Preface

The explosive growth in the field of molecular biology over the
last two decades has started to make a great impact on clinical medicine.
Genes have been cloned for diseases that were poorly understood only
a decade ago. Additionally, investigators are increasingly aware that
there are strong genetic components to complex disorders, such as
osteoporosis, that are not classically thought of as genetic disorders.
New insights into the pathogenesis of metabolic bone diseases have
been obtained from investigations into the molecular biology of these
diseases and new therapies will become available based on these new
insights.

In The Genetics of Osteoporosis and Metabolic Bone Disease, 1 have
assembled an internationally renowned group of experts to write the
various chapters. Each of the authors is an expert in his/her field who
is currently performing research on the content of their chapter and have
made important contributions to the understanding of the clinical fea-
tures and pathophysiology of metabolic bone disease and genetics.

The first part of The Genetics of Osteoporosis and Metabolic Bone Disease
addressesissuesrelated to genetic contributions to the development of
osteoporosis and the many factors that must be considered when
searching for genes that predispose to osteoporosis. The second sec-
tion addresses recent advances in the clinical and molecular biological
aspects of inherited metabolicbone disorders. Thelast section reviews
the latest techniques for finding genes that predispose to metabolic
bone diseases.

Michael J. Econs, MD



CHAPTER 2

How to Determine If, and by How Much,
Genetic Variation Influences Osteoporosis

John L. Hopper

Genetic Variation: Within and Between Populations

Discussion of naturevsnurture, or “ genesvsenvironment,” isoften obscured
by afailureto understand that what isbeing considered isthe variationin genetic
make-up of individuals, and how it relates to differences between them in the
characteristic or trait of interest. Therefore, aclear distinction needs to be made
between genetic differenceswithin apopul ation, and genetic differences between
populations (e.g., between different races, or between blacks and whites). For
example, genetic factors may explain much of the difference in a characteristic
between two racial groups, but within any such group, the variation may be
entirely due to nongenetic factors. Consequently, discussion about the roles of
genes and environment in explaining variation in a trait must depend on, first,
whether one is considering within or between population comparisons.

Historically, discussion has been in terms of the relative roles of genetic and
environmental factors in explaining trait variation across a given population, as
reflected by the often cited but little understood concept of heritability (see below).
However, in order to understand and quantify properly theimpact of genetic factors,
thecritical concept isnot the proportion but theabsol utesize of geneticvariation. This
is because the amounts of variation caused by genetic and nongenetic factors are not
universal constants; rather, they can vary both within and across popul ations accord-
ingtoage, sex, lifestyle, andamultitudeof factorsthat cannot becontrolledfor, at least
not in studies of humans. It iseas er to understand that there can be different environ-
mental factors, but genetic factors a so can be expressed at different stages of life, or
only whentheindividual issubject to particular environmental challenges. Theeffect
of genesmay also depend on exposures or lifestyle, i.e., there may be gene-environ-
ment interactions or covariations. Consequently, the size of the genetic variance may
differ for different populations and for subgroups within a population.
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Therefore, if theratio of genetic to total variance (heritability) differs between
populations or subgroups, one cannot conclude that it is due to differences in the
genetic component alone. There could be differences in the nongenetic component,
or in both the genetic and the nongenetic components. That is, atrait doesnot havea
unique “ heritability”; its heritability may depend on the ethnicity and environmental
milieu of the population, and also may differ according to the characteristics used to
describetheaverage of the popul ation under consideration (seethenext two sections).

To Study the Causes of Variation, the Mean Must
First Be Specified

One cannot define variation, let alone study its causes, without specifying
themean, or “ expectedvalue,” of thetraitin question. Themathematical definition
of the variance of atrait isthe sum, over all possible values the trait can take, of
the squared deviation of each valuefrom its mean, weighted by the probability of
that value. That is, for atrait Y that can take at most afinite number of values, by
definition:

variance (Y) = S (y,—m)? (y) (1)

wherey, represents an observed value of Y, p(y,) representsits probability, sum-
mation is over all possible values of i, and m = Zyp(y,) is the mean. (For a
continuously distributed trait, the summation is replaced by integration, and the
probabilities by a probability density function.)

Theterm (y—m) iscalled theresidual of Y about its mean, for individual i.
Theresiduals, not the trait values, are the focus of attention in analyses that aim
todeterminetheroleof geneticand environmental factorsin explainingthecauses
of variation in atrait.

Suppose a trait varies, on average, according to factors such as age, sex,
lifestyle, environmental exposures, body characteristics, and so forth. The
variance of the residuals will then differ according to which of these factors are
taken into account in specifying the trait mean, m.

In practice, the mean of atrait can be modeled in terms of the effects of
measured factors. These are called “fixed effects.” The remaining variation in
residual s can then be model ed in terms of the effects of unmeasured factors (both
genetic and environmental). These are called “random” effects. This statistical
modeling processisawell-established application of linear regressionand analysis
of variance.

The random effects modeling of unmeasured factors must do more than
take into account genetic factors as causes of similarities between blood rela-
tives. It must also allow for environmental factors shared by relatives. The
strength of these factors could depend on whether the relatives are currently
living together—and if so, for how long and how intensely—and if not, how
long since they cohabited, and how often they are in contact with one another.
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If geneticfactorscausevariationinatrait, then genetically related individu-
alswill be more similar. Just as the variance of trait residuals depends on which
factors are used to model the trait mean, the covariance between two traits also
dependsontheir trait means. For example, for discretely distributed traits Y, and
Y ,, by definition:

Covariance (Y,,Y,) =X Z (y,—m,) (y,—m,)p(y, Y,) 2

(Y,and Y, could betworealizationsof the sametrait, such aswhen they represent
the trait values of the first- and second-born twins of a pair.) Here y, and Y,
represent the observed values of Y and Y, respectively, p(y,y,) represents the
probability of the joint occurrence, m, =Xy p(y,) isthemeanof Y andm,=X
y,p(y,) isthemean of Y, and the double summationisover all valuesof 1 and 2.
The correlation isameasure of how similar traits are. It can take any value from
—1to 1, and isdefined as

Correlation (Y,Y,) = covariance (YY) / [variance(Y,) variance(Y )] 3

Asdiscussed in alater section, the process of modeling unmeasured genes
as random effects works by matching, for pairs of individuals, the similarity of
their trait residual sagainst their geneticrel atedness. Theamount of varianceinthe
residualsthat can be explained by the covariance between relatives appearing to
fit the pattern expected under a genetic model is called the genetic variance. If
genetic factors are measured, and are model ed asfixed effects, thetotal variance
will bereduced. Thisshould resultinareductioninthegenetic variance, provided
themodel of genetic and environmental causesof variation acrossthe population,
and of covariation within families, is a close approximation to reality.

An Example

When considering height, what factors determine variationsin height from
individual toindividual; i.e., what are the “ causes of variation”? The age and sex
of an individual are of primary importance. Other critical factors might be
nutrition—especially during early childhood—developmental diseases, and
variablesrelated to socioeconomic status and lifestyle, and these effects could be
confounded with one another. Some of these factors, such as age and sex, and
possibly even the occurrence of any developmental diseases, can be measured.
Some can be assessed by asurrogate measure; e.g., SOCcioeconomic statusis often
inferred from measuresof income, occupation, and/or residential |ocation. Others,
such as childhood nutrition, can be very difficult to determine, yet may be quite
similar in genetically related individuals such as siblings, especialy twins, and
even more especially, within monozygotic (MZ) twin pairs.

Thereareal sogeneticfactorsto consider. Theremay be (if not now, perhaps
sometimeinthe near future) known genesfor which different variantsare predic-
torsof height, inboth the statistical and biological meaning of theword. Thereare
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likely to be, however, alarge number of genetic loci involved in the expression
of height. How are we to find out if such loci exist, given that they are as yet
unidentified and therefore not measured?

First, we have to take into account the nongenetic, or environmental, risk
factors. Those that are measured can be incorporated as fixed effects when
modeling the mean. The residual height of anindividual, after adjusting for age,
sex, and any other relevant measured factorsof that individual, becomesthefocus
of attention. Itisthecorrel ation or covariation betweenrelated individualsinthese
residualsthat formsthe basis of analysesthat aim to determinetherole of genetic
and environmental factors in explaining the causes of variation in height. Note
that if height was not adjusted for age, the residual variance would be larger, and
relatives of the same or similar age (such astwins and siblings) would appear to
be more strongly correlated. This could have a substantial effect on the outcome
of genetic modeling.

Defining Osteoporosis: Fractures vs Risk Factors

Distinction needs to be made between a fracture (i.e., an event which is
represented by a binary trait and can take only two possible values), and arisk
factor for that event. The latter could include variables such as bone mineral
density (BMD), bone geometry, propensity to fall, and so forth; see Chapter 1.
These risk factors may also be binary variables (e.g., sex), but are more often
scalar variables distributed along a continuum. Moreover, distinction must be
made between fracturesat different sites, and thereisthe possibility that different
risk factors may be operating at different sites.

Thereare numerousrisk factorsfor fractures, and these may beinterrelated
(i.e., correlated within a population). Depending on what factors are taken into
account in specifying the mean of these risk factors, some genetic factors may
cause variation, and some of the genesinvolved in causing variation in one risk
factor may also cause variation in other risk factors.

The extent to which genes causing variation in arisk factor for fracture explain
theincidence of fracturesin the population will depend on: (1) The strength of asso-
ciation between therisk factor and fracture risk, and (2) The proportion of the popu-
lation at different levels of genetic risk (allele frequencies). Therefore, athough
variation in arisk factor may be strongly genetically determined, it may have little
consequencefor thediseasein question in terms of explaining cases, and why it runs
in families. Thislatter issue will be quantified in alater section.

Making Inference about Possible Genetic Causes of
Variation: Biometric Modeling of Twin and Family Data

Intrying to infer arole for genesin causing variation, distinction must be
made between whether genesare measured or not measured. Asdiscussed earlier,
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the effect of measured genetic variation can be assessed by modeling the mean,
whiletheeffect of unmeasured genes can be assessed by modeling variation about
the mean.

For the latter case, inference is made by developing models based on
assumptionsabout theaction of genes, and thentesting theextent towhich thedata
are compatible with the different models. This process has been referred to as
biometric modeling. Note that biometric modeling cannot prove that genetic
factorsare causing variation, it can only be used to demonstrate that the data are
consistent with one or more genetic causes of variation. It hasvery limited ability
to discern how many geneticloci areinvolved (1) . Furthermore, the utility of this
process depends critically on the extent to which the design, sample size, and
methods of analysis allow the effects of nongenetic causes of variation to be
discriminated from those of genetic causes.

Historically, biometric modeling hasbeen focused onfitting moreand more
elaborate genetic models, trying to interpret variations from simple genetic
descriptions in terms of sophisticated modes of action of the genes (e.g., sex-
limited expression, or nonadditive effects such as dominance and epistasis). This
process is unconvincing, however, to the skeptic.

Itisimportant torealizethat familial aggregation doesnot necessarily imply
genetic causation. In theory, familial aggregation in atrait can always be fully
explained by an environmental model, simply making the postulated effect of
sharing the environment match the observed correlations. For example, monozy-
gotic (MZ) twin pairs might be more similar for atrait than dizygotic (DZ) twin
pairs simply because:

1. They liveor lived more similar lifestyles, especially during their formative
years,

2. They meet with each other more often; and/or

3. They are being or were treated more alike when children.

Similar argumentsmight explainwhy first-degreerelativesaremoresimilar
for atrait than second-degree relatives, and so on. The extent to which thisissue
isimportant varies from trait to trait. For example, alarge differencein sibling
correlation for blood lead levels was observed between adolescent pairs living
together (r = 0.5) and adult pairsliving apart for 20 or moreyears(r =0.1) (2). On
theother hand, for body massindex (BMI =weight/[ height]?) we observed asmall
decrease in the correlation, about 2,000 DZ pairs, from 0.6 for those who were
cohabiting to 0.5 for those living apart (unpublished data). Moreover, that
decrease occurred over an age range of lessthan 5 yr, suggesting that the effects
of shared environment on BMI variation dissipate rapidly. For bone density, a
similar rapid dissipation of the effects of shared adol escent environment appears
to occur (3) .

Unfortunately, littleattention hasbeen placed ontryingtodisproveor falsify
genetic hypotheses. On the other hand, classic biometric models make simplistic



34 Hopper

assumptions about the roles of nongenetic factors. Accordingly, only major and
specific types of environmental effects can be detected by the statistical
approachestypically used, and even then large sampl es are needed for there to be
reasonabl estatistical power to detect such effects. Designsthat allow for contrasts
between the effects of shared genes and those of shared environments, measures
of environmental exposure, and large data sets ascertained by unbiased sampling
areneeded if the modeling processisto have credibility in teasing apart theroles
and genes from those of the environment. In practice, thisis not easy to do and
tends to have been the exception, rather than the rule (4) .

Genes Measured

Suppose a genetic marker, such as a polymorphism at a candidate gene
hypothesized on biological groundsto be involved inthetrait of interest, can be
measured, and takes the values m, for i =1,...,n, say. To test that hypothesis, a
simpletest would be to select individuals of genotype m and comparetheir trait
valuesagainst those of genotypem,, for al pairsof j and K not equal to each other.
If theseindividualsare unrelated, careful consideration needs to be given to how
the subjects were sampled, and to the possibility that there could be other factors
(such asrace and ethnicity) associated with genotype at this marker, and with the
trait itself. These are called “potential confounders.” If all such potential
confounders are known, and measured on all individuals, a statistical adjustment
can bemadefor their effect(s) onthemean of thetrait of interest using, e.g., linear
regression techniques. In practice, one never knows all the confounders, anditis
impossibleto adjust for unmeasured or unknown confounders. In particular, care
should be taken if the study sample contains different racial or ethnic groups. It
is well known that these genetic association studies can give misleading
conclusionsdueto such confounding, or population-stratification asitisreferred
to in the genetics literature.

Ancther approach is to select related individuals who differ in genotype.
Dizygotic twin pairs of the same sex are perhaps the most useful design. Twins
within asame-sex pair are perfectly matched for age and sex, typically among the
most important determinants of the mean of ahuman characteristic. They area so
matched, at |east to some extent, for arange of nongenetic factorsrelated to their
shared environment during gestation and upbringing. Whereasthelatter matching
may reduce within-pair trait differences, with a consequent loss of statistical
power to detect effects associated with the genotyping, it will not bias results if
matching is taken into account in the analysis.

An appropriate method of statistical analysiswould be to consider within-
pair trait differences asafunction of within-pair differencesin genotype. If there
are n different genotypes possible, there will be n(n—1)/2 combinations of differ-
ences between genotypes, and it is likely there may be some combinations with
few or no pairs. Analyses that suggest differences between some combinations,
but not others, are difficult to interpret.
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Because each genotypeisacombination of two alleles, onefrom the mother
and the other from the father, it isuseful to consider the within-pair differencein
the number of shared alleles: it can take the values 0, 1, or 2. The first group of
pairs, who are concordant for genotype, is uninformative for association studies,
and can be excluded from the analysis. The within-pair trait differences of the
second and third groups can each be compared with zero, using e.g., a paired
Student’ st-test, or with each other. Again, the analyses may be difficult to inter-
pretif, e.g., pairs differing by one allele are different, but those differing by two
are no different, or differ in the opposite direction.

It might make biological sense to presume that the within-pair trait differ-
ence increases linearly as the difference in the number of acertain disease allele
(or subgroup of alleles) increases. Thetrait difference can then be modeled as a
linear function of the difference in number of disease alleles, in which caseitis
presumed that pairsdifferinginboth allelesaretwiceasdifferent (andinthe same
direction!) as those differing by only one allele. Again, linear regression tech-
niques can be used for the modeling, making sure that the line of best fit is
constrained to pass through the origin. Care must be taken, however, if there are
only afew pairsdiffering by two disease alleles, asthey will have astrong influ-
ence on the fitted line. Robust regression methods designed to be insensitive to
influential points should also be used. Remember that for these association stud-
ies, the dependent variableisthe actual within-pair trait difference, not the abso-
lute or squared difference. There is an implied order within members of a pair,
which could be based on an exposure or covariate of interest (5), or may be
arbitrary. The independent variable is the ordered difference in the number of
disease dleles, and can take the values—2, —1, 0, 1 or 2. The fitted lie should be
constrained to pass through the origin; see Fig. 1. Note that pairs with the same
number of diseasealleleshavenoinfluenceonthisfittedline. They will, however,
contribute information on the variation about the fitted line, and hence may
improve statistical inference.

If multipleregression techniquesare used, statistical adjustment for within-
pair differencesin other measuredfactorslikely to explaintrait variation— either
geneticor environmental — can bemadewhileconcurrently estimating theeffect,
if any, of the measured genetic markers on the mean; i.e., estimating a genetic
association (6) . The formulais:

AY =Y, =Y, =(m —m) + (X, —X,) + ... =Am+AX + AX, + ... 4

wherethex aretheobservedvaluesfor traiti intwinj, Ax =x, —X., and Ax, could
be the difference in number of disease alleles at the genetic locus of interest.
Another way the effect of a measured genetic marker on a trait can be
assessed is in terms of possible genetic linkage. This can be done by testing if
related individuals who share 2 alleles are more similar for atrait (in the sense
defined bel ow) thanthosewho share 1 allele, and if thelatter aremoresimilar than
those who share 0 alleles. Thisis called identity-by-state (6). The parents each
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Fig. 1. Best-fitting straight linethroughtheorigin, for datafrom ordered twin pairs
plotting their within-pair difference in the trait vs their within-pair difference in
number of disease alleles.

havetwo alleles, although they may not be distinct, and each offspring inheritsa
copy of oneallelefromthefather and onefromthemother. Thereforetwo offspring
can share exactly the same two aleles, just one of the alleles, or neither. Thisis
referred to as identity-by-descent. To conduct an identity-by -decent analysis,
parental genotypes must be known or inferred probabilistically. Analysis of
whether similarity in such measures of identity at alocus predicts similarity ina
trait can beincorporated using the method of analysi sdescribed inthe next section
(7). For further discussion on aspects of genetic linkage see Chapter 20.

Genes Not Measured

In 1918, the Royal Society in Edinburgh published a seminal paper in the
history of genetics and statistics (8), written by the then 28-year-old Ronald
Aylmer Fisher. (The paper had been rejected by the Royal Society in London
2yrearlier.) Fisher derivedtheexpected pattern of correlationsonewoul d observe
inatraitif itsvariance (about itsmean) wasdueto genetic variation at oneor more
loci, under the assumption that genetic status was transmitted from generation
to generation under the rules of Mendelian inheritance. The paper itself islong
and not easy, but the basic ideas have been summarized and interpreted many
times (9-13).

In brief, suppose the effect of alleles at each loci are additive and indepen-
dent of one another, in that thetrait mean for an individual who hastwo copies of
an alele differs from that for an individual who has no copies of that alele by
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twice as much asfor an individual who has one copy of the allele. Fisher showed
that the correlation will be 0.5 between first-degree relatives, 0.25 between sec-
ond-degree relatives, 0.125 between third-degree relatives, and so on. MZ twin
pairswould beidentical under thismodel which assumesadditive genetic factors,
A, only. Thereare, however, numerous prenatal factorsthat could causeMZ pairs
to be less than identical for agiven trait (1) .

Allowingthenfor nongeneticfactors, E, which areassumedto beindependent
between relativesin the same family—such as random environmental effects and
random measurement error—the correlation between MZ twins within a pair will
be reduced depending on the relative amount of variation explained by E. That is,
if thevarianceof A isc ? andthat of Eisc 2 theMZ correlation will bec #(c +6 %)
= pyz- Inthiscase, thecorrelation betweenfirst-, second-, and third-degreerelatives
will become 1/2p,,,, 1/2p, ., and 1/8 p,,,, and so on.

The model can be extended to allow for nongenetic factors shared by, or
common to, members of the same family (7,14). These cohabitation effects, C,
that result from sharing or having shared a“ common” environment, will resultin
aperturbation of the pattern of ratiosabovethat should occur when geneticfactors
only are causing trait correlations. For example, if first-degree but not second-
degree relatives share a common environment effect with variance 6 2, theratio
of first- to second-degree trait correlations will be greater than 2:1.

Fisher allowed for nonadditive effects at agenetic locus (i.e., for the effect
of having two allelesto differ from twice the effect of having one allele), and in
doing so introduced the concept of dominance variance, ¢ 2 If there are such
nonadditive effects within one or more loci, the MZ pair and sibling correlations
will be differentialy increased relativeto correl ationsbetween other pairsof relatives.
Fisher d soderivedtheexpected correl ationsunder other formsof genetic nonadditivity,
such as interactions between the effects of alleles at different loci. There is strong
confounding, however, between additive and nonadditive componentsof variance, and
dominance components can mimic common environment effects (7).

Whereasthereisatheoretical basis on which genetic models can be based,
cohabitation or common environment effects can take virtually any structure.
Some examples of plausible models have been derived and fitted (2,7,13). In
practice, however, it is very difficult to clearly distinguish the effects of shared
genes from those of shared environment. Designs which have the potential to
overcomethis problem include those using twinsreared apart, adoptees and their
biological and adopted families, and migrant and nonmigrant families.

Theclassictwin model purportsto allow estimation of the effects of shared
genes and shared environment, but does so only by making the very strong
assumption that the effectson thetrait in question of sharing environment arethe
same for MZ pairs as they are for DZ pairs. This assumption is difficult to test
using twin dataalone, unless detailed information is collected on the amount and
extent of cohabitation that has or is occurring within the pairs (15). Also, the
modeling process is biased toward concluding that genetic factors alone are
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causingtwincorrelations(4). Largesamplesizesare needed to detect even modest
proportions of variance attributable to ¢ 2, the variance attributable to shared, or
common environments during or as aresult of cohabitation (16). Nevertheless,
application to adolescent and young adult femal e twins has suggested plausible
cohabitation effects on bone mineral density, at the spine and the hip, that abate
rapidly asthe twins begin to live apart (3).

Fisher's theory is best expressed in terms of variance components. For
example, suppose amodel allowsfor additive genetic effects, and for azygosity-
independent effect of common environment as in the classic twin model. For a
given trait mean, the (residual) variance can be expressed asthe sum of variance
componentsc,” + 6 2 + 6 2 = 6°. The covariance between apair of relatives will
be: 6,2+ ¢ ?for MZ pairs; 1/2 6.2 + ¢ 2 for DZ pairs, 1/4 ¢,* for parent-offspring
pairs, and for non-twin sibling pairs; 1/4 ¢ 2 for second-degree pairs, €tc.

Note that the effects of measured genes can beincorporated either in mod-
eling the mean, as fixed effects, or as random effects by including additional
component(s) of variance. For example, the covariance between a pair of indi-
vidualscould bemodeled asc,,? if they sharetwo alleles (IBD), or 1/2 6, % if they
shareoneallele(IBD) (7). Thatis, detection of “quantitativetraitloci” by variance
components modeling can be carried out within the usual framework for fitting
genetic and environmental models.

If thevariance, 02, isthesamefor all individuals, thedifference between the
MZ and DZ pair correlations, p,,, and p,,, respectively, will be1/2 6, /6> Thishas
led historically to the simplistic formula: 2(p, ,—p,) = 6,76 Thelatter termis
referred to as the narrow-sense heritability, the proportion of variance attributed
to additive genetic factors. This formulais problematic, if only because values
greater than unity can occur (i.e., it could lead to the implausible conclusion that
more than 100% of the variance is attributable to heritable factors).

The statistical fitting of genetic and environmental models has changed
considerably over the last few decades due principally to improvements in
computational resources. The underpinning of the statistical approaches,
however, isin likelihood theory derived by the young Fisher way back in 1912.
They almost always rely on the assumption that families have been sampled at
random. Thisis, of course, not usually true, but small sampling biases may not
haveamajor effect onresults. Sampling through rel ated traits, however, can have
amajor impact. Methods for adjusting for some forms of nonrandom ascertain-
ment exist.

Either theraw data, or summary measuresin terms of correlations between
relative-pairs, are fitted to variance components or path analytic models. Statis-
tical packages, such as FISHER (17) and M, (18), are available for analysis of
continuous traits, and the latter handles categorical traits under some stringent
assumptions; see the next section. Newer robust statistical methods have also
been developed and compared (19). Standard errors, confidence intervals,
correlations between estimates based on large-sampletheory are available. Some
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testsof lack of fit which generally havelittle power, yet are often mistakenly used
toinfer a“good fit”, are also available with these packages.

It must not be forgotten, however, that no matter how sophisticated the
modeling, how good the fit or how elegant the method of statistical analysis, a
fitted model isjust that. Especially when trying to make inference about unmea-
sured genes and unmeasured environmental factors, there may be many quite
dissimilar models that provide equally good—or bad—descriptions of the data,
and it is not possible to discriminate between them.

A significant genetic component of variancein themost parsimoniousmodel
does not provethat genesexist (20). For example, although under the classictwin
model MZ pairswill be more correlated than DZ pairs, finding that MZ pairs
are more correlated does not prove that the classic twin model is correct! In the
parlance of mathematical logic, that “statement A implies statement B” is true
does not mean that “statement B implies statement A” is also true. If genetic
factorsexist (statement A), MZ pairswill bemorecorrel ated than DZ pairs(state-
ment B). The observation of statement B, however, doesnot definitively provethe
veracity of statement A.

Evidence for Genetic Variation Influencing Fractures

A fracture is an event that either happens or doesn’t. Inference about the
possible roles of genetic and environmental factors in explaining variation in
binary traits (i.e., traits that divide individual s into two groups, such as affected
versus unaffected) can be made by asimilar approach to that outlined previously.

Association in a binary trait can be measured and modeled a number of
ways, such as by a correlation coefficient, odds ratio, or tetrachoric correlation.
Thelatter wasfirst usedinthiscontext by Karl Pearson, around thestart of the20th
century. It supposesthat thereisan underlying, normally distributed, but unmea-
sured “latent” trait. In medical applications, itisreferred to asa“liability.” For a
given 2x 2tableof associationinapair of individualsfor thebinary trait, aunique
bivariatenormal distribution of thelatent liability trait can bederived, with appro-
priate cut-off points— one horizontal and one vertical — so that the proportion
of the distribution in each of the four regions equal s the observed numbersin the
2 x 2 table. The tetrachoric correlation is then defined as the correlation in the
bivariate normal distribution that is needed to achieve thisfit.

For whatever measure of association is used, its strength can be compared
across different categories of relatives, and between cohabiting and noncohabit-
ing pairs. The same issues discussed previously, to do with confounding and the
ability of the design and sample size to discriminate between different models,
apply. Typicaly, very large samplesin the order of hundredsif not thousands of
pairs are needed to have reasonable power.

Thetetrachoric correlation modeling hasbecomepopular in somedisciplines,
perhaps because it allows calculation of heritability. There are many problems,
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however, with thisapproach. It presumesthereisan underlying, but unmeasurable
liability, that both predicts the binary trait status and is correlated in relatives.
Inferenceismadeabout the proportion of varianceinliability statistically attributed
to genetic or nongenetic factors, along the sameargumentsasused for continuoustraits
in5(ii) above. However, the strength of the quantitative estimatesrely implicitly onthe
assumptionthat theliability distributioninfamiliesismultivariatenormd , anditisoften
impossible to test this assumption, at least not with any substantia statistical power.
Furthermore, the heritability of liability isadifficult concept to understand
intuitively . Itisusually, and mistakenly, referred to as“ heritability of the trait.”
When thetrait is adisease state (affected vs unaffected), the slip is often made of
interpreting heritability asthe proportion of disease dueto genetic factors, when
infact it isthe proportion of the variance of liability that is due to genetic factors
(21). Unfortunately, judging by the frequency with which this false implication
is made even in professional circles, this point is not well-appreciated.
Comparison of twin disease concordance between M Z pairsand DZ pairsisoften
used to infer agenetic agtiology for the disease in question, but again thisinferenceis
predicated by the strong shared environment assumption of the classic twin method.
There has been considerable confusion about the concepts of pairwise,
casewi se, and probandwise concordance. Pai rwise concordanceisthe probability
that agiventwinisaffected, giventhat at |east one member of the pair isaffected.
The pairwise estimator is the number of pairs in which both twins are affected,
divided by this number plus the number of discordant pairs. Casewise concor-
danceisthe probability that onetwin is affected, given that the other isalso. The
casewiseestimator i stwicethenumber of pairsinwhichbothareaffected, divided
by the twice the number of pairsin which both are affected plus the number of
pairsin which twins are disease discordant. The decision of which concordance
towork with depends on the question(s) being asked. For example, if asisthecase
in genetic counseling when one wants to predict a twin's disease status from
knowledge of the other pair’s status, the casewise concordance isindicated. On
theother hand, if oneisinterestedin predicting thepair disease statuswhen all one
knowsisthat at |east onetwin is affected, the pairwise concordance isindicated.
If twin pairsare sampled nonrandomly, e.g., because at | east one of the pairs
isknown to be affected, proper adjustment must be made (22). Inthiscase, itis
possible that a pair could be sampled because it is known that both members are
affected; thisiscalled adoubly-ascertained pair. It isalso possiblethat apair will
be sampled because one particular member isknown to be affected, but oncethe
pair issampled it isfound out that the other twin is also affected; thisiscalled a
singly-ascertained pair. “Incomplete ascertainment” is said to occur if the
probability of singly ascertained pairsis greater than zero. Otherwise, ascertain-
mentissaidtobe*complete,” although thisexpression can be confusing, because
it does not necessarily mean that all pairs are sampled!
Although referenceisoften madein the twin literature to the “ probandwise
concordance rate,” * probandwise concordance” actually refers to an estimator,
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not a concordance, and it certainly is not a rate. The probandwise estimator is
defined asthe ratio of anumerator to adenominator. The numerator istwice the
number of pairsinwhich both twinsare affected and doubly ascertained, plusthe
number of singly-ascertained pairs both affected. The denominator is equal to
the numerator plus the number of disease discordant pairs.

The estimates and large sample standard errors for pairwise and casewise
concordance have been derived, and the distinctions above between concor-
dancesand estimatorsclarified, using alikelihood theory approach (22—23). For
large samples and under random or compl ete ascertainment, the casewise esti-
mator is unbiased for the casewise concordance, and the pairwise estimator is
unbiased for the pairwise concordance. Under incomplete ascertainment, the
casewise estimator is biased for the casewise concordance, and the pairwise
estimator is biased for the pairwise concordance. The probandwise estimator,
however, is unbiased for the casewise concordance.

Interpreting Genetic Variation in a Risk Factor
in Terms of How Much Familial Aggregation
in the Disease Is Explained

Finally thequestionarises: if geneticfactorsexplainaproportionof variation
inarisk factor, how much of the familial aggregation for the diseaseis explained
by thissource of genetic variation? To addressthis, supposethat X isarisk factor
measured on a continuous scale. Suppose the conditional probability of being
affected, p(x), given avalue of therisk factor, x, can be represented by the linear
logistic model

p(x)=Pr(D=1|X =x) =exp{o + Bx}/[1 + exp{ o + Bx}] (5)

where D = 1 signifiesthe diseaseis present, and the parameters o. and 3 describe
the dependence of the probability of disease on the observed value of X. Assume
also, without loss of generality, that X has a standard normal distribution with
mean 0 and variance 1, and that for a pair of related individuals, (X,, X,) hasa
bivariate normal distribution with correlation parameter p.

On apopulation-basis, the correlated riskswithin pairs of relativestrand ates
into clustering of disease. A measure of disease association between relativesisthe
oddsratio, OR, theratio of the odds of being affected when arelativeisaffected to
that when therelativeis unaffected. The value of OR depends on the correlation,
p, and the strength of the risk factor on probability of disease. The latter is
conveniently represented by theinter-quartilerisk ratio, RR, whichistherisk for
individuals at the upper-quartile level of X divided by the risk for individuals at
the lower-quartile level. Hopper and Carlin (see ref. 24) give tables for these
relationships.

Bonedensity at thehipisarisk factor for hipfracturesthat isitself correl ated
between first degree relatives. The correlation, p, is about 0.4, while the inter-
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quartilerisk ratio, RR, isabout 2.5. From Table 1 of Hopper and Carlin (24) this
translatesinto an oddsratio, OR, of about 1.1. Given that the increased risk for a
daughter consequent upon her mother having had hip fractureisroughly twofold,
it is seen that whatever causes bone density at the hip to be correlated in first-
degree relatives explains about 10% of familial aggregation for hip fractures.
Simple twin models suggest that all of the familial aggregation for hip bone
density in adult women is attributable to genetic factors.

Therefore, even if the heritability of hip bone density is 80%, the genes
causing variation in hip bone density are not responsible for most of familial
aggregationinhipfractures. Similar argumentsapply tolumbar spinebonedensity
and spinal fractures. Furthermore, genes involved in causing variation in other
risk factors, such aship axislength, may explainjust asmuch familial aggregation
in hip fractures (25). Nevertheless, identifying genes that influence variation in
bone density could haveimportant implicationsfor prevention and treatment, for
example by providing molecular targets for altering bone density. Finding these
genes may provideinsight into molecular pathwaysthat areimportant in regulat-
ing osteoclast or osteoblast activity, for example, and this knowledge could be
used to manipulate the pathway so as to increase osteoblast activity without
increasing bone resorption.

Summary

“Familial aggregation” is the tendency for atrait to be more similar, or
positively correlated, in family members. This applies both to the occurrence of
disease in an individual—often expressed as a binary trait representing the two
states, being or not being affected—and to indices of morbidity and risk factors
which are measured on continuums, often referred to as continuous traits.
Depending on the strength of associ ation between risk factorsand disease, and on
the strength of familial aggregation in the risk factors, this can result in familial
aggregation in the disease itself. Therefore, familial aggregation in risk factors
couldinpart explainwhy family history isarisk factor for osteoporosis. Knowing
how geneticand environmental factorsexplainfamilial associationsinrisk factors
will help understand the causes of osteoporosis.

A theory under which correlations between relatives in a continuous trait
canbeexplainedintermsof Mendelianinheritanceat oneor moregeneticloci was
published by R. A. Fisher in 1918. Application of thistheory has since provided
much insight into the design and analysis of studies to resolve the relative
contributions of, and interactions between, genetic and environmental factors,
and has identified the following statistical and design issues:

1. Prior to genetic and environmental modeling the data should be carefully
explored, and rel ationshi ps between trait mean and covariatesexamined. To
be able to understand properly the genetic determinants of a trait, it is
important to first account for the effects of major nongenetic determinants.
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2.

Descriptive measures of familial aggregation should be explored, and ten-
dencies for the associations between individuals to vary according to the
genetic or cohabitational relationship between individual s should be noted.
Empirical evidence has shown that genetic and environmental factors can
produce a variety of patterns among the trait correlations between pairs of
individuals.

As mentioned previously, theory shows that if genetic factors determine
variations in a continuous trait, certain patterns will be evident among the
correlations between relatives. It istherefore possible, in arigorous statisti-
cal manner, to test if observations from independent groups of related indi-
viduals are consistent with a proposed genetic model. Note, however, that
this does not prove that genetic factors are acause of variation, let alonethe
only cause of covariation within afamily.

For there to be statistical power to discriminate between causes of familial
aggregation, first the confounding between genetic and environmental factors
needs to be addressed in the design of a study. Second, the sample sizes must
belarge enough for discrimination and precise estimation of different effects.
Third, thefamiliesneed to be sampled in an unbiased manner, or elseacorrect
statistical adjustment for their ascertainment must be made.

Analytical methods should be able to incorporate measurements from
covariates, which may include measured genetic markers, in addition to
modeling unmeasured genetic and environmental sources of variation.
Fitting amodel isnot anend initself. Biological and statistical assumptions
underlying models should be addressed before and during the modeling
process. Selection of a “best” model from among a range of alternatives,
even if shown not to provide a bad fit to the data, does not prove that the
components of that model are true causes of variation.
Thegenesinvolvedincausing variationinbonedensity only partially explain
the familial aggregation in fractures.
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