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Preface

Perhaps the title of this book should have been, somewhat in the style
of past times, ‘ Some approaches towards the theory of optimization,
with an emphasis on the topological aspects, ignoring combinatorial
problems and almost ignoring combinatorial tools, not going into
the algorithmic and numeric problems of effectively finding solutions
to problems, yet meant as a contribution to applied and even
practical mathematics.’

Even this does not make it sufficiently clear what is going on in
the book and what is not. It is worth saying a few words about the
omissions. Convex processes are not treated, problems involving
more than one objective to be optimized are only touched on lightly.
Of game theory, only the simplest model is considered. Since, as far
as Lagrangian duality is concerned, any practitioner wants a nonzero
multiplier attached to the objective function, theorems where this
multiplier is allowed to be zero do not receive any attention. Similarly
the reader will not find anything about regularity conditions, which
apart from being sufficient are also necessary for a whole class of
problems (rather than for a single one). This is because when we try
to solve any one problem out of such a class, those conditions may
well be too strong for practical purposes. This is not to say that
everything in the book is so ‘practical’: some basic theorems rest on
the axiom of choice, for example, and sometimes we are satisfied to
establish the equality of an infimum and a supremum rather than that
of the corresponding minimum and maximum.

Although in practical situations we can often make do with
decision variables which are elements of a Banach space, or even a
Euclidean space, part of the theory includes a generalization to
locally convex topological vector spaces. This provides us with the
important possibility of considering, in Banach spaces, topologies
weaker than the strong one.
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X Preface

If we single out for competition the results dealt with in the
appendixes, the prize for the most beautiful result should perhaps go
to Theorem 6.2.2 on the equality of inf sup and sup inf, because of
its generality and its natural and elegant proof; or perhaps to the
general fixed point theorem (6.1.18) because of its combinatorially
ingenious proof; or to the theory of conjugate duality (chapter 4)
because of its power and symmetry. The reader should judge for
himself.

The main text does not contain references to the literature. These,
together with comments, have been combined in a separate section
entitled ‘Comments on the text and related literature’. Internal
cross-references are indicated either by two numerals, such as 3.14
referring to section 14 of chapter 3, or by three numerals, such as
3.14.19 referring to an item in 3.14,

The text assumes a basic knowledge of topology as well as
functional analysis.

Explicitly, J. W. Nieuwenhuis contributed by generalizing some
basic theorems, and implicitly he and W. K. Klein Haneveld con-
tributed through many discussions on all kinds of subjects involved.
The number of these discussions is only countable, but their effect
was invaluable.
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Symbols

Latin

A usually a matrix

B usually a matrix

b usually a right-hand side

C usually a subset of X

cl closure of

Dh(z, 1) see (4.4.4)

dom effective domain

epi epigraph

[ objective function

F bifunction

F? dual bifunction

F94 bidual bifunction

g ing(x) <0

g, (includes) the active part of
g (in g(x) < 0)

G set (feasible region)

h in h(x) = 0 or a function

h* conjugate of h

h** biconjugate of A

1 (z,,2z) one-sided directional
derivative

H hyperplane or Hamiltonian

int interior

K(y) cone defined by (3.8.6)

L Lagrangian

Iy, I, see Example 3.2.9

L(V) see Definition 3.3.4

N negative cone or nullspace

N* dual negative cone

p perturbation function

p° dual perturbation function

pi¢ bidual perturbation
function

P positive cone

P* dual positive cone

q’ usually Fréchet derivative of
q

R real axis

i relative interior

R,, n-dimensional Euclidean
space

T set defined in (3.5.3) or
point-to-set mapping defined
by (6.1.7)

U a set or a neighbourhood

u control variable, or in ue U

V a set or a neighbourhood, or
as defined by (3.5.4)

W a set or a neighbourhood

X decision space

x in xe X, decision variable

X* dual perturbation space

x* in x*e X*, dual
perturbation

Y constraint space =
perturbation space

© Cambridge University Press

www.cambridge.org



http://www.cambridge.org/0521604915
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521604915 - Approaches to the Theory of Optimization

J. Ponstein
Frontmatter
More information

Xii

y in yeY, (primal)
perturbation

Y* multiplier space

y* in ye Y*, multiplier

Z a (perturbation) space

zinzeZ

Z* dual of Z

z* in z*e Z*

Symbols

Greek

o infimum as in (3.5.1)
£ supremum as in (3.5.2)
& indicator function

&* support function

Other

V gradient
0 subgradient
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