
2
Issues in RFIC Design, Noise, Linearity,
and Filtering

2.1 Introduction

In this chapter we will have a brief look at some general issues in RF circuit
design. Nonidealities we will consider include noise and nonlinearity. We will
also consider the effect of filtering. An ideal circuit, such as an amplifier, produces
a perfect copy of the input signal at the output. In a real circuit, the amplifier
will introduce both noise and distortion to that waveform. Noise, which is
present in all resistors and active devices, limits the minimum detectable signal
in a radio. At the other amplitude extreme, nonlinearities in the circuit blocks
will cause the output signal to become distorted, limiting the maximum signal
amplitude.

At the system level, specifications for linearity and noise as well as many
other parameters must be determined before the circuit can be designed. In
this chapter, before we look at circuit details, we will look at some of these
system issues in more detail. In order to design radio frequency integrated
circuits with realistic specifications, we need to understand the impact of noise
on minimum detectable signals and the effect of nonlinearity on distortion.
Knowledge of noise floors and distortion will be used to understand the require-
ments for circuit parameters.

2.2 Noise

Signal detection is more difficult in the presence of noise. In addition to the
desired signal, the receiver is also picking up noise from the rest of the universe.
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Any matter above 0K contains thermal energy. This thermal energy moves
atoms and electrons around in a random way, leading to random currents in
circuits, which are also noise. Noise can also come from man-made sources
such as microwave ovens, cell phones, pagers, and radio antennas. Circuit
designers are mostly concerned with how much noise is being added by the
circuits in the transceiver. At the input to the receiver, there will be some noise
power present that defines the noise floor. The minimum detectable signal must
be higher than the noise floor by some signal-to-noise ratio (SNR) to detect
signals reliably and to compensate for additional noise added by circuitry. These
concepts will be described in the following sections.

We note that to find the total noise due to a number of sources, the
relationship of the sources with each other has to be considered. The most
common assumption is that all noise sources are random and have no relationship
with each other, so they are said to be uncorrelated. In such a case, noise power
is added instead of noise voltage. Similarly, if noise at different frequencies is
uncorrelated, noise power is added. We note that signals, like noise, can also
be uncorrelated, such as signals at different unrelated frequencies. In such a
case, one finds the total output signal by adding the powers. On the other
hand, if two sources are correlated, the voltages can be added. As an example,
correlated noise is seen at the outputs of two separate paths that have the same
origin.

2.2.1 Thermal Noise

One of the most common noise sources in a circuit is a resistor. Noise in
resistors is generated by thermal energy causing random electron motion [1–3].
The thermal noise spectral density in a resistor is given by

Nresistor = 4kTR (2.1)

where T is the Kelvin temperature of the resistor, k is Boltzmann’s constant
(1.38 × 10−23 J/K), and R is the value of the resistor. Noise power spectral
density is expressed using volts squared per hertz (power spectral density). In
order to find out how much power a resistor produces in a finite bandwidth,
simply multiply (2.1) by the bandwidth of interest D f :

v 2
n = 4kTRD f (2.2)

where vn is the rms value of the noise voltage in the bandwidth Df . This can
also be written equivalently as a noise current rather than a noise voltage:

i 2
n =

4kTD f
R

(2.3)
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Thermal noise is white noise, meaning it has a constant power spectral
density with respect to frequency (valid up to approximately 6,000 GHz) [4].
The model for noise in a resistor is shown in Figure 2.1.

2.2.2 Available Noise Power

Maximum power is transferred to the load when RLOAD is equal to R . Then
vo is equal to vn /2. The output power spectral density Po is then given by

Po =
v 2

o
R

=
v 2

n
4R

= kT (2.4)

Thus, available power is kT, independent of resistor size. Note that kT is
in watts per hertz, which is a power density. To get total power out Pout in
watts, multiply by the bandwidth, with the result that

Pout = kTB (2.5)

2.2.3 Available Power from Antenna

The noise from an antenna can be modeled as a resistor [5]. Thus, as in the
previous section, the available power from an antenna is given by

Pavailable = kT = 4 × 10−21 W/Hz (2.6)

Figure 2.1 Resistor noise model: (a) with a voltage source, and (b) with a current source.
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at T = 290K, or in dBm per hertz,

Pavailable = 10 log10S4 × 10−21

1 × 10−3 D = −174 dBm/Hz (2.7)

Note that using 290K as the temperature of the resistor modeling the
antenna is appropriate for cell phone applications where the antenna is pointed
at the horizon. However, if the antenna were pointed at the sky, the equivalent
noise temperature would be much lower, more typically 50K [6].

For any receiver required to receive a given signal bandwidth, the minimum
detectable signal can now be determined. As can be seen from (2.5), the noise
floor depends on the bandwidth. For example, with a bandwidth of 200 kHz,
the noise floor is

Noise floor = kTB = 4 × 10−21 × 200,000 = 8 × 10−16 (2.8)

More commonly, the noise floor would be expressed in dBm, as in the
following for the example shown above:

Noise floor = −174 dBm/Hz + 10 log10 (200,000) = −121 dBm (2.9)

Thus, we can now also formally define signal-to-noise ratio. If the signal
has a power of S, then the SNR is

SNR =
S

Noise floor
(2.10)

Thus, if the electronics added no noise and if the detector required a
signal-to-noise ratio of 0 dB, then a signal at −121 dBm could just be detected.
The minimum detectable signal in a receiver is also referred to as the receiver
sensitivity. However, the SNR required to detect bits reliably (e.g., bit error
rate (BER) = 10−3 ) is typically not 0 dB. The actual required SNR depends
on a variety of factors, such as bit rate, energy per bit, IF filter bandwidth,
detection method (e.g., synchronous or not), and interference levels. Such
calculations are the topics for a digital communications course [6, 7] and will
not be discussed further here. But typical results for a bit error rate of 10−3 is
about 7 dB for quadrature phase shift keying (QPSK), about 12 dB for 16
quadrature amplitude modulation (QAM), and about 17 dB for 64 QAM, though
often higher numbers are quoted to leave a safety margin. It should be noted
that for data transmission, lower BER is often required (e.g., 10−6 ), resulting
in an SNR requirement of 11 dB or more for QPSK. Thus, the input signal
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level must be above the noise floor level by at least this amount. Consequently,
the minimum detectable signal level in a 200-kHz bandwidth is more like −114
dBm (assuming no noise is added by the electronics).

2.2.4 The Concept of Noise Figure

Noise added by electronics will be directly added to the noise from the input.
Thus, for reliable detection, the previously calculated minimum detectable signal
level must be modified to include the noise from the active circuitry. Noise
from the electronics is described by noise factor F, which is a measure of how
much the signal-to-noise ratio is degraded through the system. We note that

So = G ? Si (2.11)

where Si is the input signal power, So is the output signal power, and G is the
power gain So /Si . We derive the following equation for noise factor:

F =
SNRi
SNRo

=
Si /Ni (source)
So /No (total)

=
Si /Ni (source)

(Si ? G )/No (total)
=

No (total)
G ? Ni (source)

(2.12)

where No (total) is the total noise at the output. If No (source) is the noise at the
output originating at the source, and No (added) is the noise at the output added
by the electronic circuitry, then we can write:

No (total) = No (source) + No (added) (2.13)

Noise factor can be written in several useful alternative forms:

F =
No (total)

G ? Ni (source)
=

No (total)
No (source)

=
No (source) + No (added)

No (source)
= 1 +

No (added)
No (source)

(2.14)

This shows that the minimum possible noise factor, which occurs if the
electronics adds no noise, is equal to 1. Noise figure NF is related to noise
factor F by

NF = 10 log10 F (2.15)

Thus, while noise factor is at least 1, noise figure is at least 0 dB. In other
words, an electronic system that adds no noise has a noise figure of 0 dB.

In the receiver chain, for components with loss (such as switches and
filters), the noise figure is equal to the attenuation of the signal. For example,
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a filter with 3 dB of loss has a noise figure of 3 dB. This is explained by noting
that output noise is approximately equal to input noise, but signal is attenuated
by 3 dB. Thus, there has been a degradation of SNR by 3 dB.

2.2.5 The Noise Figure of an Amplifier Circuit

We can now make use of the definition of noise figure just developed and apply
it to an amplifier circuit [8]. For the purposes of developing (2.14) into a more
useful form, it is assumed that all practical amplifiers can be characterized by
an input-referred noise model, such as the one shown in Figure 2.2, where the
amplifier is characterized with current gain Ai . (It will be shown in later chapters
how to take a practical amplifier and make it fit this model.) In this model, all
noise sources in the circuit are lumped into a series noise voltage source vn and
a parallel current noise source in placed in front of a noiseless transfer function.

If the amplifier has finite input impedance, then the input current will
be split by some ratio a between the amplifier and the source admittance Ys :

SNRin =
a2i 2

in

a2i 2
ns

(2.16)

Assuming that the input-referred noise sources are correlated, the output
signal-to-noise ratio is

SNRout =
a2A2

i i 2
in

a2A2
i Xi 2

ns + | in + vnYs |2 C
(2.17)

Thus, the noise factor can now be written in terms of the preceding two
equations:

Figure 2.2 Input-referred noise model for a device.
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F =
i 2
ns + | in + vnYs |2

i 2
ns

=
No (total)

No (source)
(2.18)

This can also be interpreted as the ratio of the total output noise to the
total output noise due to the source admittance.

In (2.17), it was assumed that the two input noise sources were correlated
with each other. In general, they will not be correlated with each other, but
rather the current in will be partially correlated with vn and partially uncorrelated.
We can expand both current and voltage into these two explicit parts:

in = ic + iu (2.19)

vn = vc + vu (2.20)

In addition, the correlated components will be related by the ratio

ic = Yc vc (2.21)

where Yc is the correlation admittance.
The noise figure can now be written as

NF = 1 +
i 2
u + |Yc + Ys |2v 2

c + v 2
u |Ys |2

i 2
ns

(2.22)

The noise currents and voltages can also be written in terms of equivalent
resistance and admittance (these resistors would have the same noise behavior):

Rc =
v 2

c
4kTD f

(2.23)

Ru =
v 2

u
4kTD f

(2.24)

Gu =
i 2
u

4kTD f
(2.25)

Gs =
i 2
ns

4kTD f
(2.26)
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Thus, the noise figure is now written in terms of these parameters:

NF = 1 +
Gu + |Yc + Ys |2Rc + |Ys |2Ru

Gs
(2.27)

NF = 1 +
Gu + [(Gc + Gs )2 + (Bc + Bs )2 ]Rc + (G 2

s + B 2
s )Ru

Gs
(2.28)

It can be seen from this equation that NF is dependent on the equivalent
source impedance.

Equation (2.28) can be used not only to determine the noise figure, but
also to determine the source loading conditions that will minimize the noise
figure. Differentiating with respect to Gs and Bs and setting the derivative to
zero yields the following two conditions for minimum noise (Gopt and Bopt )
after several pages of math:

Gopt = √Gu + RuS Rc Bc
Rc + Ru

D2 + G 2
c R c + SBc −

Rc Bc
Rc + Ru

D2Rc

Rc + Ru (2.29)

Bopt =
−Rc Bc

Rc + Ru
(2.30)

2.2.6 The Noise Figure of Components in Series

For components in series, as shown in Figure 2.3, one can calculate the total
output noise (No (total) ) and output noise due to the source (No (source) ) to
determine the noise figure.

The output signal So is given by

So = Si ? Gi ? G2 ? G3 (2.31)

Figure 2.3 Noise figure in cascaded circuits with gain and noise added shown in each.
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The input noise is

Ni (source) = kT (2.32)

The total output noise is

No (total) = Ni (source)G1G2G3 + No1(added)G2G3

+ No2(added)G3 + No3(added) (2.33)

The output noise due to the source is

No (source) = Ni (source)G1G2G3 (2.34)

Finally, the noise factor can be determined as

F =
No (total)

No (source)
= 1 +

No1(added)
Ni (source)G1

+
No2(added)

Ni (source)G1G2
+

No3(added)
Ni (source)G1G2G3

= F1 +
F2 − 1

G1
+

F3 − 1
G1G2

(2.35)

The above formula shows how the presence of gain preceding a stage
causes the effective noise figure to be reduced compared to the measured noise
figure of a stage by itself. For this reason, we typically design systems with a
low-noise amplifier at the front of the system. We note that the noise figure
of each block is typically determined for the case in which a standard input
source (e.g., 50V) is connected. The above formula can also be used to derive
an equivalent model of each block as shown in Figure 2.4. If the input noise
when measuring noise figure is

Ni (source) = kT (2.36)

and noting from manipulation of (2.14) that

Figure 2.4 Equivalent noise model of a circuit.
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No1(added) = (F − 1)No (source) (2.37)

Now dividing both sides of (2.37) by G1,

Ni (added) = (F − 1)
No (source)

G1
= (F − 1)Ni (source) = (F − 1)kT (2.38)

Then the total input-referred noise to the first stage is

Ni 1 = Ni (source) + (F1 − 1)kT = kT + (F1 − 1)kT = kTF1 (2.39)

Thus, the input-referred noise model for cascaded stages as shown in
Figure 2.4 can be derived.

Example 2.1 Noise Calculations

Figure 2.5 shows a 50-V source resistance loaded with 50V. Determine how
much noise voltage per unit bandwidth is present at the output. Then, for any
RL , what is the maximum noise power that this source can deliver to any load?
Also find the noise factor, assuming that RL does not contribute to noise factor,
and compare to the case where RL does contribute to noise factor.

Solution
The noise from the 50V source is √4kTR ≈ 0.9 nV/√Hz at a temperature of
290K, which, after the voltage divider, becomes one half of this value, or
vo = 0.45 nV/√Hz.

Now, for maximum power transfer, the load must remain matched, so
RL = RS = 50V. Then the complete available power from the source is delivered
to the load. In this case,

Po =
v 2

o
4RL

= P in(available)

Figure 2.5 Simple circuit used for noise calculations.
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P in(available) =
v 2

o
4RL

=
4kTRS

4RL
= kT = 4 × 10−21

At the output, the complete noise power (available) appears, and so if RL
is noiseless, the noise factor = 1. However, if RL has noise of

√4kTRL V/√Hz, then at the output, the total noise power is 2kT, where kT
is from RS and kT is from RL . Therefore, for a resistively matched circuit, the
noise figure is 3 dB. Note that the output noise voltage is
0.45 nV/√Hz from each resistor for a total of √2 ? 0.45 nV/√Hz =
0.636 nV/√Hz (with noise the power adds because the noise voltage is uncorre-
lated).

Example 2.2 Noise Calculation with Gain Stages

In this example, Figure 2.6, a voltage gain of 20 has been added to the original
circuit of Figure 2.5. All resistor values are still 50V. Determine the noise at
the output of the circuit due to all resistors and then determine the circuit noise
figure and signal-to-noise ratio assuming a 1-MHz bandwidth and the input is
a 1-V sine wave.

Solution
In this example, at vx the noise is still due to only RS and R2 . As before, the
noise at this point is 0.636 nV/√Hz. The signal at this point is 0.5V, thus at
point vy the signal is 10V and the noise due to the two input resistors RS and
R2 is 0.636 ? 20 = 12.72 nV/√Hz. At the output, the signal and noise from
the input sources, as well as the noise from the two output resistors, all see a
voltage divider. Thus, one can calculate the individual components. For the
combination of RS and R2 , one obtains

vR S +R 2
= 0.5 × 12.72 = 6.36 nV/√Hz

The noise from the source can be determined from this equation:

Figure 2.6 Noise calculation with a gain stage.
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vR S
=

6.36 nV/√Hz

√2
= 4.5 nV/√Hz

For the other resistors, the voltage is

vR S
= 0.5 ? 0.9 = 0.45 nV/√Hz

vR L
= 0.5 ? 0.9 = 0.45 nV/√Hz

Total output noise is given by

vno(total) = √v 2
(R S +R L ) + v 2

R S
+ v 2

R L
= √6.362 + 0.452 + 0.452

= 6.392 nV/√Hz

Therefore, the noise figure can now be determined:

Noise factor = F =
No (total)

No (source)
= S6.392

4.5 D2 = (1.417)2 = 2.018

NF = 10 log10 F = 10 log10 2.018 = 3.05 dB

Since the output voltage also sees a voltage divider of 1/2, it has a value
of 5V. Thus, the signal-to-noise ratio is

S
N

= 20 log1
5

6.392 nV

√Hz
? √1 MHz2 = 117.9 dB

This example illustrates that noise from the source and amplifier input
resistance are the dominant noise sources in the circuit. Each resistor at the
input provides 4.5 nV/√Hz, while the two resistors behind the amplifier each
only contribute 0.45 nV/√Hz. Thus, as explained earlier, after a gain stage,
noise is less important.

Example 2.3 Effect of Impedance Mismatch on Noise Figure
Find the noise figure of Example 2.2 again, but now assume that R2 = 500V.

Solution
As before, the output noise due to the resistors is as follows:

vno(R S ) = 0.9 ?
500
550

? 20 ? 0.5 = 8.181 nV/√Hz
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where 500/550 accounts for the voltage division from the noise source to the
node vx .

vno(R 2 ) = 0.9 ? √10 ?
50
550

? 20 ? 0.5 = 2.587 nV/√Hz

where the √10 accounts for the higher noise in a 500-V resistor compared to
a 50-V resistor.

vno(R 3 ) = 0.9 ? 0.5 = 0.45 nV/√Hz

vno(R L ) = 0.9 ? 0.5 = 0.45 nV/√Hz

The total output noise voltage is

vno(total) = √v 2
R S

+ v 2
R 2

+ v 2
R 3

+ v 2
R L

= √8.1812 + 2.5872 + 0.452 + 0.452

= 8.604 nV/√Hz

Noise factor = F =
No (total)

No (source)
= S8.604

8.181D
2

= 1.106

NF = 10 log10 F = 10 log10 1.106 = 0.438 dB

Note: This circuit is unmatched at the input. This example illustrates that
a mismatched circuit may have better noise performance than a matched one.
However, this assumes that it is possible to build a voltage amplifier that requires
little power at the input. This may be possible on an IC. However, if transmission
lines are included, power transfer will suffer. A matching circuit may need to
be added.

Example 2.4 Cascaded Noise Figure and Sensitivity Calculation

Find the effective noise figure and noise floor of the system shown in Figure
2.7. The system consists of a filter with 3-dB loss, followed by a switch with
1-dB loss, an LNA, and a mixer. Assume the system needs an SNR of 7 dB
for a bit error rate of 10−3. Also assume that the system bandwidth is 200 kHz.

Solution
Since the bandwidth of the system has been given as 200 kHz, the noise floor
of the system can be determined:
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Figure 2.7 System for performance calculation.

Noise floor = −174 dBm + 10 log10 (200,000) = −121 dBm

We make use of the cascaded noise figure equation and determine that
the overall system noise figure is given by

NFTOTAL = 3 dB + 1 dB + 10 log10F1.78 +
15.84 − 1

20 G ≈ 8 dB

Note that the LNA noise figure of 2.5 dB corresponds to a noise factor
of 1.78 and the gain of 13 dB corresponds to a power gain of 20. Furthermore,
the noise figure of 12 dB corresponds to a noise factor of 15.84.

Note that if the mixer also has gain, then possibly the noise due to the
IF stage may be ignored. In a real system this would have to be checked, but
here we will ignore noise in the IF stage.

Since it was stated that the system requires an SNR of 7 dB, the sensitivity
of the system can now be determined:

Sensitivity = −121 dBm + 7 dB + 8 dB = −106 dBm

Thus, the smallest allowable input signal is −106 dBm. If this is not
adequate for a given application, then a number of things can be done to
improve this:

1. A smaller bandwidth could be used. This is usually fixed by IF require-
ments.

2. The loss in the preselect filter or switch could be reduced. For example,
the LNA could be placed in front of one or both of these components.

3. The noise figure of the LNA could be improved.

4. The LNA gain could be increased reducing the effect of the mixer on
the system NF.

5. A lower NF in the mixer would also improve the system NF.

6. If a lower SNR for the required BER could be tolerated, then this
would also help.
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2.3 Linearity and Distortion in RF Circuits

In an ideal system, the output is linearly related to the input. However, in any
real device the transfer function is usually a lot more complicated. This can be
due to active or passive devices in the circuit or the signal swing being limited
by the power supply rails. Unavoidably, the gain curve for any component is
never a perfectly straight line, as illustrated in Figure 2.8.

The resulting waveforms can appear as shown in Figure 2.9. For amplifier
saturation, typically the top and bottom portions of the waveform are clipped
equally, as shown in Figure 2.9(b). However, if the circuit is not biased between
the two clipping levels, then clipping can be nonsymmetrical as shown in Figure
2.9(c).

2.3.1 Power Series Expansion

Mathematically, any nonlinear transfer function can be written as a series expan-
sion of power terms unless the system contains memory, in which case a Volterra
series is required [9, 10]:

vout = k0 + k1v in + k2v 2
in + k3v 3

in + . . . (2.40)

To describe the nonlinearity perfectly, an infinite number of terms is
required; however, in many practical circuits, the first three terms are sufficient
to characterize the circuit with a fair degree of accuracy.

Figure 2.8 Illustration of the nonlinearity in (a) a diode, and (b) an amplifier.
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Figure 2.9 Distorted output waveforms: (a) input; (b) output, clipping; and (c) output, bias
wrong.

Symmetrical saturation as shown in Figure 2.8(b) can be modeled with
odd order terms; for example,

y = x −
1
10

x3 (2.41)

looks like Figure 2.10. In another example, an exponential nonlinearity as shown
in Figure 2.8(a) has the form

x +
x2

2!
+

x3

3!
+ . . . (2.42)

which contains both even and odd power terms because it does not have
symmetry about the y -axis. Real circuits will have more complex power series
expansions.

One common way of characterizing the linearity of a circuit is called the
two-tone test. In this test, an input consisting of two sine waves is applied to
the circuit.

Figure 2.10 Example of output or input nonlinearity with first- and third-order terms.
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v in = v1 cos v1 t + v2 cos v2 t = X1 + X2 (2.43)

When this tone is applied to the transfer function given in (2.40), the
result is a number of terms:

v0 = k0 + k1 (X1 + X2 ) + k2 (X1 + X2 )2 + k3 (X1 + X2 )3 (2.44)5 5 5

desired second order third order

v0 = k0 + k1 (X1 + X2 ) + k2 (X 2
1 + 2X1X2 + X 2

2 ) (2.45)

+ k3 (X 3
1 + 3X 2

1 X2 + 3X1X 2
2 + X 3

1 )

These terms can be further broken down into various frequency compo-
nents. For instance, the X 2

1 term has a zero frequency (dc) component and
another at the second harmonic of the input:

X 2
1 = (v1 cos v1 t )2 =

v 2
1

2
(1 + cos 2v1 t ) (2.46)

The second-order terms can be expanded as follows:

(X1 + X2 )2 = X 2
1 + 2X1X2 + X 2

2 (2.47)5 5 5

dc + MIX dc +
HD2 HD2

where second-order terms are composed of second harmonics HD2, and mixing
components, here labeled MIX but sometimes labeled IM2 for second-order
intermodulation. The mixing components will appear at the sum and difference
frequencies of the two input signals. Note also that second-order terms cause
an additional dc term to appear.

The third-order terms can be expanded as follows:

(X1 + X2 )3 = X 3
1 + 3X 2

1 X2 + 3X1X 2
2 + X 3

2 (2.48)5 5 5 5

FUND IM3 + IM3 + FUND
+ HD3 FUND FUND + HD3

Third-order nonlinearity results in third harmonics HD3 and third-order
intermodulation IM3. Expansion of both the HD3 and IM3 terms shows
output signals appearing at the input frequencies. The effect is that third-order
nonlinearity can change the gain, which is seen as gain compression. This is
summarized in Table 2.1.
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Table 2.1
Summary of Distortion Components

Frequency Component Amplitude

dc k o +
k 2
2 (v 2

1 + v 2
2 )

v 1 k 1v 1 + k 3v 1S3
4 v 2

1 +
3
2 v 2

2 D
v 2 k 1v 2 + k 3v 2S3

4 v 2
2 +

3
2 v 2

1 D
2v 1

k 2v 2
1

2

2v 2
k 2 v 2

2
2

v 1 ± v 2 k 2v 1v 2

v 2 ± v 1 k 2v 1v 2

3v 1
k 3v 3

1
4

3v 2
k 3v 3

2
4

2v 1 ± v 2
3
4 k 3v 2

1 v 2

2v 2 ± v 1
3
4 k 3v 1v 2

2

Note that in the case of an amplifier, only the terms at the input frequency
are desired. Of all the unwanted terms, the last two at frequencies 2v1 − v2
and 2v2 − v1 are the most troublesome, since they can fall in the band of the
desired outputs if v1 is close in frequency to v2 and therefore cannot be easily
filtered out. These two tones are usually referred to as third-order intermodula-
tion terms (IM3 products).

Example 2.5 Determination of Frequency Components Generated in a Nonlinear
System

Consider a nonlinear circuit with 7- and 8-MHz tones applied at the input.
Determine all output frequency components, assuming distortion components
up to the third order.

Solution
Table 2.2 and Figure 2.11 show the outputs.

It is apparent that harmonics can be filtered out easily, while the third-
order intermodulation terms, being close to the desired tones, may be difficult
to filter.
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Table 2.2
Outputs from Nonlinear Circuits with Inputs at f 1 = 7, f 2 = 8 MHz

Symbolic Example
Frequency Frequency Name Comment

First order f 1, f 2 7, 8 Fundamental Desired output
Second order 2f 1, 2f 2 14, 16 HD2 (harmonics) Can filter

f 2 − f 1, f 2 + f 1 2, 15 IM2 (mixing) Can filter
Third order 3f 1, 3f 2 21, 24 HD3 (harmonic) Can filter

harmonics
2f 1 − f 2, 6 IM3 (intermod) Close to

fundamental,
2f 2 − f 1 9 IM3 (intermod) difficult to filter

Figure 2.11 Output spectrum with inputs at 7 and 8 MHz.

2.3.2 Third-Order Intercept Point

One of the most common ways to test the linearity of a circuit is to apply two
signals at the input, having equal amplitude and offset by some frequency, and
plot fundamental output and intermodulation output power as a function of
input power as shown in Figure 2.12. From the plot, the third-order intercept
point (IP3) is determined. The third-order intercept point is a theoretical point
where the amplitudes of the intermodulation tones at 2v1 − v2 and 2v2 −
v1 are equal to the amplitudes of the fundamental tones at v1 and v2 .

From Table 2.1, if v1 = v2 = vi , then the fundamental is given by

fund = k1vi +
9
4

k3v 3
i (2.49)

The linear component of (2.49) given by

fund = k1v i (2.50)

can be compared to the third-order intermodulation term given by
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Figure 2.12 Plot of input output power of fundamental and IM3 versus input power.

IM3 =
3
4

k3v 3
i (2.51)

Note that for small vi , the fundamental rises linearly (20 dB/decade) and
that the IM3 terms rise as the cube of the input (60 dB/decade). A theoretical
voltage at which these two tones will be equal can be defined:

3
4

k3v 3
IP3

k1v IP3
= 1 (2.52)

This can be solved for v IP3 :

v IP3 = 2√ k1
3k3

(2.53)

Note that (2.53) gives the input voltage at the third-order intercept point.
The input power at this point is called the input third-order intercept point
(IIP3). If IP3 is specified at the output, it is called the output third-order intercept
point (OIP3).
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Of course, the third-order intercept point cannot actually be measured
directly, since by the time the amplifier reached this point, it would be heavily
overloaded. Therefore, it is useful to describe a quick way to extrapolate it at
a given power level. Assume that a device with power gain G has been measured
to have an output power of P1 at the fundamental frequency and a power of
P3 at the IM3 frequency for a given input power of Pi , as illustrated in Figure
2.12. Now, on a log plot (for example, when power is in dBm) of P3 and P1
versus Pi , the IM3 terms have a slope of 3 and the fundamental terms have a
slope of 1. Therefore,

OIP3 − P1
IIP3 − Pi

= 1 (2.54)

OIP3 − P3
IIP3 − Pi

= 3 (2.55)

since subtraction on a log scale amounts to division of power.
Also note that

G = OIP3 − IIP3 = P1 − Pi (2.56)

These equations can be solved to give

IIP3 = P1 +
1
2

[P1 − P3 ] − G = Pi +
1
2

[P1 − P3 ] (2.57)

2.3.3 Second-Order Intercept Point

A second-order intercept point (IP2) can be defined that is similar to the third-
order intercept point. Which one is used depends largely on which is more
important in the system of interest; for example, second-order distortion is
particularly important in direct downconversion receivers.

If two tones are present at the input, then the second-order output is
given by

vIM2 = k2v 2
i (2.58)

Note that in this case, the IM2 terms rise at 40 dB/decade rather than at
60 dB/decade, as in the case of the IM3 terms.

The theoretical voltage at which the IM2 term will be equal to the
fundamental term given in (2.50) can be defined:
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k2v 2
IP2

k1v IP2
= 1 (2.59)

This can be solved for v IP2 :

vIP2 =
k1
k2

(2.60)

2.3.4 The 1-dB Compression Point

In addition to measuring the IP3 or IP2 of a circuit, the 1-dB compression
point is another common way to measure linearity. This point is more directly
measurable than IP3 and requires only one tone rather than two (although any
number of tones can be used). The 1-dB compression point is simply the power
level, specified at either the input or the output, where the output power is 1
dB less than it would have been in an ideally linear device. It is also marked
in Figure 2.12.

We first note that at 1-dB compression, the ratio of the actual output
voltage vo to the ideal output voltage voi is

20 log10 Svo
voi
D = −1 dB (2.61)

or

vo
voi

= 0.89125 (2.62)

Now referring again to Table 2.1, we note that the actual output voltage
for a single tone is

vo = k1vi +
3
4

k3v 3
i (2.63)

for an input voltage vi . The ideal output voltage is given by

voi = k1vi (2.64)

Thus, the 1-dB compression point can be found by substituting (2.63)
and (2.64) into (2.62):
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k1v1dB +
3
4

k3v 3
1dB

k1v1dB
= 0.89125 (2.65)

Note that for a nonlinearity that causes compression, rather than one that
causes expansion, k3 has to be negative. Solving (2.65) for v1dB gives

v1dB = 0.38√k1
k3

(2.66)

If more than one tone is applied, the 1-dB compression point will occur
for a lower input voltage. In the case of two equal amplitude tones applied to
the system, the actual output power for one frequency is

vo = k1vi +
9
4

k3v 3
i (2.67)

The ideal output voltage is still given by (2.64). So now the ratio is

k1v1dB +
9
4

k3v 3
1dB

k1v1dB
= 0.89125 (2.68)

Therefore, the 1-dB compression voltage is now

v1dB = 0.22√k1
k3

(2.69)

Thus, as more tones are added, this voltage will continue to get lower.

2.3.5 Relationships Between 1-dB Compression and IP3 Points

In the last two sections, formulas for the IP3 and the 1-dB compression point
have been derived. Since we now have expressions for both these values, we
can find a relationship between these two points. Taking the ratio of (2.53)
and (2.66) gives

vIP3
v1dB

=
2√ k1

3k3

0.38√k1
k3

= 3.04 (2.70)
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Thus, these voltages are related by a factor of 3.04, or about 9.66 dB,
independent of the particulars of the nonlinearity in question. In the case of
the 1-dB compression point with two tones applied, the ratio is larger. In this
case,

vIP3
v1dB

=
2√ k1

3k3

0.22√k1
k3

= 5.25 (2.71)

Thus, these voltages are related by a factor of 5.25 or about 14.4 dB.
Thus, one can estimate that for a single tone, the compression point is

about 10 dB below the intercept point, while for two tones, the 1-dB compression
point is close to 15 dB below the intercept point. The difference between these
two numbers is just the factor of three (4.77 dB) resulting from the second
tone.

Note that this analysis is valid for third-order nonlinearity. For stronger
nonlinearity (i.e., containing fifth-order terms), additional components are found
at the fundamental as well as at the intermodulation frequencies. Nevertheless,
the above is a good estimate of performance.

Example 2.6 Determining IIP3 and 1-dB Compression Point from Measurement
Data
An amplifier designed to operate at 2 GHz with a gain of 10 dB has two signals
of equal power applied at the input. One is at a frequency of 2.0 GHz and
another at a frequency of 2.01 GHz. At the output, four tones are observed at
1.99, 2.0, 2.01, and 2.02 GHz. The power levels of the tones are −70, −20,
−20, and −70 dBm, respectively. Determine the IIP3 and 1-dB compression
point for this amplifier.

Solution
The tones at 1.99 and 2.02 GHz are the IP3 tones. We can use (2.57) directly
to find the IIP3:

IIP3 = P1 +
1
2

[P1 − P3 ] − G = −20 +
1
2

[−20 + 70] − 10 = −5 dBm

The 1-dB compression point for a signal tone is 9.66 dB lower than this
value, about −14.7 dBm at the input.

2.3.6 Broadband Measures of Linearity

Intercept and 1-dB compression points are two common measures of linearity,
but they are by no means the only ones. Many others exist and, in fact, more
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could be defined. Two other measures of linearity that are common in wide-
band systems handling many signals simultaneously are called composite triple-
order beat (CTB) and composite second-order beat (CSO) [11, 12]. In these tests
of linearity, N signals of voltage vi are applied to the circuit equally spaced in
frequency, as shown in Figure 2.13. Note here that, as an example, the tones
are spaced 6 MHz apart (this is the spacing for a cable television system for
which this is a popular way to characterize linearity). Note also that the tones
are never placed at a frequency that is an exact multiple of the spacing (in this
case, 6 MHz). This is done so that third-order terms and second-order terms
fall at different frequencies. This will be clarified shortly.

If we take three of these signals, then the third-order nonlinearity gets a
little more complicated than before:

(x1 + x2 + x3 )3 = x3
1 + x3

2 + x3
35

HD3

+ 3x2
1x2 + 3x2

1x3 + 3x2
2x1 + 3x2

3x1 + 3x2
2x3 + 3x2

3x25
IM3

+ 6x1x2x3 (2.72)5

TB

The last term in the expression causes CTB in that it creates terms at
frequencies v1 ± v2 ± v3 of magnitude 1.5k3vi where v1 < v2 < v3 . This
is twice as large as the IM3 products. Note that, except for the case where all
three are added (v1 + v2 + v3 ), these tones can fall into any of the channels
being used and many will fall into the same channel. For instance, in Figure

Figure 2.13 Equally spaced tones entering a broadband circuit.



34 Radio Frequency Integrated Circuit Design

2.13, 67.25 − 73.25 + 79.25 = 73.25 MHz and 49.25 − 55.25 + 79.25 =
73.25 MHz will both fall on the 73.25-MHz frequency. In fact, there will be
many more triple-beat (TB) products than IM3 products. Thus, these terms
become more important in a wide-band system. It can be shown that the
maximum number of terms will fall on the tone at the middle of the band.
With N tones, it can be shown that the number of tones falling there will be

Tones =
3
8

N 2 (2.73)

We have already said that the voltage of these tones is twice that of the
IP3 tones. We also note here that if the signal power is backed off from the
IP3 power by some amount, the power in the IP3 tones will be backed off
three times as much (calculated on a logarithmic scale). Therefore, if each
fundamental tone is at a power level of Ps , then the power of the TB tones
will be

TB (dBm) = P IP3 − 3(P IP3 − Ps ) + 6 (2.74)

where P IP3 is the IP3 power level for the given circuit.
Now, assuming that all tones add as power rather than voltage, and noting

that CTB is usually specified as so many decibels down from the signal power,

CTB (dB) = Ps − FP IP3 − 3(P IP3 − Ps ) + 6 + 10 logS3
8

N 2DG
(2.75)

Note that CTB could be found using either input- or output-referred
power levels.

Similar to the CTB is the CSO, which can also be used to measure the
linearity of a broadband system. Again, if we have N signals all at the same
power level, we now consider the second-order distortion products of each pair
of signals falling at frequencies v1 ± v2 . In this case, the signals fall at frequencies
either above or below the carriers rather than right on top of them, as in the
case of the triple-beat terms, provided that the carriers are not some even
multiple of the channel spacing. For example, in Figure 2.13, 49.25 + 55.25
= 104.5 MHz. This is 1.25 MHz above the closest carrier at 103.25 MHz. All
the sum terms will fall 1.25 MHz above the closest carrier, while the difference
terms such as 763.25 − 841.25 = 78, will fall 1.25 MHz below the closest
carrier at 79.25 MHz. Thus, the second-order and third-order terms can be
measured separately. The number of terms that fall next to any given carrier
will vary. Some of the v1 + v2 terms will fall out of band and the maximum
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number in band will fall next to the highest frequency carrier. The number of
second-order beats above any given carrier is given by

NB = (N − 1)
f − 2f L + d
2( fH − f L )

(2.76)

where N is the number of carriers, f is the frequency of the measurement
channel, f L is the frequency of the lowest channel, fH is the frequency of the
highest channel, and d is the frequency offset from a multiple of the channel
spacing (1.25 MHz in Figure 2.13).

For the case of the difference frequency second-order beats, there are more
of these at lower frequencies, and the maximum number will be next to the
lowest frequency carrier. In this case, the number of second-order products next
to any carrier can be approximated by

NB = (N − 1) S1 −
f − d

fH − f L
D (2.77)

Each of the second-order beats is an IP2 tone. Therefore, if each fundamen-
tal tone is at a power level of Ps , then the power of the second-order beat (SO)
tones will be

SO (dBm) = P IP2 − 2(P IP2 − Ps ) (2.78)

Thus, the composite second-order beat product will be given by

CSO (dB) = Ps − [P IP2 − 2(P IP2 − Ps ) + 10 log (NB )] (2.79)

2.4 Dynamic Range

So far, we have discussed noise and linearity in circuits. Noise determines how
small a signal a receiver can handle, while linearity determines how large a signal
a receiver can handle. If operation up to the 1-dB compression point is allowed
(for about 10% distortion, or IM3 is about −20 dB with respect to the desired
output), then the dynamic range is from the minimum detectable signal to
this point. This is illustrated in Figure 2.12. In this figure, intermodulation
components are above the minimum detectable signal for P in > −30 dBm, for
which Pout = −20 dBm. Thus, for any Pout between the minimum detectable
signal of −100 dBm and −20 dBm, no intermodulation components can be
seen, so the spurious free dynamic range is 80 dB.



36 Radio Frequency Integrated Circuit Design

Example 2.7 Determining Dynamic Range

In Example 2.4 we determined the sensitivity of a receiver system. Figure 2.14
shows this receiver again with the linearity of the mixer and LNA specified.
Determine the dynamic range of this receiver.

Solution
The overall receiver has a gain of 19 dB. The minimum detectable signal from
Example 2.4 is −106 dBm or −87 dBm at the output. The IIP3 of the LNA
referred to the input is −5 dBm + 4 = −1 dBm. The IIP3 of the mixer referred
to the input is 0 − 13 + 4 = −9 dBm. Therefore, the mixer dominates the IIP3
for the receiver. The 1-dB compression point will be 9.6 dB lower than this,
or −18.6 dBm. Thus, the dynamic range of the system will be −18.6 + 106 =
87.4 dB.

Example 2.8 Effect of Bandwidth on Dynamic Range

The data transfer rate of the previous receiver can be greatly improved if we
use a bandwidth of 80 MHz rather than 200 kHz. What does this do to the
dynamic range of the receiver?

Solution
This system is the same as the last one except that now the bandwidth is
80 MHz. Thus, the noise floor is now

Noise floor = −174 dBm + 10 log10 (80 × 106) = −95 dBm

Assuming that the same signal-to-noise ratio is required:

Sensitivity = − 95 dBm + 7 dB + 8 dB = − 80 dBm

Thus, the dynamic range is now −15.6 + 80 = 64.4 dB. In order to get
this back to the value in the previous system, we would need to increase the
linearity of the receiver by 25.3 dB. As we will see in future chapters, this would
be no easy task.

Figure 2.14 Circuit for system example.
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2.5 Filtering Issues

To determine noise floor, the system bandwidth has to be known. The system
bandwidth is set by filters, so it becomes necessary to discuss some of the filtering
issues. There are additional reasons for needing filtering. The receiver must be
able to maintain operation and to detect the desired signal in the presence of
other signals often referred to as blocking signals. These other signals could be
of large amplitude and could be close by in frequency. Such signals must be
removed by filters, so a very general discussion of filters is in order. Actual
monolithic filter circuits will be discussed in a later chapter.

2.5.1 Image Signals and Image Reject Filtering

The task of the receiver front end is to take the RF input and mix it either to
baseband or to some IF where it can be more easily processed. A receiver in
which the signal is taken directly to base band is called a homodyne or direct-
conversion receiver. Although simpler than a receiver that takes the signal to
some IF first (called a superheterodyne receiver ), direct-conversion receivers suffer
from numerous problems, including dc offsets, because much of the information
is close to dc and also because of LO self-mixing [13]. A typical superheterodyne
receiver front end consists of an LNA, an image filter, a mixer, and a VCO,
as shown in Figure 2.15. An alternative to the image filter is to use an image
reject mixer, which will be discussed in detail in Chapter 7. The image filter
is required to suppress the unwanted image frequency, which is located a distance
of two IFs away from the desired radio frequency [14]. Also, the image filter
must prevent noise at the image frequency from mixing down to the IF and
increasing the noise figure.

A superheterodyne receiver takes the desired RF input signal and mixes
it with some reference signal to extract the difference frequency, as shown in
Figure 2.16. The LO reference is mixed with the input to produce a signal at
the difference frequency of the LO and RF. The problem is that a signal on
the other side of the LO at the same distance from the LO will also mix down

Figure 2.15 A block-level diagram of a superheterodyne receiver front end.
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Figure 2.16 Translation of the RF signal to an IF in a superheterodyne receiver.

‘‘on top’’ of the desired frequency. Thus, before mixing can take place, this
unwanted image frequency must be removed. Typically, this is done with a
filter that attenuates the image.

Thus, another important specification in a receiver is how much image
rejection it has. Image rejection is defined as the ratio of the gain of the desired
signal through the receiver Gsig to the gain of the image signal through the
receiver Gim .

IR = 10 logSGsig

Gim
D (2.80)

The amount of filtering provided can be calculated by knowing the unde-
sired frequency with respect to the filter center frequency, the filter bandwidth,
and filter order. The following equation can be used for this calculation:

AdB =
n
2

? 20 logS fud − f c
fbe − f c

D =
n
2

? 20 logS2
D f

fBW
D (2.81)

where AdB is the attenuation in decibels, n is the filter order (and thus n /2 is
the effective order on each edge), fud is the frequency of the undesired signal,
f c is the filter center frequency, f be is the filter band edge, D f is fud − f c , and
fBW is 2( f be − f c ).

Example 2.9 Image Reject Filtering

A system has an RF band from 902 to 928 MHz and a 200-kHz channel
bandwidth and channel spacing. The first IF is at 70 MHz. With a 26-MHz
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image-reject filter, determine the order of filter required to get a worst-case
image rejection of better than 50 dB.

Solution
The frequency spectrum is shown in Figure 2.17. At RF, the local oscillator
frequency fLO is tuned to be 70 MHz above the desired RF signal so that the
desired signal will be mixed down to IF at 70 MHz. Thus, fLO is adjustable
between 972 and 998 MHz to allow signals between 902 and 928 MHz to be
received. Any signal or noise 70 MHz above fLO will also mix into the IF stage.
This is known as the image frequency. An image reject filter is required to prevent
any image signals from entering the mixer. The worst case will be when the
image frequency is closest to the filter frequency. This occurs when the input
is at 902 MHz, the LO is at 972 MHz, and the image is 1,042 MHz. The
required filter order n can be calculated by solving (2.81) using fBW = 26 MHz
and D f = 70 + 44 + 13 = 127 MHz as follows:

n =
2 ? AdB

20 ? log (2D f /fBW)
= 5.05

Since the order is an even number, a sixth-order filter is used and total
attenuation is calculated to be 59.4 dB.

2.5.2 Blockers and Blocker Filtering

Large unwanted signals can block the desired signal. This can happen when
the desired signal is small and the undesired signal is large, for example, when
the desired signal is far away and the undesired signal is close. If the result is
that the receiver is overloaded, the desired signal cannot be received. This
situation is known as blocking. If the blockers are in the desired frequency band,
then filters do not help until the IF stage is reached.

Example 2.10 How Blockers Are Used To Determine Linearity
Consider the typical blocker specifications for a Global System Mobile (GSM)
receiver shown in Figure 2.18. In the presence of the blockers, the input signal

Figure 2.17 Signal spectrum for filter example.
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Figure 2.18 GSM minimum detectable signal and blocker levels.

is at −102 dBm and the required signal-to-noise ratio, with some safety margin,
is 11 dB. Calculate the required input linearity of the GSM receiver.

Solution
This is an example of the so-called near-far problem that occurs when the
desired signal is far away and one or more interfering signals are close by and
hence much larger than the wanted signal. So what will be the effect of the
blockers? With nonlinearity, third-order intermodulation between the pair of
blockers will cause interference directly on top of the signal. The level of this
disturbance must be low enough so that the signal can still be detected. The
other potential problem is that the large blocker at −23 dBm can cause the
amplifier to saturate, rendering the amplifier helpless to respond to the desired
signal, which is much smaller. In other words, the receiver has been blocked.

As an estimate, the blocker inputs at −43 dBm will result in third-order
intermodulation components (referred to the input) which must be less than
−113 dBm, so there is still 11 dB of SNR at the input. Thus, the third-order
components (at −113 dBm) are 70 dB below the fundamental components (at
−43 dBm). Using (2.57) with Pi at −43 dBm and [P1 − P3 ] = 70 dB results
in IIP3 of about −8 dBm. Going by this number, the 1-dB compression point
is at about −18 dBm at the input. Thus, the single input blocker at −23 dBm
is still 5 dB away from the 1-dB compression point. This sounds safe, although
there will now be gain through the LNA and the mixer. The blocker will not
be filtered until after the mixer, so one must be careful not to saturate any of
the components along this path.

The blocking signals can cause problems in a receiver through another
mechanism known as reciprocal mixing. For a blocker at an offset of D f from
the desired signal, if the oscillator also has a component at the same offset D f
from the carrier, then the blocking signal will be mixed directly to the IF.



41Issues in RFIC Design, Noise, Linearity, and Filtering

Example 2.11 Calculating Maximum Level of Synthesizer Spurs

For the previous GSM specifications, calculate the allowable noise in a synthesizer
in the presence of the blocking signals.

Solution Any tone in the synthesizer at 600-kHz offset will mix with the blocker
which is at −43 dBm and mix it to the IF stage, where it will interfere with
the wanted signal. The blocker can be mixed with noise anywhere in the 200-kHz
bandwidth, so a further 53 dB is added to the noise. We note that to be able
to detect the wanted signal reliably, as in the previous example, we need the
signal to be about 11 dB or so above the mixed-down blocker. Therefore, the
mixed-down blocker must be less than −113 dBm. Therefore, the maximum
synthesizer noise power at 600-kHz offset is calculated as −113 + 43 − 53 =
−123 dB lower than the desired oscillating amplitude measured in a 1-Hz
bandwidth. This is an illustration of what is known as phase noise and will be
discussed in more detail in Chapter 8.
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