279). Whereas the naturally occurring mutations of DAX-1 allow DAX-1 and SF-1
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interactions they markedly diminish the recruitment of corepressor. Thus, it is conceiv-
able that impaired DAX-1-mediated inhibition of SF-1 responsive genes during develop-
ment may play a significant role in organogenesis of the adrenal gland and, therefore,
the syndrome of AHC.

SUMMARY

The development and remodeling of the fetal adrenal gland and its transition to a self-
sufficient adult organ capable of sustaining life is a complex and temporally orchestrated
process that is regulated by endocrine, paracrine, and autocrine factors that are derived
both from maternal and fetal sources. The twin processes of fetal organogenesis and
steroidogenesis are closely intertwined. The key cellular functions of proliferation,
differentiation and apoptosis, which govern organogenesis of the fetal adrenal, are all
regulated by HCG and ACTH, the growth factors, and the nuclear receptors SF-1,
DAX-1, and ER. In addition, the fetoplacental unit, which is pivotal to the fetal adrenal
steroidogenesis, is also the source of and at the same time is regulated by these endocrine,
paracrine, and autocrine factors. Although the role of HCG and ACTH has been well-
known for the past two to three decades, more recent studies have clearly established
the seminal role of growth factors and nuclear receptors in both organogenesis and
steroidogenesis of the fetal adrenal. Gene knockout studies in mice as well as transient
transfection experiments using cell-culture systems have increased and enhanced our
understanding of the molecular mechanisms underlying the cellular functions of growth,
remodeling as well as steroidogenesis. Furthermore, studies on patients with X-linked
AHC, which showed that DAX-1 gene mutations result in both AHC, as well as
hypogonadotropic hypogonadism, and a recent study on a patient with non-X-linked
AHC have established the fundamental role of nuclear receptors, DAX-1, and SF-1 in
adrenal organogenesis. The increasing body of knowledge about the underlying molecu-
lar mechanisms that regulate fundamental cellular functions will enable us in the future
to design novel therapies for disorders of the adrenal organogenesis and steroidogenesis.
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