2 Althaea officinalis

L.

Common Names

Altea	France	Khatmi	India
Altea	Peru	Marsh mallow	USA
Althea	USA	Marsh mallow	USSR
Bardul Khatmi	India	Marsh mallow	Bolivia
Bon visclo	France	Marsh mallow	Poland
Eibisch	France	Malva blanca	France
Erva molle	Italy	Malvavisco	Bolivia
Guimauve	France	Malvavisco	Peru
Guimauve	Tunisia	Marmolone	Italy
Hobbiza	Tunisia	Suzmool	India
Khairi	Arabic countries	Sweet weed	USA
Khatmi-ka-phool	India	Wymote	USA

BOTANICAL DESCRIPTION

This perennial herb of the MALVACEAE family is a 60–120 cm high hardy, velvety plant that has an erect root up to 50 cm long and a few cm thick with secondary roots. The succulent stem is usually woody at the base and unbranched. The leaves are short-petioled with an ovate, acute leaf-blade. The secondary leaves are narrow and drooping. The lower leaves are 5-lobed, the upper cauline leaves are often triangular, more wide than long. The reddish-white flowers are usually in axillary or terminal clusters; the 6–9 sepals of the epicalyx are fused at the base, and are 8–10 mm long and

pointed; 5 sepals, 5 heart-shaped petals and numerous stamens are fused together with the anthers to a column. The ovaries in a ring, numerous styles; mericarps smooth and downy. The 5-8 mm fruit is disc-like and breaks up into the mericarps that are downy on the outside and often have fine, branched, radiating ribs. The seeds are dark-brown, glabrous, kidney-shaped and somewhat compressed.

ORIGIN AND DISTRIBUTION

A native of the British Isles and the temperate regions of India, it is now distributed throughout Europe and can be found in parts of the Americas.

TRADITIONAL MEDICINAL USES

Arabic countries. Hot water extract of the plant is taken orally as an abortifacient and emmenagogue in Unani medicine^{AOO133}.

Bolivia. Infusion of the plant is taken orally as an expectorant^{AO0134}.

France. Infusion of the flower and leaf is taken orally as an emmolient and externally as an antiseptic^{AOO113}.

India. Infusion of the dried flower is taken orally as an expectorant^{AOO108}. The root, boiled with black pepper, is taken orally for asthma^{AOO114}.

Italy. Decoction of the dried root is taken orally for constipation^{AOO139}. Decoction of the flower and leaf is taken orally as an antiasthmatic^{AOO110}. Infusion of the root is taken orally for bronchial catarrh and as a gastric protective^{AOO110}.

Peru. Hot water extracts of the dried flower and the dried leaf are used externally as an emollient^{ACO138}. Hot water extract of the dried root is used externally as an emollient^{ACO138}.

Tunisia. The dried leaf is used as a cicatrizant^{AO0135}.

USA. Hot water extract of the dried root is taken orally as an expectorant and externally as a demulcent^{AOO141}. Infusion of the dried leaf is taken orally to treat cystitis^{AOO107}. The root is taken orally for coughs and sore throat^{AOO104}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Aesculetin: Aer, Rt^{AO0108} Aesculin: Aer, Rt^{AO0108} Alanine: Rt^{AO0105}

Althaea D-glucan: LfAO0131

Althaea mucilage O: Rt 0.22%^{AO0129} Althaea mucilage OL: Lf 550^{AO0101}

Althaea mucilage polysaccharide: Rt^{AO0117}

Althaea mucopolysaccharide: Rt^{AO0116} Arabinofuranan, L: Rt^{AO0115}

Asparagine: Rt^{AO0105} Asparaginic acid: Rt^{AO0105} Astragalin: Fl^{AO0111}, Lf^{AO0103} Benzoic acid, 4-hydroxy: Lf^{AO0130}, Fl^{AO0121}, Rt^{AO0102}

Butyric acid, 4-amino: Rt^{AO0105}

Caffeic acid: Fl^{AO0106}, Lf^{AO0130}, Rt^{AO0102}

Cichorin: Aer, Rt^{AO0108} Chlorogenic acid: Fl^{AO0121}

Coumaric acid, para: Lf^{AO0130}, Fl^{AO0121}, Rt^{AO0102}

Coumarin: Aer, Rt^{AO0108}

Diosmetin, 8-hydroxy-3-sulfo-8-0-beta-D-glucoside: Lf^{AO0130}

Diosmetin, 8-hydroxy 8-0-beta-D-glucoside: Lf^{AO0103}

Diosmetin, 8-hydroxy 8-0-beta-D-glucoside-3-sulfate: Lf^{AO0103}

Ferulic acid: Lf^{AO0130}, Fl^{AO0121}, Rt^{AO0102}

Herniarin: Aer, Rt^{AO0108}

Hypolaetin, 8-0-gentiobioside: Fl^{AO0125}

Hypolaetin-4-methyl ether-8-0-glucoside-3-sulphate: Lf^{AO0124}

Hypolaetin-4-0-methyl-ether-8-0-beta-D-glucoside: Fl^{AO0125}

Hypolaetin-8-0-gentiobioside: Lf, Fl^{AO0111} Hypolaetin-8-beta-gentiobioside: Lf^{AO0120}

Hypoletin-8-glucoside: Lf^{AO0120}

Kaempferol, dihydro, 4-0-beta-D-glucoside: Fl^{AO0125}

Kaempferol, dihydro, 4-0- beta-D: Fl 0.76-0.84% AO0126

Kaempferol, dihydro, 4-0-glucoside: Lf, FI^{AO0111}

Kaempferol-3-0-beta-D-(6-0-para-hydroxy-cinnamoyl)-glucoside: Lf^{AO0130}

Luteolin, beta-hydroxy, 8-gentiobioside: FJJ13059

Mucilage (Althaea officinalis): Pl 18-21% AO0122

Naringenin-4-0-beta-D-glucoside: Fl^{AO0125} Naringenin-4-0-glucoside: Fl^{AO0124} Phenyl-acetic acid, para-hydroxy: Lf, Fl^{AO0123}

Phenylacetic acid, para-hydroxy: Rt^{AO0102}, Lf^{AO0130}, Fl^{AO0106}

Polysaccharide (Althaea officinalis): Rt^{AO0119}

Populnin: Fl^{AO0121}

Protocatechuic acid: Lf, Fl^{AO0123} Quercitrin, iso: Fl^{AO0121}, Lf^{AO0130}

Salicyclic acid: Fl^{AO0106}, Lf^{AO0130}, Rt^{AO0102} Scopoletin: Lf^{AO0130}, Fl^{AO0123}, Rt^{AO0102}, Aer^{AO0108} ALTHAEA OFFICINALIS 39

Scopoletin, iso: Aer, Rt^{AO0108} Scopolin: Aer, Rt^{AO0108}

Scutellarein, iso, 4-methyl ether 8-0-beta-D-glucoside-2-potassium sulfate: Rt

21^{ĂO0102}

Scyllitol: Lf 800^{AO0140} Sinapic acid: Lf, Fl^{AO0123} Spiraeoside: Lf, Fl^{AO0124}

Syringic acid: Lf^{AO0130}, Fl^{AO0106}, Rt^{AO0102} Tiliroside: Lf 0.13-0.25%, Fl 0.15-

 $0.19\%^{AO0126}$

Umbelliferone: Aer, Rt^{AO0108}

Valine: Rt^{AO0105}

Vanillic acid: Fl^{AO0121}, Lf^{AO0130}, Rt^{AO0102}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Antibacterial activity. Ethanol (95%) and water extracts of the flower, leaf and root, on agar plate, were inactive on *Escherichia coli* and *Staphylococcus aureus*^{AOO100}. Ethanol (95%), hexane and water extracts of the dried seed, at a concentration of 10.0 mg/ml, were inactive on *Corynebacterium diphtheriae*, *Diplococcus pneumoniae*, *Staphylococcus aureus*, *Streptococcus pyogenes* and *Streptococcus viridans*^{AOO127}.

Anticomplement activity. Polysaccharide fractions of the dried leaf and dried root, at a concentration of 500.0 mcg/ml, were active on human serum^{AOO137}.

Antifungal activity. Ethanol (95%), water and hexane extracts of the dried seed, on agar plate at a concentration of 10.0 mg/ml, were inactive on Microsporum canis, Microsporum gypseum, Phialophora jeanselmei, Piedraia hortae and Trichophyton mentagrophytes^{AOO127}.

Anti-inflammatory activity. Ethanol (80%) extract of the dried root, administered by gastric intubation to male rats at a dose of 100.0 mg/kg, was inactive vs carrageenin-induced pedal edema^{AOO118}.

Antimycobacterial activity. Ethanol (95%) extract of the flower, leaf and root, on agar plate, was inactive on *Mycobacterium tuber-culosis*^{AOO100}.

Antitussive activity. Polysaccharide fraction of the dried root, administered intragastrically to cats at a dose of 50 mg/kg, was equivocal, and a dose of 100.0 mg/kg was active vs cough elicited by laryngopharyngeal and tracheobronchial mucosal stimulation^{AO0128}.

Antiviral activity. Ethanol (80%) extract of the freeze-dried entire plant, in cell culture at variable concentrations, was inactive on adenovirus, coxsackie B2 virus, Herpes virus type 1, measles virus, poliovirus 1 and Semlicki-Forest virus vs plaque-inhibition^{AOO132}. Water extract of the dried leaf, in cell culture at a concentration of 10.0%, was inactive on Herpes virus type 2, influenza virus A2(Manheim 57), poliovirus 11 and vaccinia virus^{AOO136}.

Antiyeast activity. Ethanol (95%), water and hexane extracts of the dried seed, on agar plate at a concentration of 10.0 mg/ml, were inactive on Candida albicans and Candida tropicalis^{AO0127}.

Common cold relief. Hot water extract of the dried seed, taken orally by adults at a dose of 20 gm/person, was active^{AOO142}.

Cytotoxic activity. Water extract of the flower, leaf and root, in cell culture at a concentration of 10%, was inactive on Hela cells^{AO0136}.

Radical scavenging effect. Ethanol/water (1:1) extract of the dried entire plant, at a concentration of 5.0 mcg/ml, produced weak activity vs superoxide anion when estimated by the neotetrazolium method^{ACOII2}.

REFERENCES

AO0100

Gottshall, R. Y., E. H. Lucas, A. Lickfeldt and J. M. Roberts. The occurrence of antibacterial substances active against mycobacterium tuberculosis in seed plants. **J Clin Invest** 1949; 28: 920–923.

AO0101

Tomoda, M., N. Shimizu, H. Suzuki and T. Takasu. Plant muci-

	lages, XXVIII. Isolation and characterization of mucilage, "Althaea-mucilage ol", from the leaves of <i>Althaea officinalis</i> . Chem Pharm Bull 1981; 29(8): 2277–2282.	AO0112	nique. Acta Pol Pharm 1991; 48(3/4): 59–62. Masaki, H., S. Sakaki, T. Atsumi and H. Sakurai. Active-oxygen scavenging activity of plant extracts. Biol Pharm Bull 1995;
AO0102	Gudej, J. Flavonoids, phenolic acids and coumarins from the roots of <i>Althaea officinalis</i> . Planta Med 1991; 57(3): 284–285.	AO0113	18(1): 162–166. Novaretti, R. and D. Lemordant. Plants in the traditional medicine of the Ubaye valley. J Ethno -
AO0103	Gudej, J. Flavonoid compounds of <i>Althaea officinalis</i> leaves. 1. Glucoside esters, monogluco- sides. Acta Pol Pharm 1985; 42 (2): 192–198.	AO0114	pharmacol 1990; 30(1): 1–34. Singh, V. Traditional remedies to treat asthma in north west and Trans-Himalayan region in J. and K. States. Fitoterapia 1995;
AO0104	Hussey, J. S. Some useful plants of early New England. Econ Bot 1974; 28: 311–.	AO0115	65(6): 507–509. Kocis, P., A. S. Shashkov, S. V. Yarotsky, R. Toman and P.
AO0105	Hahn-Dienstrop, E. Marshmallow root. Identification of marshmallow extract and determination of contents in an instant-tea. Dtsch Apoth Ztg 1995; 135(13): 31–33.		Capek. 13-CNMR study on the structure of L-arabinans from the roots of the marshmallow (<i>Althaea officinalis</i> L.) and from the bark of white willow (<i>Salix</i>
AO0106	Gudej, J. Polyphenolic compounds in <i>Althaea officinalis</i> flowers. Acta Pol Pharm 1988; 45(4): 340–345.	AO0116	alba L.). Bioorg Khim 1983; 9(2): 240–245. Capek, P., R. Toman, J. Rosik and A. Kardosova. Biologically
AO0107	Yarnelle, E. Botanical medicine for cystitis. Altern Complement Therap 1997; 1997: 269–275.		active polysaccharides from the roots of <i>Althaea officinalis</i> . Patent Czech-227,759 1985; 4 pp.
AO0108	Shome, U., S. Mehrotra and H. P. Sharma. Comparative pharmacognosy of two <i>Althaea</i> spp. and 'gulkhairo' samples. Int J Pharmacog 1992; 30(1): 47–55.	AO0117	Madaus, A., W. Blaschek and G. Franz. <i>Althaea radix</i> mucilage polysaccharides, isolation, characterization and stability. Pharm Weekbl (Sci Ed) 1987;
AO0109	Komissarenko, S. N. and V. N. Kovalev. Coumarins of <i>Althaea</i> officinalis and <i>A. armenica</i> . Chem Nat Comp 1992; 28(2): 243–244.	AO0118	9(4): 139–. Mascolo, N., G. Autore, F. Capasso, A. Menghini and M. P. Fasulo. Biological screening of Italian medicinal plants for anti-
AO0110	De Feo, V. and F. Senatore. Medicinal plants and phytotherapy in the Amalfitan coast, Salerno Province, Campania, Southern Italy. J Ethnopharmacol 1993; 39(1): 39–52.	AO0119	inflammatory activity. Phyto- ther Res 1987; 1(1): 28–31. Capek, P., D. Uhrin, J. Rosik, A. Kardosova, R. Toman and V. Mihalov. Polysaccharides from the roots of the marsh mallow
AO0111	Gudei, J and T. H. Dzido. Quantitative determination of flavonoid glycosides in leaves and flowers from some species of <i>Althaea</i> genus using HPLC tech-		Althaea officinalis L., var. rho- busta): Dianhydrides of oligosac- charides of the aldose type. Car- bohydr Res 1988; 182(1): 160– 165.

ALTHAEA OFFICINALIS 41

AO0120 AO0121	Gudej, J. Flavonoid compounds of <i>Althaea officinalis</i> leaves II. Glycosides of 8-hydroxyluteolin (hypoletin). Acta Pol Pharm 1987; 44(3/4): 369–373. Didry, N., M. Torck and M. Pinkas. Polyphenolic compounds from the flowers of <i>Althaea officinalis</i> . Fitoterapia 1990; 61(3): 280.	AO0129	recky and E. Bukovska. Antitussive efficacy of the complex extract and the polysaccharide of marshmallow (<i>Althaea officinalis</i> L. var. robusta). Pharmazie 1992; 47(3): 224–226. Tomoda, M., S. Kaneko, M. Ebashi and T. Nagakura. Plant mucilages. XVI. Isolation and characterization of a mucous
AO0122	Akhtardzhiev, K. H., M. Koleva, G. Kitanov and S. Ninov. Pharmacognistic study of representatives of <i>Arum</i> , <i>Althaea</i> and <i>Hypericum</i> species. Farmatsiya (Sofia) 1984; 34(3): 1–6.	AO0130	polysaccharide "Althaea-mucilage O" from the roots of <i>Althaea officinalis</i> . Chem Pharm Bull 1977; 25: 1357. Gudej, J. Polyphenolic compounds in <i>Althaea officinalis</i>
AO0123	Gudej, J. and M. L. Bieganow- ska. Chromatographic investiga- tion of phenolic acids and cou- marins in the leaves and flowers	AO0131	leaves. Acta Pol Pharm 1981; 38: 385. Kardosova, A., J. Rosik, R. Toman and P. Capek. Glucan
AO0124	of some species of the genus <i>Althaea</i> . J Liq Chromatogr 1990; 13(20): 4081–4092. Gudej, J. and M. L. Bieganow-		isolated from leaves of <i>Althaea</i> officinalis L. Collect Czech Chem Commun 1983; 48(7): 2082–2087.
	ska. Chromatographic investigations of flavonoid compounds in the leaves and flowers of some species of the genus <i>Althaea</i> . Chromatographia 1990; 30(5/6): 333–336.	AO0132	Van Den Berghe, D. A., M. Ieven, F. Mertens, A. J. Vlietinck and E. Lammens. Screening of higher plants for biological activities. II. Antiviral activity. J Nat Prod 1978; 41: 463–467.
AO0125	Dzido, T. H., E. Soczewinski and Gudej, J. Computer-aided opti- mization of High-Performance Liquid Chromatographic anal-	AO0133	Razzack, H. M. A. The concept of birth control in Unani medical literature. Unpublished manu- script of the Author 1980; 64 pp.
	ysis of flavonoids from some species of the genus <i>Althaea</i> . J Chromatogr 1991; 550 (1/2): 71–76.	AO0134 AO0135	Bastien, J. W. Pharmacopeia of Qollahuaya Andeans. J Ethno- pharmacol 1983; 8(1): 97–111. Boukef, K., H. R. Souissi and G.
AO0126	Gudej, J. Determination of flavonoids in leaves, flowers, and roots of <i>Althaea officinalis</i> L. Farm Pol 1990; 46(5/6): 153–155.	A00133	Balansard. Contribution of the study on plants used in traditional medicine in Tunisia. Plant Med Phytother 1982; 16(4): 260–279.
AO0127	Naovi, S. A. H., M. S. Y. Khan and S. B. Vohora. Antibacterial, anti-fungal and anthelmintic investigations on Indian medicinal plants. Fitoterapia 1991; 62(3):	AO0136	May, G. and G. Willuhn. Antiviral activity of aqueous extracts from medicinal plants in tissue cultures. Arzneim-Forsch 1985; 28(1): 1–7.
AO0128	221–228. Nosal'ova, G., A. Strapkova, A. Kardosova, P. Capek, L. Zathu-	AO0137	Yamada, H., T. Nagai, J. C. Cyong, Y. Otsuka, M. Tomoda, N. Shimizu and K. Shimada.

	Relationship between chemical structure and anti-complementary activity of plant polysaccha-		Giulia region (North East Italy). J Ethnopharmacol 1988; 22(3): 231–239.
	rides. Carbohydr Res 1985;	AO0140	Plouvier, V. Research on the oc-
	144(1): 101–111.		currence of scyllitol in higher
AO0138	Ramirez, V. R., L. J. Mostacero,		plants. C R Acad Sci Ser 1972;
	A. E. Garcia, C. F. Mejia, P. F.		D 275: 2993–2996.
	Pelaez, C. D. Medina and C. H.	AO0141	Anon. The herbalist. Hammond
	Miranda. Vegetables empleados		Book Company, Hammond Indi-
	en Medicina Tradicional Norpe-		ana, 1931, 400 pp.
	ruana. Banco Agrario Del Peru	AO0142	Latif, A. A comparative study on
	and NACL Univ Trujillo, Tru-		decoction of powdered (Sufoof)
	jillo, Peru, June 1988; 54 pp.		and unpowdered (Mussalum)
AO0139	Lokar, L. C. and L. Poldini.		drugs in Unani pharmacy. Nagar-
	Herbal remedies in the tradi-		jun 1983; 27(2): 44–45.
	tional medicine of the Venezia		