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CHAPTER 1

Introduction

1.1 AT THE SOURCES

Population dynamics is the study of how and why population numbers
change in time and space. Thus, population dynamicists document the
empirical patterns of population change and attempt to determine the
mechanisms explaining the observed patterns. Temporal population
dynamics is not the only subject that population ecologists study.
Among other things, they are also interested in statics (what sets the
level around which populations fluctuate) and population structure
(e.g., age distribution). More recently, there has been a lot of progress
in spatiotemporal dynamics of populations. Nevertheless, population
dynamics in time has been at the core of population ecology ever
since the origins of the discipline during the 1920s (Kingsland 1995),
largely as a result of efforts of Charles Elton, Alfred Lotka, Vito
Volterra, and A. J. Nicholson.

1.1.1 The Puzzle of Population Cycles

Abrupt and seemingly inexplicable changes in population numbers
have fascinated and puzzled humanity from prehistoric times. The
Bible records the effects of locust swarms and mice “plagues” on
humans. Hunters and trappers surely knew about periodic changes
in populations of furbearing mammals and game birds. Norwegians
have long been aware of mysterious invasions by lemmings (Stenseth
and Ims 1993a). Nordic folklore has provided the basis of the modern
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myth of lemmings marching off to the sea to commit mass suicide,
as popularized by Walt Disney’s White Wilderness.

The scientific study of population oscillations begins with the work
of Charles Elton (Stenseth and Ims 1993a; Lindstrom et al. 2000). In
1923 the young Elton passed through the Norwegian town of Tromsg
on his way back from a zoological expedition to the Spitsbergen. In
a Tromsg bookstore, he noticed Norges Pattedyr (Norwegian mam-
mals) by Robert Collett. Although Elton could not read Norwegian,
he noticed a very curious—apparently periodic—pattern in the abun-
dance of Norwegian lemmings. With some of the last of his money,
Elton bought the book, brought it with him back to Oxford, and had
it translated into English. In 1924, Elton published the pioneering
article “Periodic Fluctuations in the Number of Animals: Their Cause
and Effects” (Elton 1924), based largely on Collett’s data (Stenseth
and Ims 1993a; Crowcroft 1991).

About the same time, Elton read The Conservation of the Wild
Life of Canada by Gordon Hewitt, which contained graphs of the
annual fur returns of the Hudson’s Bay Company showing remark-
ably regular oscillations in the numbers of lynx and snowshoe hare
pelts (Crowcroft 1991:4). Elton was appointed biological consultant
to the Hudson’s Bay Company in 1925, and examined the company’s
records to trace the dynamics of Canada lynx populations back to
1736. The results of this research were eventually published in 1942
(Elton and Nicholson 1942). A second line of attack consisted of
empirically studying fluctuations in the numbers of British voles,
using Oxford as a base (Crowcroft 1991:6). While Elton and his group
were engaged in these empirical studies, momentous changes were
occurring in the field of theoretical ecology.

1.1.2 Modeling Nature

By a curious coincidence, the mathematical study of population oscil-
lations started practically at the same time as Elton was puzzling
over lemming cycles (Lotka 1925; Volterra 1926). The two traditions,
the empirical and the mathematical, although having started almost
simultaneously, developed largely separately. Only three-quarters of a
century later we are starting to see a true synthesis.
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Theory is important because there is a tendency for common
phenomena to be overlooked or misinterpreted in the absence of
a well-known body of theory (Abrams 1998:211). One ecological
illustration of this tendency is the meager experimental evidence for
apparent competition that Holt (1977) could marshal in the article
where he proposed the concept, compared with the large body of
evidence reviewed by Holt and Lawton (1993) seventeen years later
(Abrams 1998). So it was at the beginning of the study of population
cycles. In his first paper on population cycles, Elton wrote: “It will
be shown in the body of this paper that the periodic fluctuations
in the numbers of certain animals there dealt with, must be due to
climatic variations” (Elton 1924:119). When Volterra’s 1926 article
appeared in Nature, Julian Huxley, Elton’s former tutor at Oxford,
brought it to him, and Elton immediately realized its importance.
The generation of population cycles through endogenous causes was
new and unexpected (Kingsland 1995:127).

1.1.3 The Balance of Nature

Whereas the study of population oscillations originated with the
empirical work of Elton and the theoretical work of Lotka and
Volterra, time-series analysis of population fluctuations can be traced
to the famous debate about population regulation, which crystallized
at the 1957 meeting in Cold Spring Harbor. One of the protagonists
in the debate was A. J. Nicholson, who developed the theory of
population regulation by density-dependent mechanisms (Nicholson
1933, 1954). Nicholson’s views were supported by Elton, who wrote,
“it is becoming increasingly understood by population ecologists that
the control of populations, i.e., ultimate upper and lower limits set
to increase, is brought about by density-dependent factors” (Elton
1949:19). Andrewartha and Birch (1954:649) disagreed: density-
dependent factors “are not a general theory because ... they do
not describe any substantial body of empirical facts.” The debate
reached a peak at the Cold Spring Harbor Symposium (Andrewartha
1957; Nicholson 1957). It has continued ever since, reaching another
peak of intensity during the 1980s (a review in Turchin 1995b),
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although currently some consensus is apparently beginning to emerge
(section 5.4).

An interesting thing happened while the regulation debate was
raging. First, empirical ecologists began collecting long-term data
on population fluctuations of a wide variety of organisms. It is
curious that a lot of long-term data sets were started during the
1940s and 1950s (i.e., just when the debate was at one of its peaks!).
Next, quantitative ecologists started analyzing these time-series data
(Moran 1953; Bulmer 1974; Berryman 1978; Royama 1981; Potts
et al. 1984; Turchin 1990) using, in the beginning, such linear
approaches as the Box-Jenkins time-series analysis. Then, ecologists
(most notably, Robert May) participated in the nonlinear dynamics
revolution (Gleick 1988). When physicists invented the new technique
of attractor reconstruction in time-delayed coordinates (Takens 1981;
Packard et al. 1980), some ecologists began applying it to ecological
time series (Schaffer 1985). Classical time-series analyses and non-
linear dynamics approaches were eventually merged in a synthetic
approach to the analysis of ecological data (these approaches will
be discussed in part IT), and applied to issues ranging beyond mere
density dependence. Presently, we are seeing how these nonlinear
time-series methods are being merged with the theoretical tradition
(see chapter 8), and there are also promising beginnings of the syn-
thesis between the population-regulation analyses and experimental
approaches (Cappuccino and Harrison 1996).

1.2 GENERAL PHILOSOPHY OF THE APPROACH

Most ecologists do their science without giving much thought to the
broad philosophical issues underlying what they do. Among those
ecologists who do worry about philosophical foundations, the most
vocal, and not afraid of making strong recommendations, are the Pop-
perians (e.g., Chitty 1996; Murray 2000; Lambin et al. 2002). Other
ecologists take the view that there are many ways of doing ecology,
and one should not be too dogmatic about it (e.g., Fagerstrom 1987,
Pickett et al. 1994). I believe that such philosophical discussions are
important, because they affect how we do ecology. Furthermore, one
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of the broad themes of this book is methodological (see the preface):
what are the best approaches to solving the puzzle of population
cycles? Thus, I need to describe the philosophical basis of the general
approach that I advocate.

While Popper’s idea that all theories have to be testable in order
even to be called scientific seems quite reasonable to me, I find the
rest of his philosophy of science, at least as expounded by his eco-
logical disciples, not to be a very useful way of doing science. I am
particularly bothered by the emphasis of Popperians on falsification-
ism as the way of doing science. First, the view that data are “hard
facts” is untenable for methodological and psychological reasons (see
Fagerstrom 1987 for a very clear discussion of this point). Thus, it
is not true that in any contest between theory and data, it is theory
that should necessarily lose. Second, I don’t think that ecologists are
in the business of rejecting theories. “Ecologists, like many others,
do not reject theories for the futile reason that they are wrong; theo-
ries are retained until better ones emerge” (Fagerstrom 1987). A very
good idea of how futile a rejectionist program can be is conveyed by
the book of Dennis Chitty (1996), Do Lemmings Commit Suicide?
There Chitty relates how a consistent application of the rejectionist
approach led him to reject all hypotheses that could be tested, leaving
him with the explanation that nobody could figure out how to test.

I think that we (ecologists) are, instead, in the business of deciding
which of the available alternative theories is the best, or “least wrong”
(I shall make this idea more precise later in this section). One thing
that any scientist has to come to terms with is that all our theories
are, in the final account, wrong (the alternative of not being wrong is
to become untestable, that is, nonscientific). The more explicitly we
formulate our theories (which, at least in the context of population
dynamics, means translating them into mathematical statements) the
more wrong they become, simply because our simple theories can
never capture all the complexity and detail of nature. So falsifying
theories is trivial: just collect detailed data about any aspect of the
theory, and you are certain to show that the theory is wrong. If you
have not, it simply means that you either collected too few data points
or did not measure them carefully enough.

If all our theories are a priori wrong, what can we do? Well, sci-
ence is still the search for truth, but any scientific truth that we find is
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both approximate and tentative. Approximate, because of the reasons
discussed in the paragraph above; tentative, because we have no guar-
antee that somebody smarter or possessing better data and analytical
tools will not come up with a better “truth” sometime in the future.
Therefore, we should not be in the business of rejecting theories, as
ecological Popperians would have us do, but in the business of con-
trasting two or more theories with each other, using the data as an
arbiter. The corollary of this approach is that our best theory may
not explain or predict data very well, but we should still use it until
we have something better. Even the theory that explains only 10%
variation in the data is useful, because it sets a standard to be bettered.

In the rest of the section, I make this idea precise for the spe-
cific context of population dynamics. The basic notions are three:
(1) define very carefully what you are trying to explain; (2) translate
your verbal theories into explicit mathematical models (note the plural
here); and (3) use formal statistical methods to quantify the relative
ability of the rival models to predict data. Data may already be avail-
able, or they may be specifically collected to distinguish between pre-
dictions of the rival hypotheses (the latter constitutes an experiment).

1.2.1 Defining the Phenomenon to Be Explained

The broad question that I address in this book is, why do population
numbers change with time? Or, to put it more succinctly, “why do
populations behave as they do?” (Royama 1992:1). In any particu-
lar case study, this broad question can be broken into more specific
issues. First, are dynamics of the studied population characterized by
a stationary distribution of densities? (This is the issue of popula-
tion regulation.) If yes, there is some characteristic mean level around
which the population fluctuates, and fluctuations are characterized by
a certain (finite) variance. What ecological mechanisms are respon-
sible for setting this mean level? (This is the focus of population
statics.) What mechanisms set the amplitude of fluctuations? Finally,
are there detectable statistical periodicities, and what is the order and
trajectory stability characterizing dynamics?

At the most general level, the phenomenon to be explained is quan-
tified by a temporal record of population fluctuations, or time-series
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data. Time-series data are often available even before the beginning of
the formal inquiry into dynamics of a particular population (although
we often have to do with an index of population rather than an abso-
lute measure of population density; examples include fur returns, bag
records, and pheromone trap catches). If time-series data are not avail-
able, a systematic program for their collection should be initiated
immediately. (One should not worry too much about limited use-
fulness of short time series; after all, it may take many decades to
approach the solution, by which time time-series data will be long
enough to be useful!)

I will call the density measurements of the “focal species” (the
one whose dynamics we are trying to understand), {N,}, the pri-
mary data.! We may have time-series data on other aspects of sys-
tem dynamics available (e.g., temporal changes in mean body mass,
fluctuations in the availability of food, and densities of predators or
parasitoids). Such ancillary data may be extremely useful, but are
secondary in the sense that we do not require that our explanation
of the focal species dynamics would account for all of them. For
example, if we are studying a forest defoliator, then a model based
on plant quality does not need to explain why parasitism rates vary
(perhaps parasitoids are simply responding to the oscillations of their
food supply, without a detectable feedback effect on defoliator den-
sities). Vice versa, a parasitism-based explanation does not need to
account for changes in plant quality. Of course, the model based on
a particular factor has to be consistent with time-series data for this
factor.

A focus on the primary data permits us to use the same met-
ric when comparing hypotheses based on very different factors. One
particular metric that I will use extensively is the coefficient of pre-
diction, R; ., (the proportion of variance in log-transformed density
explained by the hypothesis). However, this is not the only metric that
can be employed to quantitatively compare the performance of dif-
ferent hypotheses. Another approach is to first quantify the observed
dynamical pattern with probes such as the period and amplitude of
oscillations (and others, see section 6.2.2), and then to determine how
well rival models predict the numerical values of probes.

!Concepts emphasized in boldface type are defined in the glossary.
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Defining the problem the way I do here is not the only way to
study population cycles. One alternative way, as practiced by the
Canadian school (Chitty, Krebs, Boonstra, and others), is to define a
“cyclic syndrome,” which includes such features of dynamics as rapid
changes of population density, systematic variation in body weight
with the phase of the cycle, and perhaps certain changes in behav-
ior, such as aggressiveness versus “docility.” The problem with this
approach is twofold. First, the “cyclic syndrome” is often defined
without reference to whether population dynamics are characterized
by a periodicity or not. In the cases where population dynamics
are not periodic (or when there are no long-term data to determine
whether there is periodicity or not), we find ourselves in a situation
of studying a population “cycle” that is not a cycle by any formal
definition. The second problem is that by including in the defini-
tion changes in individual quality and behavior, the Canadians tilt
the field in favor of their favorite hypotheses. Suppose, for example,
that periodic dynamics in a particular rodent population are driven by
an interaction between rodents and their food supply. By measuring
such processes as food requirements of rodents and growth dynam-
ics of vegetation after being consumed, we may be able to construct
an empirically based model that would predict the cyclic changes in
rodent numbers (the primary data) very well. However, since we have
not explicitly dealt with the physiological or behavioral responses of
individuals to food scarcity or abundance, the model will say noth-
ing about systematic changes of body weights with the cycle phase.
Thus, the model will fail to explain the “cyclic syndrome.” We could,
of course, include such individual responses in the model. But this
would be done at the expense of complicating the model structure,
with the only yield an explanation of what really are side effects
of population cycles—that individuals would be of low weight and
fight more when food is scarce and population density is collapsing.
This argument suggests to me that we should give logical preemi-
nence to the primary data. I repeat that this does not mean that we
should ignore various kinds of ancillary data, but neither should we
necessarily aim at a theory that explains every bit of data collected
about the focal population.

Before leaving the subject of problem definition, I want to reit-
erate that in this book I focus exclusively on nonspatial aspects of
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population dynamics. I recognize that movement and spatial dynam-
ics are very important. However, one has to start somewhere, and
the magnitude of the task—disentangling the mechanistic causes of
temporal oscillations in any particular system—is already enormous.

1.2.2  Formalizing Hypotheses as Mathematical Models

Having defined the explanandum (what is to be explained), I now turn
to the explanans (the means of explanation). The question is, what
ecological mechanisms underlie temporal change in natural popula-
tions? This issue is at the core of the book.

But what do I mean by ecological mechanisms? I believe that the
most useful approach to understanding population dynamics is the
reductionist one. Thus, the mechanistic basis for population ecology
should be provided by the properties of entities one hierarchical level
lower than populations, that is, by the behavior and physiology of
individual organisms (Metz and Diekmann 1986; Caswell et al. 1997):
individual consumption, growth, and reproduction rates; the proba-
bilities of being killed by a predator or succumbing to a pathogen;
characteristics of individual movement; and so on. I believe that such
methodological individualism is a valid principle, but in practice it is
not always possible, nor desirable, to follow this reductionist program
to the logical extreme.

For example, when studying a predator-prey interaction, we need
not follow each individual predator while keeping track of its size,
sex, hunger level, spatial position, and so on. We might instead sum-
marize this wealth of information with just a few numbers, for exam-
ple, the number of predators in each size class at any given time,
or the density of predators in each patch, or even, most simply, the
density of all predators. The mapping here is “many to one,” because
many potential descriptions in individual terms will map to a single
number or set of numbers at the population level. Thus, an under-
standing of predator-prey dynamics may be approached in two steps.
In the first step, the investigator performs a careful study of the indi-
vidual predation process and attempts to summarize it with simple
relationships, such as the functional response curve. In the second
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step, functions summarizing behavior and physiology of individuals
serve as building blocks in a population dynamics model.

Ecological mechanisms, as used in this book, can refer both to
detailed descriptions of what individuals do and to functions sum-
marizing salient features of individual behaviors. I agree that it is
more satisfying to build fully mechanistic explanations of population
dynamics that are firmly based on what individuals do. However, it
is not necessary to do it in one step. The history of population ecol-
ogy shows that such concepts as “population density,” “functional
response,” and “density-dependent population growth rate” turn out to
be very useful conceptualizations for connecting population dynamics
to individual-based explanations. Thus, we should continue employ-
ing these concepts, while keeping in mind their limitations.

The next step is to decide how to connect specific ecological mech-
anisms to testable predictions. I will require that the answer take the
form of a fully specified model. The main reason for this requirement
is that translating each rival hypothesis into an explicit model will
allow us to perform quantitative cross-comparisons between differ-
ent hypotheses. In other words, we shall be able to say which model
explains the data better.

Constructing a fully specified model is done in three steps. First,
we choose the mathematical framework and, most important, the state
variables. Mathematical framework is often suggested by the biology
of the system. For example, if we are dealing with a forest defolia-
tor who has one generation a year, then we should probably use the
discrete (difference) equations. If, on the other hand, we deal with
a large ungulate population, in which the time step at which repro-
duction occurs (one year) is a small fraction of an average life span,
then a continuous differential equations framework provides a good
approximation (we might also consider adding seasonality explicitly
to the model).

State variables are typically determined by the verbal hypothesis
on which the model is based. For example, if we are modeling the
interplay between the individual quality and dynamics, then a minimal
model would have two state variables: population density and average
individual quality. If we think that taking an average of quality is
too restrictive, then we might explicitly model discrete quality classes
(e.g., the numbers of “poor”’-quality and “high”-quality individuals).
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Alternatively, we might employ a partial differential equations frame-
work, and model variation in individual quality smoothly. The choices
of mathematical framework and state variables are not independent
of each other.

The second step is to choose functional forms. These are specific
functions that relate state variables and their rates of change to each
other. One example is the functional form of the self-limitation term—
we could choose to model it using the logistic model, or theta-logistic,
and so forth. Another example is the functional response: depending
on what we know about the modeled system, we may choose Type I,
II, III, or ratio dependence.

The third step is determine the values of parameters. Examples
are the intrinsic rate of population increase, the carrying capacity,
the searching rate, the handling time, and so forth. This task can
be accomplished in three basic ways. One is to use the information
about the natural history of organisms to deduce the parameter values
or, more likely, to deduce the interval where plausible values should
be found. The second approach of obtaining parameter values is by
fitting models to time-series data (see chapter 8). The disadvantage
of this method is that if we wish to use the time-series data to test
model predictions, such a test would not be as rigorous, since a degree
of circularity is involved. The third way is to design a short-term
experiment and directly measure the parameter. This is the best way,
but the most laborious one. A short-term experiment may also be
designed to measure a whole function, thus providing the empirical
foundation for the functional form choice.

These three steps take the model builder progressively from gen-
eral to specific issues. With each successive step the freedom of
choice (or the degree of arbitrariness) increases. The choice of state
variables is largely determined by the nature of the hypothesis and
the mathematical framework. For functional forms, we usually have
a greater latitude, but we usually are limited to discrete choices (e.g.,
should we use Type II or Type III functional response?). Of course,
one could use a qualitative approach; that is, instead of choosing
a specific function, one could just say that a function should be
monotonically increasing. Such approaches, however, are more use-
ful in building general theory (examples: Rosenzweig 1969; Oksanen
et al. 1981) than in the analyses of specific case studies (but see Ellner
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et al. 1998 for semimechanistic approaches). Finally, parameter val-
ues typically vary continuously, and are least constrained by a priori
considerations.

For all the above reasons, any single hypothesis can in principle be
translated into an infinite number of fully specified models, depending
on the choices we make at each stage. This means that rejecting a
specific model in favor of another model based on a rival hypothesis
may indeed indicate that the rival hypothesis is closer to the truth, but
it may also indicate that we did not use the correct functional form in
the first model, or perhaps misestimated a key parameter. This is not
a lethal problem, since all scientific knowledge is approximate and
tentative, but we should keep this caveat in mind.

1.2.3 Contrasting Models with Data

Once we have translated a set of competing hypotheses into models,
we are ready to start the process of reducing this set to fewer
(ideally, one) “winners.” For example, suppose we are trying to
understand why the population system we are studying exhibits a
periodic second-order oscillation (dynamical classes are explained
in chapter 5). The first basic test that each model has to pass
is the ability to generate the qualitative type of dynamics char-
acterizing the system, a periodic second-order oscillation in our
example. Some models simply cannot generate second-order cycles
(e.g., one-dimensional differential equation models cannot exhibit
cyclic behaviors no matter what functional forms and parameters
we use). We immediately eliminate such models, and by implication
the hypotheses on which they are based, from the set of plausible
explanations of the system’s dynamics. The elimination of the verbal
hypothesis is somewhat tentative, because it still may be possible
to translate the hypothesis into a model (perhaps using a different
mathematical framework) that would be able to generate the required
qualitative type of dynamics. In any case, no rejection is final (just as
no confirmation is final). However, if we do our best and still cannot
translate the hypothesis into a model that generates cyclic dynamics,
then we shall succeed in throwing a very grave shadow of doubt on
the hypothesis. It will now be up to the advocates of the hypothesis
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(if there are such) to show that the hypothesis can be translated into
a model that generates cycles, and that this translation can be done
in a biologically reasonable way.

The next hurdle that each model in the set has to clear is the ability
to predict the correct type of dynamics for biologically reasonable
parameter values. Lacking good information, we may have to use a
wide range for plausible values of some parameters. In such cases,
the fact that the model passes this test does not count very heavily
in its favor. However, we may find (by numerical explorations) that
a certain parameter or parameters are critical for the ability of the
model to generate the right dynamics. This means that we have a
model prediction that may be tested with an experiment.

Once we are finished with these qualitative tests, we may find our-
selves in a situation that none of the models managed to pass them.
This means that we have to go back to the drawing board and exer-
cise our creativity again. No cut-and-dried guidelines for generating
new hypotheses exist (except, perhaps, Edison’s famous dictum about
10% inspiration and 90% perspiration), which is what makes science
interesting! Alternatively, there may be only one model still standing.
This is a rather happy outcome, since it means that we are essentially
done. Not everybody is likely to be satisfied with the conclusion, but
it is no longer sufficient simply to advance a verbal hypothesis as an
alternative explanation. Having a fully specified model that predicts
the correct qualitative dynamics with biologically plausible parameter
values substantially raises the stakes for any potential challenger—any
alternative hypothesis will have to do at least as well.

A more likely outcome is that two or more models will be able
to pass the qualitative tests. This means that we need to subject the
remaining hypotheses to quantitative and, ultimately, experimental
tests. The most rigorous and objective approach to quantitative test-
ing is to construct the fully specified models using only ancillary
data (ideally, by performing focused short-term experiments to quan-
tify functional forms and parameter values), and then use each model
to predict the primary data. Models can be compared by (1) how
well they predict actual population densities and (2) how well they
predict quantitative measures of population dynamics (the probes).
Additionally, (3) models must describe the dynamics of other vari-
ables on which they are based, and (4) their parameters and functional
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forms need to be consistent with what we know about the system
biology. Finally, (5) since a simpler explanation is always prefer-
able to a more complex one, models with fewer parameters are given
more weight than complicated models. Comparisons (1) and (2) can
be translated into a single metric, allowing us to establish a rank-
ing order for the models. Issue (5), although seemingly dependent
on investigator judgment, can actually also be incorporated into the
overall measure, using approaches based on information criteria, such
as AIC (Burnham and Anderson 1998). Issues (3) and (4), by con-
trast, are difficult to translate into a common quantitative metric. For
example, a parasitoid-host model for a forest defoliator may predict
parasitism rates better than a food quality model for the same sys-
tem predicts the changes in food quality. But this does not mean that
these are grounds on which to prefer the parasitism model. Perhaps
the food quality data are characterized by a higher measurement error.
Similarly, one model may be able to predict the dynamics best for a
rather marginal value of one of the parameters. But again, we have no
common metric to downgrade this model in relation to others. This
means that not everything can be formalized, and some aspects of
model performance will have to be left to the judgment of individual
ecologists.





