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Einstein Geometrodynamics

If Einstein gave us a geometric account of motion and gravity, if according
to his 1915 and still-standard geometrodynamics spacetime tells mass how
to move and mass tells spacetime how to curve, then his message requires
mathematical tools to describe position and motion, curvature and the action
of mass on curvature. The tools (see the mathematical appendix) will open
the doorways to the basic ideas—equivalence principle, geometric structure,
field equation, equation of motion, equation of geodesic deviation—and these
ideas will open the doorways to more mathematical tools—exact solutions
of Einstein’s geometrodynamics field equation, equations of conservation of
source, and the principle that the boundary of a boundary is zero. The final
topics in this chapter—black holes, singularities, and gravitational waves—
round out the interplay of mathematics and physics that is such a central feature
of Einstein’s geometrodynamics.

2.1 THE EQUIVALENCE PRINCIPLE

At the foundations of Einstein1–10geometrodynamics11–21and of its geometrical
structure is one of the best-tested principles in the whole field of physics (see
chap. 3): the equivalence principle.

Among the various formulations of theequivalence principle16,21(see § 3.2),
we give here three most important versions: theweak form, also known as the
uniqueness of free fallor theGalilei equivalence principleat the base of most
known viable theories of gravity; themedium strong form, at the base of
metric theories of gravity; and thevery strong form, a cornerstone of Einstein
geometrodynamics.

Galilei in hisDialogues Concerning Two New Sciences22 writes: “The vari-
ation of speed in air between balls of gold, lead, copper, porphyry, and other
heavy materials is so slight that in a fall of 100 cubits a ball of gold would surely
not outstrip one of copper by as much as four fingers. Having observed this, I
came to the conclusion that in a medium totally void of resistance all bodies
would fall with the same speed.”

We therefore formulate theweak equivalence principle, or Galilei equiva-
lence principle22,23 in the following way:the motion of any freely falling test
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particle is independent of its composition and structure. A test particle is de-
fined to be electrically neutral, to have negligible gravitational binding energy
compared to its rest mass, to have negligible angular momentum, and to be
small enough that inhomogeneities of the gravitational field within its volume
have negligible effect on its motion.

The weak equivalence principle—that all test particles fall with the same
acceleration—is based on the principle24 that the ratio of the inertial mass to
the gravitational—passive—mass is the same for all bodies (see chap. 3). The
principle can be reformulated by saying that in every local, nonrotating, freely
falling frame the line followed by a freely falling test particle is a straight line,
in agreement with special relativity.

Einstein generalized10 the weak equivalence principle to all the laws of spe-
cial relativity. He hypothesized that in no local freely falling frame can we detect
the existence of a gravitational field, either from the motion of test particles, as
in the weak equivalence principle, or from any other special relativistic physical
phenomenon. We therefore state themedium strong form of the equivalence
principle , also called theEinstein equivalence principle, in the following way:
for every pointlike event of spacetime, there exists a sufficiently small neighbor-
hood such that in every local, freely falling frame in that neighborhood, all the
nongravitational laws of physics obey the laws of special relativity. As already
remarked, the medium strong form of the equivalence principle is satisfied by
Einstein geometrodynamics and by the so-called metric theories of gravity, for
example, Jordan-Brans-Dicke theory, etc. (see chap. 3).

If we replace18 all the nongravitational laws of physicswith all the laws of
physicswe get thevery strong equivalence principle, which is at the base of
Einstein geometrodynamics.

The medium strong and the very strong form of the equivalence principle
differ: the former applies to all phenomena except gravitation itself whereas
the latter applies to all phenomena of nature. This means that according to the
medium strong form, the existence of a gravitational field might be detected in
a freely falling frame by the influence of the gravitational field on local grav-
itational phenomena. For example, the gravitational binding energy of a body
might be imagined to contribute differently to the inertial mass and to the passive
gravitational mass, and therefore we might have, for different objects, differ-
ent ratios of inertial mass to gravitational mass, as in the Jordan-Brans-Dicke
theory. This phenomenon is called the Nordtvedt effect26,27 (see chap. 3). If
the very strong equivalence principle were violated, then Earth and Moon, with
different gravitational binding energies, would have different ratios of inertial
mass to passive gravitational mass and therefore would have different acceler-
ations toward the Sun; this would lead to some polarization of the Moon orbit
around Earth. However, the Lunar Laser Ranging28 experiment has put strong
limits on the existence of any such violation of the very strong equivalence
principle.
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The equivalence principle, in the medium strong form, is at the foundations
of Einstein geometrodynamics and of the other metric theories of gravity, with
a “locally Minkowskian” spacetime. Nevertheless, it has been the subject of
many discussions and also criticisms over the years.13,25,29,30

First, the equivalence between a gravitational field and an accelerated frame
in the absence of gravity, and the equivalence between a flat region of spacetime
and a freely falling frame in a gravity field, has to be considered valid only locally
and not globally.29 However, the content of the strong equivalence principle has
been criticized even “locally.” It has been argued that if one puts a spherical
drop of liquid in a gravity field, after some time one would observe a tidal
deformation from sphericity of the drop. Of course, this deformation does not
arise in a flat region of spacetime. Furthermore, let us consider a freely falling
frame in a small neighborhood of a point in a gravity field, such as the cabin of
a spacecraft freely falling in the field of Earth. Inside the cabin, according to the
equivalence principle, we are in a local inertial frame, without any observable
effect of gravity. However, let us take a gradiometer, that is, an instrument which
measures the gradient of the gravity field between two nearby points with great
accuracy (present room temperature gradiometers may reach a sensitivity of
about 10−11 (cm/s2)/cm per Hz−1/2 ≡ 10−2 Eötvös per Hz−1/2 between two
points separated by a few tens of cm; future superconducting gradiometers may
reach about 10−5 Eötvös Hz−1/2 at certain frequencies, see §§ 3.2 and 6.9).
No matter if we are freely falling or not, the gradiometer will eventually detect
the gravity field and thus will allow us to distinguish between the freely falling
cabin of a spacecraft in the gravity field of a central mass and the cabin of a
spacecraft away from any mass, in a region of spacetime essentially flat. Then,
may we still consider the strong equivalence principle to be valid?

From a mathematical point of view, at any pointP of a pseudo-Riemannian,
Lorentzian, manifold (see § 2.2 and mathematical appendix), one can find co-
ordinate systems such that, atP , the metric tensorgαβ (§ 2.2) is the Minkowski
metric ηαβ H diag(−1, +1, +1, +1) and the first derivatives ofgαβ , with
respect to the chosen coordinates, are zero. However, one cannot in general
eliminate certain combinations of second derivatives ofgαβ which form a ten-
sor called the Riemann curvature tensor:Rα

βγ δ (see § 2.2 and mathematical
appendix). The Riemann curvature tensor represents, at each point, the intrinsic
curvature of the manifold, and, since it is a tensor, one cannot transform it to
zero in one coordinate system if it is nonzero in some other coordinate system.
For example, at any pointP on the surface of a sphere one can find coordi-
nate systems such that, atP , the metric isg11(P ) H g22(P ) H 1. However, the
Gaussian curvature of the sphere (see mathematical appendix), that is, theR1212

component of the Riemann tensor, is, at each point, an intrinsic (independent
of coordinates) property of the surface and therefore cannot be eliminated with
a coordinate transformation. The metric tensor can indeed be written using the
Riemann tensor, in a neighborhood of a spacetime event, in a freely falling,
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nonrotating, local inertial frame, to second order in the separation,δxα, from
the origin:

g00 H −1 − R0i0j δx
iδxj

g0k H − 2

3
R0ikj δx

iδxj

gkl H δkl − 1

3
Rkilj δx

iδxj .

(2.1.1)

These coordinates are calledFermi Normal Coordinates.
In section 2.5 we shall see that in general relativity, and other metric

theories of gravity, there is an important equation, thegeodesic devia-
tion equation, which connects the physical effects of gravity gradients just
described with the mathematical structure of a manifold, that is, which
connects the physical quantities measurable, for example with a gradiome-
ter, with the mathematical object representing the curvature: the Riemann
curvature tensor. We shall see via the geodesic deviation equation that the
relative, covariant, acceleration between two freely falling test particles is pro-
portional to the Riemann curvature tensor, that is,δ̈x

α ∼ Rα
βµνδx

µ, where
δxα is the “small” spacetime separation between the two test particles. On a
two-surface, this equation is known as the Jacobi equation for the second deriva-
tive of the distance between two geodesics on the surface as a function of the
Gaussian curvature.

The Riemann curvature tensor, however, cannot be eliminated with a coordi-
nate transformation. Therefore, the relative, covariant, acceleration cannot be
eliminated with a change of frame of reference. In other words, by the mea-
surement of the second rate of change of the relative distance between two test
particles, we can detect, in every frame, the gravitational field, and indeed, at
least in principle, we can measure all the components of the Riemann curvature
tensor and therefore completely determine the gravitational field. Furthermore,
the motion of one test particle in a local freely falling frame can be described by
considering the origin of the local frame to be comoving with another nearby
freely falling test particle. The motion of the test particle in the local frame,
described by the separation between the origin and the test particle, is then given
by the geodesic deviation equation of section 2.5. This equation gives also a
rigorous description of a falling drop of water and of a freely falling gradiome-
ter, simply by considering two test particles connected by a spring, that is, by
including a force term in the geodesic deviation equation (see § 3.6.1).

From these examples and arguments, one might think that the strong equiva-
lence principle does not have the content and meaning of a fundamental principle
of nature. Therefore, one might think to restrict to interpreting the equivalence
principle simply as the equivalence between inertial massMi and gravitational
massMg. However,Mi H Mg is only a part of the medium (and strong)
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equivalence principle whose complete formulation is at the basis of the locally
Minkowskian spacetime structure.

In general relativity, the content and meaning of the strong equivalence prin-
ciple is thatin a sufficiently small neighborhood of any spacetime event, in a
local freely falling frame, no gravitational effects are observable. Here, neigh-
borhood means neighborhood inspaceandtime. Therefore, one might formulate
the medium strong equivalence principle, or Einstein equivalence principle, in
the following form: for every spacetime event (then excluding singularities),
for any experimental apparatus, with some limiting accuracy, there exists a
neighborhood, in space and time, of the event, and infinitely many local freely
falling frames, such that for every nongravitational phenomenon the differ-
ence between the measurements performed (assuming that the smallness of the
spacetime neighborhood does not affect the experimental accuracy) and the
theoretical results predicted by special relativity (including the Minkowskian
character of the geometry) is less than the limiting accuracy and therefore un-
detectable in the neighborhood. In other words, in the spacetime neighborhood
considered, in a freely falling frame all the nongravitational laws of physics
agree with the laws of special relativity (including the Minkowskian character
of spacetime), apart from a small difference due to the gravitational field that
is; however, unmeasurable with the given experimental accuracy. We might
formulate the very strong equivalence principle in a similar way.

For a test particle in orbit around a massM, the geodesic deviation equation
gives

δ̈x
α ∼ Rα

0β0δx
β ∼ ω2

0δx
α (2.1.2)

whereω0 is the orbital frequency. Thus, one would sample large regions of the
spacetime if one waited for even one period of this “oscillator.” We must limit
the dimensions in space and time of the domain of observation to values small
compared to one period if we are to uphold the equivalence principle.

A liquid drop which has a surface tension, and which resists distortions from
sphericity, supplies an additional example of how to interpret the equivalence
principle. In order to detect a gravitational field, themeasurablequantity—
theobservable—is the tidal deformationδx of the drop. If a gravity field acts
on the droplet and if we choose a small enough drop, we will not detect any
deformation because the tidal deformations from sphericity are proportional to
the sizeD of the small drop, and even for a self-gravitating drop of liquid in
some external gravitational field, the tidal deformationsδx are proportional to
its sizeD. This can be easily seen from the geodesic deviation equation with a
springlike force term (§ 3.6.1), in equilibrium:k

m
δx ∼ Ri

0j0D ∼ M
R3 D, where

M is the mass of an external body andRi
0j0 ∼ M

R3 are the leading components
of the Riemann tensor generated by the external massM at a distanceR. Thus, in
a spacetime neighborhood, with a given experimental accuracy, the deformation
δx, is unmeasurable for sufficiently small drops.
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We overthrow yet a third attempt to challenge the equivalence principle—
this time by use of a modern gravity gradiometer—by suitably limiting the
scale or time of action of the gradiometer. Thus either one needs large dis-
tances over which to measure the gradient of the gravity field, or one needs
to wait a period of time long enough to increase, up to a detectable value,
the amplitude of the oscillations measured by the gradiometer. Similarly, with
gravitational-wave detectors (resonant detectors, laser interferometers, etc.; see
§ 3.6), measuring the time variations of the gravity field between two points, one
may be able to detect very small changes of the gravity field (present relative
sensitivity to a metric perturbation or fractional change in physical dimensions
∼ 10−18 to 10−19, “near” future sensitivity∼ 10−21 to 10−22; see § 3.6) dur-
ing a small interval of time (for example a burst of gravitational radiation of
duration∼ 10−3 s). However, all these detectors basically obey the geodesic
deviation equation, with or without a force term, and in fact their sensitivity
to a metric perturbation decreases with their dimensions or time of action (see
§ 3.6).

In a final attempt to challenge the equivalence principle one may try to mea-
sure thelocal deviations from geodesic motion of a spinning particle, given
by the Papapetrou equation described in section 6.10. In agreement with the
geodesic deviation equation, these deviations are of typeδ̈x

i ∼ Ri
0µνJ

µν ,
whereJµν is the spin tensor of the particle andu0 ∼H 1, defined in section 6.10.
However, general relativity is a classical—nonquantized—theory. Therefore,
in the formulation of the strong equivalence principle one has to consider only
classicalangular momentum of finite size particles. However, the classical an-
gular momentum of a particle goes to zero as its size goes to zero, and we thus
have a case analogous to the previous ones: sufficiently limited in space and
time, no observations of motion will reveal any violation of the equivalence
principle.

Of course, the local “eliminability” of gravitational effects is valid for grav-
ity only. Two particles with arbitrary electric charge to mass ratios,q1

m1
6H q2

m2
,

for exampleq1 H 0 and q2

m2
� 1 (in geometrized units), placed in an ex-

ternal electric field, will undergo a relative acceleration that can be very large
independently from their separation going to zero.

In summary, since the gravitational field is represented by the Riemann cur-
vature tensor it cannot be transformed to zero in some frame if it is different from
zero in some other frame; however, the measurable effects of the gravitational
field, that is, of the spacetime curvature, between two nearby events, go to zero
as the separation in space and time between the two events, or equivalently as
the separation between the space and time origin of a freely falling frame and
another local event. Thus,any effect of the gravitational field is unmeasurable,
in a sufficiently small spacetime neighborhood in a local freely falling frame of
reference.
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2.2 THE GEOMETRICAL STRUCTURE

In 1827 Carl Friedrich Gauss (1777–1855) published what is thought to be
the single most important work in the history of differential geometry:Disqui-
sitiones generales circa superficies curvas(General Investigations of Curved
Surfaces).31 In this work he defines the curvature of two-dimensional surfaces,
the Gaussian curvature, from the intrinsic properties of a surface. He concludes
that all the properties that can be studied within a surface, without reference to
the enveloping space, are independent from deformations, without stretching,
of the surface—theorema egregium—and constitute the intrinsic geometry of
the surface. The distance between two points, measured along the shortest line
between the points within the surface, is unchanged for deformations, without
stretching, of the surface.

The study of non-Euclidean geometries really began with the ideas and works
of Gauss, Nikolai Ivanovich Lobačevskij (1792–1856),32 and J́anos Bolyai
(1802–1860). In non-Euclidean geometries, Euclid’s 5th postulate on straight
lines is not satified (that through any point not lying on a given straight line,
there is one, and only one, straight line parallel to the given line; see § 1.1).

In 1854 Georg Friedrich Bernhard Riemann (1826–1866) delivered his qual-
ifying doctoral lecture (published in 1866):Über die Hypothesen, welche der
Geometrie zu Grunde liegen(On the Hypotheses Which Lie at the Foundations
of Geometry).33 This work is the other cornerstone of differential geometry;
it extends the ideas of Gauss from two-dimensional surfaces to higher dimen-
sions, introducing the notions of what we call today Riemannian manifolds,
Riemannian metrics, and the Riemannian curvature of manifolds, a curvature
that reduces to the Gaussian curvature for ordinary two-surfaces. He also dis-
cusses the possibilities of a curvature of the universe and suggests that space
geometry may be related to physical forces (see § 1.1).

The absolute differential calculus is also known as tensor calculus or
Ricci calculus. Its development was mainly due to Gregorio Ricci Curbastro
(1853–1925) who elaborated the theory during the ten years 1887–1896.34,35

Riemann’s ideas and a formula (1869) of Christoffel36 were at the basis of
the tensor calculus. In 1901 Ricci and his student Tullio Levi-Civita (1873–
1941) published the fundamental memoir:Méthods de calcul différential absolu
et leurs applications(Methods of Absolute Differential Calculus and their
Applications),35 a detailed description of the tensor calculus; that is, the gen-
eralization, on a Riemannian manifold, of the ordinary differential calculus. At
the center of attention are geometrical objects whose existence is independent
of any particular coordinate system.

From the medium strong equivalence principle, it follows that spacetime
must be at an event, in suitable coordinates, Minkowskian; furthermore, it may
be possible to show some theoretical evidence for the existence of a curvature
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of the spacetime.37 The Lorentzian, pseudo-Riemannian38–43 character of
spacetime is the basic ingredient of general relativity and other metric theories
of gravity; we therefore assume thespacetimeto be aLorentzian manifold :
that is, a four-dimensional pseudo-Riemannian manifold, with signature+2 (or
−2, depending on convention); that is, a smooth manifoldM4 with a continuous
two-index tensor fieldg, themetric tensor, such thatg is covariant (see the
mathematical appendix), symmetric, and nondegenerate or, simply, at each point
of M, in components:

gβα H gαβ

det(gαβ) 6H 0; and signature(gαβ) H +2 (or −2).
(2.2.1)

The metricgαβ(x) determines the spacetime squared “distance”ds2 between
two nearby events with coordinatesxα and xα + dxα: ds2 ≡ gαβdxαdxβ .
On a pseudo-Riemannian manifold (the spacetime), for a given vectorvP in
P , the squared normgαβvα

P v
β

P can be positive, negative, or null, the vector
is then respectively called spacelike, timelike, or null. The metric tensor with
both indices up, that is,contravariant, gαβ , is obtained from thecovariant
components,gαβ , by gαβgβγ ≡ δα

γ , whereδα
γ is the Kronecker tensor, 0 for

α 6H γ and 1 forα H γ .
Let us briefly recall the definition of a few basic quantities of tensor calculus

on a Riemannian manifold;38–43for a more extensive description see the math-
ematical appendix. We shall mainly use quantities written in components and
referred to a coordinate basis on ann-dimensional Riemannian manifold.

A p-covariant tensor Tα1···αp
, or T, is a mathematical object made ofnp

quantities that under a coordinate transformation,x ′α H x ′α(xα), change ac-
cording to the transformation lawT ′

α1···αp
H ∂

β1···βp

α′
1···α′

p
Tβ1···βp

, where∂
β1···βp

α′
1···α′

p
≡

∂xβ1

∂x ′α1 · · · ∂xβp

∂x ′αp denotes the partial derivatives of the old coordinatesxα with

respect to the new coordinatesx ′α : ∂
β

α′ ≡ ∂xβ

∂x ′α .
A q-contravariant tensor T α1···αq is a mathematical object made ofnq quan-

tities that transform according to the ruleT ′α1···αq H ∂
α′

1···α′
q

β1···βq
T β1···βq where

∂
α′

1···α′
q

β1···βq
≡ ∂x ′α1

∂xβ1
· · · ∂x ′αq

∂xβq
. The covariant and contravariant components of a

tensor are obtained from each other by lowering and raising the indices with
gαβ andgαβ .

The covariant derivative ∇γ of a tensorT α···
β···, written here with a

semicolon “; γ ” is a tensorial generalization to curved manifolds of the stan-
dard partial derivative of Euclidean geometry. Applied to ann-covariant,
m-contravariant tensorT α···

β··· it forms a (n + 1)-covariant,m-contravariant
tensorT α···

β···;γ defined as

T α···
β···;γ ≡ T α···

β···,γ + 0α
σγ T σ ···

β··· − 0σ
βγ T α···

σ ··· (2.2.2)
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where the0α
βγ are theconnection coefficients. They can be constructed, on a

Riemannian manifold, from the first derivatives of the metric tensor:

0α
γβ H 0α

βγ H 1

2
gασ (gσβ,γ + gσγ,β − gβγ,σ ) ≡

{
α

βγ

}
. (2.2.3)

On a Riemannian manifold, in acoordinate basis(holonomic basis), the
connection coefficients have the above form,

{
α

βγ

}
, as a function of the metric

and of its first derivatives, and are usually called Christoffel symbols (see § 2.8
and mathematical appendix). TheChristoffel symbols0α

βγ are not tensors, but

transform according to the rule0′α
βγ H ∂α′

σ ∂
µ

β ′∂
ν
γ ′0σ

µν + ∂α′
δ ∂δ

β ′γ ′ where∂δ
β ′γ ′ ≡

∂2xδ

∂x ′β∂x ′γ .
TheRiemann curvature tensorRα

βγ δ is the generalization ton-dimensional
manifolds of the Gaussian curvatureK of a two-dimensional surface; it is
defined as the commutator of the covariant derivatives of a vector fieldA,

Aα ;βγ − Aα ;γβ H Rα
σγβAσ . (2.2.4)

In terms of the Christoffel symbols (2.2.3) the curvature is given by

Rα
βγ δ H 0α

βδ,γ − 0α
βγ,δ + 0α

σγ 0σ
βδ − 0α

σδ0
σ
βγ . (2.2.5)

The various symmetry properties of the Riemann curvature tensor are given in
the mathematical appendix.

2.3 THE FIELD EQUATION

In electromagnetism44 the four components of the electromagnetic vector poten-
tial Aα are connected with the density of chargeρ and with the three components
of the density of current,j i H ρvi , by the Maxwell equation

Fαβ
,β ≡ (Aβ,α − Aα,β),β H 4πjα ≡ 4πρuα (2.3.1)

in flat spacetime. HereFαβ ≡ Aβ,α − Aα,β is the electromagnetic field tensor,
jα ≡ ρuα is the charge current density four-vector, anduα ≡ dxα

ds
is the four-

velocity of the charge distribution. The comma “, β” means partial derivative
with respect toxβ : ∂Aα

∂xβ ≡ Aα
,β .

We search now for a field equation that will connect the gravitational tensor
potentialgαβ with the density of mass-energy and its currents. Let us follow
David Hilbert45 (1915) to derive this Einstein field equation6 from a variational
principle, or principle of least action. We are motivated by Richard Feynman’s
later insight that classical action for a system reveals and follows the phase
of the quantum mechanical wave function of that system (see below, refs. 128
and 129). We write the total action over an arbitrary spacetime region� as

I H
∫

�

(LG + LM

)
d4x (2.3.2)
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whered4x H dx1 · dx2 · dx3 · dx0 andLG andLM are the Lagrangian densities
for the geometry and for matter and fields, respectively,LG ≡ LG

√−g and
LM ≡ LM

√−g, andg is the determinant of the metricgαβ : g H det(gαβ). The
field variables describing the geometry, that is, the gravitational field, are the ten
components of the metric tensorgαβ . In order to have a tensorial field equation
for gαβ , we search for a(LG + LM) that is a scalar density, that is, we search
for an actionI that is a scalar quantity. By analogy with electromagnetism we
then search for a field equation of the second order in the field variablesgαβ ,
which, to be consistent with the observations, in the weak field and slow motion
limit, must reduce to the classical Poisson equation. Therefore, theLagrangian
density for the geometryshould contain the field variablesgαβ and their first
derivativesgαβ,γ only. In agreement with these requirements we assume

LG H 1

2χ

√−g · R. (2.3.3)

Here 1
2χ

is a constant to be determined by requiring that we recover classical

gravity theory in the weak field and slow motion limit,R ≡ Rα
α ≡ gαβRαβ

is theRicci or curvature scalar, andRαβ is theRicci tensor constructed by
contraction from the Riemann curvature tensor,Rαβ H Rσ

ασβ . The curvature
scalarR has a part linear in the second derivatives of the metric; however, it
turns out that the variation of this part does not contribute to the field equation
(see below).

Before evaluating the variation of the actionI , we need to introduce a few
identities and theorems, valid on a Riemannian manifold, that we shall prove
at the end of this section.

1. The covariant derivative (defined by the Riemannian connection, see § 2.8)
of the metric tensorgαβ is zero (Ricci theorem):

gαβ ;γ H 0. (2.3.4)

2. The variation,δg, with respect togαβ , of the determinant of the metricg
is given by

δg H g · gαβ · δgαβ H −g · gαβ · δgαβ. (2.3.5)

3. For a vector fieldvα, we have the useful formula

vα ;α H (√−gvα
)
,α

1√−g
, (2.3.6)

and similarly for a tensor fieldT αβ

T αβ ;β H (√−gT αβ
)
,β

1√−g
+ 0α

σβT σβ. (2.3.7)

4. Even though the Christoffel symbols0α
βγ are not tensors and transform ac-

cording to the rule that follows expression (2.2.3),0
′α
βγ H ∂α′

σ ∂
µ

β ′∂
ν
γ ′0σ

µν +



The Bartlett Press, Inc. ciufolin 4:00 p.m. 6 · iii · 1995

EINSTEIN GEOMETRODYNAMICS 49

∂α′
δ ∂δ

β ′γ ′ , the difference between two sets of Christoffel symbols on the
manifold M, δ0α

βγ (x) ≡ 0∗α
βγ (x) − 0α

βγ (x), is a tensor. This immedi-
ately follows from the transformation rule for the0α

βγ (x). The two sets
of Christoffel symbols onM, 0∗α

βγ (x) and0α
βγ (x), may, for example, be

related to two tensor fields,g∗
αβ(x) andgαβ(x), onM.

5. The variationδRαβ of the Ricci tensorRαβ is given by

δRαβ H (
δ0σ

αβ

)
;σ − (

δ0σ
ασ

)
;β. (2.3.8)

6. The generalization of theStokes divergence theorem, to a four-
dimensionalmanifoldM, is∫

�

vσ ;σ
√−gd4x H

∫
�

(
vσ

√−g
)
,σ

d4x H
∫

∂�

√−gvσ d36σ . (2.3.9)

Here vσ is a vector field,� is a four-dimensional spacetime region,
d4x H dx0 dx1 dx2 dx3 its four-dimensional integration element,∂� is
the three-dimensional boundary (with the induced orientation; see § 2.8
and mathematical appendix) of the four-dimensional region�, andd6σ

the three-dimensional integration element of∂� (see § 2.8).

We now require the actionI to be stationary for arbitrary variationsδgαβ of
the field variablesgαβ , with certain derivatives ofgαβ fixed on the boundary of
�: δI H 0. By using expression (2.3.5) we then find that

δI H 1

2χ

∫
�

(
Rαβ − 1

2
gαβR

)√−g δgαβd4x + 1

2χ

∫
�

gαβ
√−g δRαβd4x

+
∫

�

δLM

δgαβ
δgαβd4x H 0.

(2.3.10)
The second term of this equation can be written

1

2χ

∫
�

gαβ
√−g δRαβd4x

H 1

2χ

∫
�

gαβ
√−g

[(
δ0σ

αβ

)
;σ − (

δ0σ
ασ

)
;β
]
d4x

H 1

2χ

∫
�

√−g
[(

gαβδ0σ
αβ

)
;σ − (

gαβδ0σ
ασ

)
;β
]
d4x

H 1

2χ

∫
�

[(√−g gαβδ0σ
αβ

) − (√−g gασ δ0ρ
αρ

)]
,σ

d4x.

(2.3.11)

whereδ0α
βγ H 1

2 gασ [(δgβσ );γ + (δgσγ );β − (δgγβ);σ ]. This is an integral of a
divergence and by the four-dimensional Gauss theorem can be transformed into
an integral over the boundary∂� of �, where it vanishes if certain derivatives
of gαβ are fixed on the boundary∂� of �. Then, this term gives no contribution
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to the field equation. Indeed, the integral over the boundary∂� H ∑
I

SI of �

can be rewritten (see York 1986)46 as∑
I

εI

2χ

∫
SI

γαβδNαβd3x (2.3.12)

whereεI ≡ nI · nI H ±1 andnI is the unit vector field normal to the hyper-
surfaceSI , γαβ H gαβ − εInαnβ is the three-metric on each hypersurfaceSI

of the boundary∂� of �, and

Nαβ ≡
√

|γ |(Kγ αβ − Kαβ) H − 1

2
gγ αµγ βν−Ln(g

−1 γµν) (2.3.13)

whereγ is the three-dimensional determinant ofγαβ , Kαβ H − 1
2 −Lnγαβ is

the so-called second fundamental form or “extrinsic curvature” of eachSI (see
§ 5.2.2 and mathematical appendix),K ≡ γ αβKαβ , and−Ln is the Lie derivative
(see § 4.2 and mathematical appendix) along the normaln to the boundary∂�

of �. Therefore, if the quantitiesNαβ are fixed on the boundary∂�, for an
arbitrary variationδgαβ , from the first and last integrals of (2.3.10), we have the
field equation

Gαβ H χTαβ (2.3.14)

whereGαβ ≡ Rαβ − 1
2 Rgαβ is theEinstein tensor, and—following the last

integral of 2.3.10—we have defined theenergy-momentum tensorof matter
and fieldsTαβ (see below) as:

Tαβ ≡ −2
δLM

δgαβ
+ LMgαβ. (2.3.15)

Let us now determine the constantχ by comparison with the classical, weak
field, Poisson equation,1U H −4πρ, whereU is the standard Newtonian
gravitational potential. We first observe that in any metric theory of gravity (see
chap. 3), without any assumption on the field equations, in the weak field and
slow motion limit (see § 3.7), the metricg can be written at the lowest order in
U , g00

∼H −1 + 2U, gik
∼H δik, andgi0

∼H 0 and the energy-momentum tensor,
at the lowest order,T00

∼H −T ∼H ρ. From the definition of Ricci tensorRαβ , it
then follows thatR00

∼H −1U . From the field equation (2.3.14) we also have

Rα
α − 1

2
Rδα

α H −R H χT α
α ≡ χT (2.3.16)

whereT ≡ T α
α is the trace ofT αβ . Therefore, the field equation can be

rewritten in the alternative form

Rαβ H χ
(
Tαβ − 1

2
T gαβ

)
. (2.3.17)
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From the 00 component of this equation, in the weak field and slow motion
limit, we have

R00
∼H χ

(
T00 + 1

2
T
)
, (2.3.18)

and therefore

1U ∼H − χ

2
ρ. (2.3.19)

Requiring the agreement of the very weak field limit of general relativity with
the classical Newtonian theory and comparing this equation (2.3.19) with the
classical Poisson equation, we finally getχ H 8π .

An alternative method of variation—thePalatini method47—is to take as
independent field variables not only the ten componentsgαβ but also the forty
components of the affine connection0α

βγ , assuming, a priori, no dependence of
the0α

βγ from thegαβ and their derivatives. Taking the variation with respect to
the0α

βγ and thegαβ , and assumingLM to be independent from any derivative
of gαβ , we thus have

1

2χ

∫
�

(
Rαβ − 1

2
gαβR

)
δgαβ

√−g d4x

+ 1

2χ

∫
�

gαβ
(
δ0σ

αβ;σ − δ0σ
ασ ;β

)√−g d4x

+
∫

�

( δLM

δgαβ
− 1

2
gαβLM

)
δgαβ

√−g d4x H 0.

(2.3.20)

From the second integral, after some calculations,11 one then gets

gαβ;γ H gαβ,γ − gασ0σ
βγ − gσβ0σ

αγ H 0, (2.3.21)

and therefore, by calculating from expression (2.3.21):gασ (gβσ,γ + gσγ,β −
gβγ,σ ), on a Riemannian manifold, one gets the expression of the affine
connection as a function of thegαβ , that is, the Christoffel symbols

{
α

βγ

}
0α

βγ H 1

2
gασ

(
gβσ,γ + gσγ,β − gβγ,σ

) ≡
{

α

βγ

}
. (2.3.22)

From the first and third integral in expression (2.3.20), we finally have the field
equation (2.3.14).

Let us give the expression of the energy-momentum tensor in two cases: an
electromagnetic field and a matter fluid.

In special relativity the energy-momentum tensor for an electromagnetic
field44 is T αβ H 1

4π
(F α

σF βσ − 1
4 ηαβFγ δF

γ δ), whereFαβ is the electromag-
netic field tensor. Moreover theenergy-momentum tensor131,132of a matter fluid
can be writtenT αβ H (ε +p)uαuβ + (qαuβ +uαqβ)+pηαβ +παβ , whereε is
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thetotal energy densityof the fluid,uα its four-velocity, qα theenergy fluxrela-
tive touα (heat flow), p theisotropic pressure, andπαβ the tensor representing
viscous stressesin the fluid. Therefore, by replacingηαβ with gαβ (in agreement
with the equivalence principle), we define in Einstein geometrodynamics:

T αβ H 1

4π

(
Fα

σF βσ − 1

4
gαβFγ δF

γ δ
)

(2.3.23)

for an electromagnetic field, and

T αβ H (ε + p)uαuβ + (qαuβ + uαqβ) + pgαβ + παβ (2.3.24)

for a matter fluid, whereπαβ may be written:11 παβ H −2ησαβ − ζ2(gαβ +
uαuβ), whereη is thecoefficient of shear viscosity, ζ the coefficient of bulk
viscosity, andσαβ and2 are theshear tensorand theexpansion scalarof the
fluid (see § 4.5).

In the case of a perfect fluid, defined byπαβ H qα H 0, we then have

T αβ H (ε + p)uαuβ + pgαβ. (2.3.25)

The general relativity expressions (2.3.23) and (2.3.24), for the energy-
momentum tensor of an electromagnetic field and for a matter fluid, agree
with the previous definition (2.3.15) of energy-momentum tensor, with a proper
choice of the matter and fields Lagrangian densityLM .

Let us finally prove the identities used in this section.

1. From the definition of covariant derivative and Christoffel symbols, we
have

gαβ ;γ H gαβ
,γ + 1

2
gαµgβν(gγ ν,µ + gνµ,γ − gµγ,ν)

+ 1

2
gµβgαν(gµν,γ + gνγ,µ − gγµ,ν)

H gαβ
,γ + gαµgβνgνµ,γ

H gαβ
,γ + gαβ

,γ − gβν
,γ gαµgνµ − gαµ

,γ gβνgνµ H 0.

(2.3.26)

2. By using the symbolδαβγλ
µνρσ , defined to be equal to+1 if αβγλ is an even

permutation ofµνρσ , equal to−1 if αβγλ is an odd permutation of
µνρσ , and 0 otherwise (see § 2.8), we can write the determinant of a
4 × 4 tensor,gαβ , in the form

g ≡ detgαβ H δα
0

β

1
γ

2
λ
3gα0 gβ1 gγ 2 gλ3. (2.3.27)

By taking the variation ofg we then have

δg H δgαβ · (gαβ · g) (2.3.28)
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and therefore

δ
√−g H 1

2

√−g gαβδgαβ. (2.3.29)

Moreover, fromδ(gαβgαβ) H 0, we also have

δgαβ · gαβ H −δgαβ · gαβ. (2.3.30)

3. From the definition (2.3.22) of Christoffel symbols, we have

0σ
σα H 1

2
gµν,αgµν, (2.3.31)

and therefore, from the rule for differentiation of a determinant,g,α H
ggµνgµν,α, we get (

ln
√−g

)
,α

H 0σ
σα (2.3.32)

and finally

vα ;α H vα
,α + vσ0α

ασ H (√−g vα
)
,α

1√−g
. (2.3.33)

4. From the rule for transformation of the connection coefficients, it im-
mediately follows that the difference between two sets of connection
coefficients is a tensor.

5. At any event of the spacetime Lorentzian manifold, we can find infinitely

many local inertial frames of reference where
(i)

gαβ H ηαβ ,
(i)

gαβ,γ H 0 and

therefore
(i)

0α
µν H 0. From the definition of Ricci tensor (contraction of the

Riemann tensorRα
βγ δ of expression (2.2.5) on the two indicesα andγ )

we then have at the event in any such local inertial frame

δ
(i)

Rαβ H (
δ

(i)

0σ
αβ

)
,σ

− (
δ

(i)

0σ
ασ

)
,β

, (2.3.34)

or equivalently

δ
(i)

Rαβ H (
δ

(i)

0σ
αβ

)
;σ − (

δ
(i)

0σ
ασ

)
;β, (2.3.35)

and since this is a tensorial equation, it is valid in any coordinate system

δRαβ H (
δ0σ

αβ

)
;σ − (

δ0σ
ασ

)
;β. (2.3.36)

2.4 EQUATIONS OF MOTION

According to thefield equation, Gαβ H χT αβ , mass-energyT αβ “tells” geom-
etry gαβ how to “curve”; furthermore, from the field equation itself, geometry
“tells” mass-energy how to move. The key to the proof isBianchi’s second
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identity 48,49 (for the “boundary of a boundary interpretation” of which see
§ 2.8):

Rα
βγ ν;µ + Rα

βνµ;γ + Rα
βµγ ;ν H 0.

Raising the indicesβ andν and summing overα andγ , and overβ andµ, we
get thecontracted Bianchi’s identity:

Gνβ ;β H
(
Rνβ − 1

2
Rgνβ

)
;β

H 0. (2.4.1)

By taking the covariant divergence of both sides of the field equation (2.3.14),
we get

T νβ ;β H 0. (2.4.2)

This statement summarizes the dynamical equations for matter and fields
described by the energy-momentum tensorT αβ . Therefore, as a consequence
of the field equation, we have obtained thedynamical equationsfor matter
and fields.

There exists an alternative approach to get the contracted Bianchi’s identity.
Consider an infinitesimal coordinate transformation:

x ′α H xα − ξα. (2.4.3)

Under this transformation the metric tensor changes to (see § 4.2)

g′
αβ H gαβ + δgαβ H gαβ + ξα;β + ξβ;α. (2.4.4)

This coordinate change bringing with it no real change in the geometry or the
physics, we know that the action cannot change with this alteration. In other
words, from the variational principle,δ

∫ LG d4x H 0, corresponding to the
variationδgαβ H ξα;β + ξβ;α, we have

δIG H 1

2χ

∫
Gαβ

(
ξα;β + ξβ;α)√−gd4x H 0. (2.4.5)

We translate

Gαβξα;β H −Gαβ
;βξα + (Gαβξα);β H −Gαβ

;βξα + 1√−g

(√−gGα
βξα

)
,β

and use the four-dimensional divergence theorem (2.3.9), to get

δIG H − 1

χ

∫
Gαβ

;βξα
√−gd4x H 0. (2.4.6)

SinceIG is a scalar its value is independent of coordinate transformations;
therefore this expression must be zero for every infinitesimalξα, whence the
contracted Bianchi identities (2.4.1).
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For a pressureless perfect fluid,p H 0, that is, for dust particles, from
expression (2.3.25) we have

T αβ H εuαuβ, (2.4.7)

and from the equation of motionT αβ ;β H 0,

T αβ ;β H (εuαuβ);β H uα ;βεuβ + (
εuβ

)
;βuα H 0. (2.4.8)

Multiplying this equation byuα (and summing overα), recognizinguαuα H
−1, and (uαuα);β H 0 or uα ;βuα H 0, we get(εuβ);β H 0. Then, on
substituting this result back into equation (2.4.8) we obtain thegeodesic
equation

uα ;βuβ H 0. (2.4.9)

Therefore, each particle of dust follows a geodesic,50,51 in agreement with the
equivalence principle and with the equation of motion of special relativity,
duα

ds
H uα

,βuβ H 0. In a local inertial frame, from expression (2.4.8), we get
to lowest order the classical equation of continuity,ρ,0 + (ρvi),i H 0, and also
the Euler equations for fluid motion,ρ(vi),0 + ρ(vi),kv

k H 0, whereρ is the
fluid mass density.

In general, we assume that the equation of motion of any test particle is
a geodesic, where we define39 a geodesicas theextremal curve, or history,
xα(t) that extremizes the integral of half of the squared intervalEb

a between
two eventsa H x(ta) andb H x(tb):

Eb
a(x(t)) ≡ 1

2

∫ tb

ta

gαβ

(
x(t)

) dxα

dt

dxβ

dt
dt. (2.4.10)

In this sense a geodesic counts as a critical point in the space of all histories.
We demand that any first-order small changeδxα(t) of the history, that keeps
the end point fixedδxα(ta) H δxα(tb) H 0, shall cause a change in the integral
Eb

a(x(t)) that is of higher order. The first-order change is required to vanish:
δEb

a(x
α(t)) H 0. It is the integral of the product ofδxα(t) with the Lagrange

expression:

∂L

∂xα
− d

dt

∂L

∂
(

dxα

dt

) H 0, (2.4.11)

whereL H 1
2 gαβ(x(t)) dxα

dt
dxβ

dt
, and we have

gαβ

d2xβ

dt2
+ gαβ,γ

dxβ

dt

dxγ

dt
− 1

2
gβγ,α

dxβ

dt

dxγ

dt
H 0. (2.4.12)
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This equation for a geodesictranslates into the language (2.3.22) of the
Christoffel symbols:

d2xα

dt2
+ 0α

βγ

dxβ

dt

dxγ

dt
H 0. (2.4.13)

The geodesic equation keeps the standard form (2.4.13) for every transformation
of the parametert of the types H ct + d, wherec 6H 0 andd are two
constants; when the geodesic equation has the standard form (2.4.13),t is called
affine parameter. A special choice of parameterp is thearc-length itself s(p)

along the curves(p) H L
p
a (x) H ∫ p

a

√
±gαβ(x(p′)) dxα

dp′
dxβ

dp′ dp′ (+ sign for

spacelike geodesics and− sign for timelike geodesics), wherep is a parameter
along the curve. Whenp H s, the geodesic is said to be parametrized by arc-
length. For a timelike geodesic,s ≡ τ is theproper time measured by a clock
comoving with the test particle (“wrist-watch time”).

On a proper Riemannian manifold there is a variational principle that gives
the geodesic equation parametrized with any parameter. This principle defines
a geodesic39 as theextremal curve for the lengthLa

b(x(p)):

Lb
a

(
x(p)

) H
∫ pb

pa

√
gαβ

(
x(p)

) dxα

dp

dxβ

dp
dp. (2.4.14)

From

δLb
a

(
x(p)

) H 0 (2.4.15)

for any variationδxα(p) of the curvexα(p), such thatδxα(pa) H δxα(pb) H 0,
taking the variation ofLb

a(x(p)), from the Lagrange equations, we thus find

d2xα

dp2
+ 0α

βγ

dxβ

dp

dxγ

dp
− dxα

dp

(
d2s/dp2

ds/dp

)
H 0 (2.4.16)

wheres(p) is the arc-length.
Extremal curve for the quantityEb

a and extremal curve for the lengthLb
a?

When are the two the same on a proper Riemannian manifold? When and only
when the two equations (2.4.13) and (2.4.16) are both satisfied: that is, when
the quantity d2s

dp2 vanishes—that is, when the parameterp grows linearly with

arc-length. Therefore, an extremal curve for the quantityEb
a is also an extremal

curve for the length,Lb
a, and vice versa; it is always possible39 to reparametrize

a curve that on a proper Riemannian manifold is an extremal curve for the length
and with dxα

dp
6H 0 everywhere, to give an extremal curve for the quantityEb

a .
For a test particle with proper mass different from zero, the geodesic equa-

tion of motion is the curve that extremizes the proper timeτ H ∫
dτ H∫ √−gαβdxαdxβ along the world line of the particle. For a photon, the equa-

tion of motion follows from the variational principle forEb
a , (2.4.10), and is a
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null geodesic (withds2 H 0), in agreement with special relativity and with the
equivalence principle. On a timelike geodesic, we can write

D

dτ
uα H 0 (2.4.17)

whereτ is the proper time measured by a clock moving on the geodesic,uα ≡
dxα

dτ
its four-velocity, anduαuα H −1.

Parallel transport of a vectorvα along a curvexα(t), with tangent vector
nα(t) ≡ dxα

dt
(t), is defined by requiringn · v to be covariantly constant along

the curve:

D

dt
(nαvα) H (nαvα);βnβ H 0. (2.4.18)

Therefore, for a geodesic, from equation (2.4.13), we have thatvα ;βnβ H 0.
In particular,a geodesic is a curve with tangent vector, nα, transported

parallel to itself all along the curve: nα ;βnβ H 0.
Finally, from the definition (2.2.5) of Riemann tensor, one can derive39 the

formula for the change of a vectorvα parallel transported around an infinitesimal
closed curve determined by the infinitesimal displacementsδxα and δ̃x

α
(in-

finitesimal “quadrilateral” which is closed apart from higher order infinitesimals
in δx · δ̃x):

δvα H −Rα
βµνv

βδxµδ̃x
ν
. (2.4.19)

This equation shows that, on a curved manifold, the vector obtained by parallel
transport along a curve depends on the path chosen and on the curvature (and
on the initial vector; see fig. 2.1).

2.5 THE GEODESIC DEVIATION EQUATION

A fundamental equation of Einstein geometrodynamics and other metric the-
ories of gravity is theequation of geodesic deviation.38,52 It connects the
spacetime curvature described by the Riemann tensor with a measurable
physical quantity: the relative “acceleration” between two nearby test particles.

The equation of geodesic deviation, published in 1925 by Levi-Civita,38,52

gives the second covariant derivative of the distance between two infinitesimally
close geodesics, on an arbitraryn-dimensional Riemannian manifold:

D2 (δxα)

ds2
H −Rα

βµνu
βδxµuν. (2.5.1)

Here,δxα is the infinitesimal vector that connects the geodesics,uµ H dxµ[s]
ds

is the tangent vector to the base geodesic, andRα
µνδ is the Riemann curvature

tensor. This equation generalizes the classicalJacobi equationfor the distance
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2
¼

FIGURE 2.1. A vector transported parallel to itself around the indicated circuit, on
the surface of a sphere of radiusR, comes back to its starting point rotated through an
angle of π

2 . The curvature of the surface is given by

(curvature) H (angle of rotation)

(area circumnavigated)
H

π

2
1
8 (4πR2)

H 1

R2
.

y between two geodesics on a two-dimensional surface:

d2y

dσ 2
+ Ky H 0 (2.5.2)

whereσ is the arc of the base geodesic andK[σ ] is theGaussian curvatureof
the surface.31,39

The equation of geodesic deviation can be derived from the second variation
of the quantityEb

a(x(t)), defined by expression (2.4.10), set equal to zero.
However, we follow here a more intuitive approach.

In order to derive the geodesic deviation equation (2.5.1) let us assume the
following:

1. The two curves are geodesics:

Duα
1

dτ
H 0 and

Duα
2

dσ
H 0 (2.5.3)

whereτ, σ are affine parameters.
2. The law of correspondence between the points of the two geodesics—that

is, the definition of the connecting vectorδxα[τ ]—is such that, ifdτ is an
infinitesimal arc on geodesic 1 anddσ the arc on geodesic 2 corresponding
to the connecting vectorsδxα[τ ] andδxα[τ + dτ ], we have38

dσ

dτ
H 1 + λ, where

dλ

dτ
H 0 (2.5.4)
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3. The geodesics are infinitesimally close in a neighborhoodU :

xα
2 [σ ] H xα

1 [τ ] + δxα[τ ] (2.5.5)

wherexα
2 εU andxα

1 εU , and where the relative change in the curvature is
small: ∣∣∣∣R,αδxα

R
∣∣∣∣ � 1, (2.5.6)

andR−2 is approximately the typical magnitude of the components of the
Riemann tensor.

4. The difference between the tangent vectors to the two geodesics is
infinitesimally small in the neighborhoodU :∣∣∣∣∣ ‖δuα‖

‖uα‖

∣∣∣∣∣ � 1 (2.5.7)

where

δuα ≡ uα
2[σ ] − uα

1[τ ]. (2.5.8)

5. Equation (2.5.1) is derived neglecting terms higher than the first-order,
ε1, in δxα and in δuα. Furthermore, for simplicity, we define the con-
necting vectorδxα as connecting points of equal arc-lengthss on the two
geodesics,∗ then,δτ H δσ H ds ands satisfies

uα
1[s]u1α[s] H −1, where uα

1[s] ≡ dxα
1 [s]

ds
(2.5.9)

and

uα
2[s]u2α[s] H −1, where uα

2[s] ≡ dxα
2 [s]

ds
. (2.5.10)

Physicallys is the proper time measured by two observers comoving with
two test particles following the two geodesics.

The equation of geodesic 1 is

Duα
1

ds
H duα

1

ds
+ 0α

µν [x1]uµ

1 uν
1 H 0, (2.5.11)

and the equation of geodesic (2) is

Duα
2

ds
H duα

2

ds
+ 0α

µν [x1 + δx]uµ

2 uν
2 H d2

ds2

(
xα

1 + δxα
)

+ 0α
µν [x1 + δx]

d

ds

(
x

µ

1 + δxµ
) d

ds

(
xν

1 + δxν
) H 0.

(2.5.12)

∗For simplicity, in this derivation we do not consider null geodesics.
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We also have

d

ds

(
δxµ[s]

) ≡ d

ds

(
x

µ

2 [s] − x
µ

1 [s]
) H u

µ

2 [s] − u
µ

1 [s] ≡ δuµ[s] (2.5.13)

with this notation, and writinguµ

1 ≡ uµ, we can rewrite equation (2.5.12), with
a Taylor expansion to first order inδxα andδuα, as

d2

ds2

(
xα

1

)+ d2

ds2

(
δxα

)+ (
0α

µν + 0α
µν,ρδx

ρ
)(

uµuν + 2uµδuν
) H 0. (2.5.14)

Taking the difference between equations (2.5.14) and (2.5.11) we find, to first
order,

d2(δxα)

ds2
+ 0α

µν,ρδx
ρuµuν + 20α

µνu
µδuν H 0, (2.5.15)

and using the definitionDvα

ds
H dvα

ds
+ 0α

µνu
µvν and the expression (2.2.5) of

the Riemann tensor in terms of the Christoffel symbols and their derivatives,
we have, to first order, the law of change of the geodesic separation,

D2(δxα)

ds2
H −Rα

βµνu
βδxµuν. (2.5.16)

In electromagnetism,44 one can determine all the six independent compo-
nents of the antisymmetric electromagnetic field tensorFαβ , by measuring the
accelerations of test charges in the field, and by using the Lorentz force equation

d2xα

ds2
H e

m
Fα

βuβ (2.5.17)

wheree, m, anduβ are charge, mass, and four-velocity of the test particles. In
electromagnetism, it turns out that the minimum number of test particles, with
proper initial conditions, necessary to fully measureFαβ is two.11

Similarly, on a Lorentziann-dimensional manifold, in any metric theory of
gravity (thus with geodesic motion for test particles), one can determine all
the n2(n2−1)

12 independent components of the Riemann tensor, by measuring the
relative accelerations of a sufficiently large number of test particles and by using
the equation of geodesic deviation (2.5.1).

However, which is theminimum number of test particles necessary to de-
termine the spacetime curvature fully? As we observed, in a four-dimensional
spacetime the Riemann tensor has twenty independent components. However,
when the metric of the spacetime is subject to the Einstein equation in vacuum,
Rαβ H Rσ

ασβ H 0, the number of independent components of the Riemann
tensor is reduced to ten, and they form theWeyl tensor11 which is in general
defined by

Cαβγ δ H Rαβγ δ + gα[δRγ ]β + gβ[γ Rδ]α + 1

3
Rgα[γ gδ]β (2.5.18)



The Bartlett Press, Inc. ciufolin 4:00 p.m. 6 · iii · 1995

EINSTEIN GEOMETRODYNAMICS 61

whereR H Rαβgαβ .
Synge in his classic book on the general theory of relativity13 describes a

method of measuring the independent components of the Riemann tensor. Synge
calls his device a five-point curvature detector. The five-point curvature detector
consists of a light source and four mirrors. By performing measurements of
the distance between the source and the mirrors and between the mirrors, one
can determine the curvature of the spacetime. However, in order to measure
all the independent components of the Riemann tensor with Synge’s method,
the experiment must be repeated several times with different orientations of
the detector; equivalently—and when the spacetime is not stationary—it is
necessary to use several curvature detectors at the same time.

Instead, one can measure the relative accelerations of test particles moving
on infinitesimally close geodesics and use equation (2.5.1). However, in order to
minimize the number of test particles necessary to determine all the independent
components of the Riemann tensor at one event, it turns out that one has to use
nearby test particles, moving with arbitrarily different four-velocities.

It is then possible to derive a generalized geodesic deviation equation,53 valid
for any two geodesics, with arbitrary tangent vectors, not necessarily parallel,
and describing the relative acceleration of two test particles moving with any
four-velocity on neighboring geodesics. This generalized equation can be de-
rived by dropping the previous condition (4):

∣∣ ‖δuα‖
‖uα‖

∣∣ � 1, and by retaining

the conditions (1), (2), (3), and (5) only,53 and it is valid in any neighborhood
in which the change of the curvature is small (condition 3). Of course, when
the two geodesics are locally parallel one recovers the classical geodesic devi-
ation equation. Physically, one would measure the relative acceleration of two
test particles moving with arbitrary four-velocities (their difference(uα

2 − uα
1)

need not necessarily be small) in an arbitrary gravitational field (in an arbitrary
Riemannian manifold), in a region where the relative change of the gravita-
tional field is small. The spacetime need not necessarily satisfy the Einstein
field equation so long as the test particles follow geodesic motion (metric theo-
ries). It turns out54 that the minimum number of test particles can be drastically
reduced by using the generalized geodesic deviation equation instead of the
standard geodesic deviation equation (2.5.1). This number is reduced either
(1) under the hypothesis of an arbitrary four-dimensional Lorentzian manifold
or (2) when we have an empty region of the spacetime satisfying the Einstein
equations,Rαβ H 0 (the measurement of the Riemann tensor reduces then to
the measurement of the Weyl tensorCα

βµδ).
It turns out54 that to fully determine the curvature of the spacetime in vacuum,

in general relativity, it issufficientto use four test particles, and in general space-
times (twenty independent components of the Riemann tensor) it is sufficient
to use six test particles. It is easy to show that in a vacuum, to fully determine
the curvature, it is alsonecessaryto use at least four test particles. With four
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test particles we have three independent geodesic deviation equations leading
to twelve relations between the ten independent components of the Riemann
tensor and the relative accelerations of the test particles. In general spacetimes it
is necessary to use at least six test particles. Of course, it is possible to determine
the curvature of the spacetime using test particles having approximately equal
four-velocities and using the standard geodesic deviation equation. However,
it turns out then that the minimum number of test particles which is required
in general relativity increases to thirteen in general spacetimes and to six in
vacuum.

2.6 SOME EXACT SOLUTIONS OF THE FIELD EQUATION

A Rigorous Derivation of a Spherically Symmetric Metric

Given athree-dimensional Riemannian manifoldM3, one may defineM3 to
bespherically symmetric20,38,41about one pointO (for the definition based on
the isometry group see § 4.2), if, in some coordinate system,xi , every rotation
aboutO, of the typex ′i H Oi ′

k xk whereδij H Om′
i On′

j δm′n′ , and detOi ′
k H +1,

is an isometry for the metricg of M3. In other words, the metricg in M3 is
defined spherically symmetric if it isformally invariant for rotations; that is,
the new components ofg are the same functions of the new coordinatesx ′α as
the old components ofg were of the old coordinatesxα for rotations

gαβ(yα ≡ xα) H g′
αβ(yα ≡ x ′α). (2.6.1)

A Lorentzian manifold M4 may then be definedspherically symmetric
about one pointO, if, in some coordinate system, the metricg is formally
invariant for three-dimensional spatial rotations aboutO : x ′i H Oi ′

k xk (as
defined above), that is, three-dimensional spatial rotations are isometries for
g : gαβ(x0, xi) H g′

αβ(x0, xi). (In general, on a Lorentzian manifold a ge-
ometrical quantityG(x0, xi) may be defined to be spherically symmetric if
G is formally invariant for three-dimensional spatial rotations:G(x0, xi) H
G′(x0, xi).)

Formal invariance of the metricg under the infinitesimal coordinate trans-
formationx ′α H xα + εξα, where|ε| � 1, is equivalent to the requirement
that theLie derivative55,56(see § 4.2 and mathematical appendix) of the metric
tensorg, with respect toξ, be zero:

Lξgαβ ≡ gαβ,σ ξσ + gσβξσ
,α + gασ ξσ

,β H 0. (2.6.2)
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This requirement follows from the definition (2.6.1) of formal invariance under
the infinitesimal coordinate transformationx ′α H xα + εξα, thus

0 H gαβ(x ′γ ) − g′
αβ(x ′γ )

H gαβ(xγ ) + gαβ,σ εξσ − ∂σ
α′

ρ

β ′gσρ(x
γ )

H gαβ,σ εξσ + εξσ
,αgσβ + εξρ

,βgαρ.

(2.6.3)

As follows from the definition (2.3.22) of the Christoffel symbols that enter
into covariant derivatives, this condition on the metric is equivalent (see § 4.2)
to theKilling equation :

ξα;β + ξβ;α H 0. (2.6.4)

Therefore, theKilling vector ξ describes the symmetries of the metric tensor
g by defining the isometric mappings of the metric onto itself, that is, the
isometries.57 We have just defined a metricg to be spherically symmetric if it is
formally invariant under three-dimensional spatial rotations, therefore a metric
is spherically symmetric if it satisfies the Killing equation for every Killing
vectorξss that represents a three-dimensional spatial rotation. The Killing vector
representingspherical symmetry, in “generalized Cartesian coordinates,” is

ξ0
ss H 0, ξ i

ss H cij xj (2.6.5)

wherecik H −cki are three constants. In other words, spherical symmetry about
the pointO is equivalent to axial symmetry around each of the three-axesOxa,
represented by the Killing vector:

ξ0 H ξa H 0; ξb H xc; ξc H −xb (2.6.6)

where(a, b, c) is some permutation of (1, 2, 3). In particular, using generalized
Cartesian coordinates, we have

ξ ′α
1 H (0, 0, z, −y)

ξ ′α
2 H (0, −z, 0, x)

ξ ′α
3 H (0, y, −x, 0)

(2.6.7)

or using “generalized polar coordinates,” defined by the usual transformation
x H r sinθ cosφ, y H r sinθ sinφ andz H r cosθ , we have

ξα
1 H (0, 0, sinφ, cotθ cosφ)

ξα
2 H (0, 0, − cosφ, cotθ sinφ)

ξα
3 H (0, 0, 0, −1).

(2.6.8)

From the Killing equation (2.6.2), using the Killing vectorξ3, we get58

gαβ,φ H 0, (2.6.9)
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and using the Killing vectorsξ1 andξ2 in equation (2.6.2), we then get

g11,θ H 0, g00,θ H 0, g10,θ H 0, (2.6.10)

and by applying equation (2.6.2) toξ1:

g22,θ sinφ H 2g23
cosφ

sin2 θ

(g33,θ − 2g33 cotθ) sinφ H −2g23 cosφ

g12,θ sinφ H g13
cosφ

sin2 θ

(g13,θ − g13 cotθ) sinφ H −g12 cosφ

(g23,θ − g23 cotθ) sinφ H (−g22 + g33
1

sin2 θ

)
cosφ

g20,θ sinφ H g30
cosφ

sin2 θ

(g30,θ − g30 cotθ) sinφ H −g20 cosφ,

(2.6.11)

plus the seven similar equations forξ2 obtained by replacing both sinφ with
− cosφ and cosφ with sinφ in the equations (2.6.11). From equations (2.6.9),
(2.6.10), and (2.6.11) and the seven similes we get

g00 H g00(r, t), g11 H g11(r, t), g22 H g22(r, t),

g33 H g22(r, t) sin2 θ and g01 H g01(r, t),
(2.6.12)

that is,g00, g11, g22, g33/ sin2 θ , andg01 are functions ofr andt only; all the
other components ofg are identically equal to zero.

The general form of afour-dimensional spherically symmetric metric is
then

ds2 H A(r, t)dt2 + B(r, t)dr2 + C(r, t)drdt

+ D(r, t)(dθ2 + sin2 θdφ2).
(2.6.13)

This we simplify by performing the coordinate transformation

t ′ H t and r ′2 H D(r, t) (2.6.14)

where we assumeD(r, t) 6H constant. We then get (dropping the prime int ′

andr ′)

ds2 H E(r, t)dt2 + F(r, t)dr2 + G(r, t)drdt + r2(dθ2 + sin2 θdφ2).

(2.6.15)
With the further coordinate transformation

t ′ H H(r, t) and r ′ H r (2.6.16)
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where we assumeH,t 6H 0, we have

g01 H ∂0′
0 ∂1′

1 g′
01 + ∂0′

0 ∂0′
1 g′

00 H H,tg
′
01 + H,tH ,rg

′
00 (2.6.17)

and

g00 H ∂0′
0 ∂0′

0 g′
00 H (H ,t )

2g′
00; (2.6.18)

to simplify the metric in its new form, we impose the condition

g′
01 H H,t · G

2(H ,t )2
− H,r · E

(H,t )2
≡ 0. (2.6.19)

This condition can always be satisfied, for any functionG andE 6H 0, by
finding a solution to the differential equation:

1

2
H,t · G − H,r · E H 0. (2.6.20)

Therefore, we finally have (dropping the prime int ′ andr ′)

ds2 H −em(r,t)dt2 + en(r,t)dr2 + r2(dθ2 + sin2 θdφ2) (2.6.21)

asmetric of a spherically symmetric spacetimein a particular coordinate
system. The signs were determined according to the Lorentzian character of the

Riemannian manifold, in agreement with the equivalence principle:
(i)

gαβ → ηαβ .
Let us now find the expression of a spherically symmetric metric satisfying

the vacuum Einstein field equation (2.3.14), withT αβ H 0:

Gαβ H 0 or, equivalently, Rαβ H 0. (2.6.22)

From the definition of Ricci tensor, that we symbolically write here

Rσ
ασβ H

∣∣∣∣∣ ,σ ,β

0σ
ασ 0σ

αβ

∣∣∣∣∣ +
∣∣∣∣∣ 0σ

ρσ 0σ
ρβ

0ρ
ασ 0

ρ
αβ

∣∣∣∣∣ ≡ 0σ
αβ,σ − 0σ

ασ,β + · · · , (2.6.23)

and from the definition (2.3.22) of Christoffel symbols, we then get

R00 H −em−n
( 1

2
m,rr − 1

4
m,rn,r + 1

4
m,r

2 + m,r

r

)
(2.6.24)

+ 1

2
n,tt + 1

4
n,t

2 − 1

4
m,tn,t H 0

R11 H 1

2
m,rr − 1

4
m,rn,r + 1

4
m,r

2 − n,r

r
(2.6.25)

− en−m
( 1

2
n,tt + 1

4
n,t

2 − 1

4
m,tn,t

)
H 0

R22 H −1 + e−n + 1

2
e−nr(m,r − n,r ) H 0 (2.6.26)

R33 H R22 sin2 θ H 0 (2.6.27)
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and

R01 H − n,t

r
H 0 (2.6.28)

with all the other nondiagonal components ofRαβ identically zero. From the
00 and 11 components we then have

(m + n),r H 0, (2.6.29)

and from the 01 component (2.6.28)∂n
∂t

H 0; therefore,

m + n(r) H f (t) or em H ef (t)e−n(r). (2.6.30)

The time dependencef (t) can be absorbed in the definition oft with a co-
ordinate transformation of the typet ′ H ∫

e
1
2 f (t)dt . Therefore, in the new

coordinates (dropping the prime inn′ andm′), we have the result

∂n

∂t
H ∂m

∂t
H 0 and em(r) H e−n(r). (2.6.31)

Therefore, a spherically symmetric spacetime satisfying the vacuum Einstein
field equation (2.6.22) is static, that is, there is a coordinate system in which
the metric is time independent,gαβ,0 H 0, and in whichg0i H 0.

We recall that aspacetimeis calledstationary if it admits a timelike Killing
vector field,ξt . For it, there exists some coordinate system in whichξt can be
writtenξt H (1, 0, 0, 0). In this system, from the Killing equation (2.6.2), the
metricg is then time independent,gαβ,0 H 0. A spacetimeis calledstatic if it
is stationary and the timelike Killing vector fieldξt is orthogonal to a foliation
(§ 5.2.2) of spacelike hypersurfaces. Therefore, there exists some coordinate
system, called adapted toξt , in which the metricg satisfies bothgαβ,0 H 0 and
g0i H 0.

From the 22, or the 33, component of the vacuum field equation, plus equation
(2.6.29), we then have

−1 + e−n − re−nn,r H 0 (2.6.32)

and therefore

(re−n),r H 1 (2.6.33)

with the solution

e−n H 1 + C

r
. (2.6.34)

By writing the constantC ≡ −2M, we finally have

ds2 H −
(
1− 2M

r

)
dt2+

(
1− 2M

r

)−1
dr2+r2

(
dθ2+sin2 θdφ2

)
. (2.6.35)

This is theSchwarzschild (1916)solution.59 In conclusion, any spherically
symmetric solution of the vacuum Einstein field equation must be static and in
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some coordinate system must have the Schwarzschild form (Birkhoff Theo-
rem).60 By assuming that the spacetime geometry generated by a spherically
symmetric object is itself spherically symmetric, and by requiring that we re-
cover the classical gravity theory, for larger, in the weak field region, we find
thatM is the mass of the central body (see § 3.7).

However, inside a hollow, static, spherically symmetric distribution of matter,
for r → 0, to avoidg00 → ∞ andg11 → 0, we getC ≡ 0. Therefore,
the solution internal to a nonrotating, empty, spherically symmetric shell is the
Minkowski metricηαβ (for the weak field, slow motion solution inside a rotating
shell, see § 6.1 and expression 6.1.37).

Other One-Body Solutions

A solution of the field equation with no matter but with an electromagnetic field,
with three parametersM, Q, andJ that in the weak field limit are identified
with the massM, the chargeQ, and the angular momentumJ of a central
body, is theKerr-Newman solution,61,62 that in thet, r, θ, φ Boyer-Lindquist
coordinates63 can be written

ds2 H −
(

1 − (2Mr − Q2)

ρ2

)
dt2

−
(

(4Mr − 2Q2)a sin2 θ

ρ2

)
dtdφ + ρ2

1
dr2 + ρ2dθ2

+
(

r2 + a2 + (2Mr − Q2)a2 sin2 θ

ρ2

)
sin2 θdφ2

(2.6.36)

where

1 ≡ r2 − 2Mr + a2 + Q2

ρ2 ≡ r2 + a2 cos2 θ
(2.6.36′)

anda ≡ J
M

H angular momentum per unit mass.
In the caseQ H J H 0 andM 6H 0 we have the Schwarzschild metric

(2.6.35); whenJ H 0, M 6H 0 andQ 6H 0, we have theReissner-Nordstrøm
metric:64,65

ds2 H −
(
1 − 2M

r
+ Q2

r2

)
dt2 +

(
1 − 2M

r
+ Q2

r2

)−1
dr2

+ r2
(
dθ2 + sin2 θdφ2

)
.

(2.6.37)

This solution describes a spherically symmetric spacetime satisfying the Ein-
stein field equation in a region with no matter, but with a radial electric field to
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be included in the energy-momentum tensorTαβ (see § 2.3),

E H Q

r2
er B H 0 (2.6.38)

whereer is the radial unit vector of a static orthonormal tetrad. In the weak
field region,M andQ are identified with the mass and the charge of the central
object.

Finally, whenQ H 0 andM 6H 0, J 6H 0 we have the Kerr solution.61

In the weak field and slow motion limit,66–69 M/r � 1, (J/M)/r � 1, in
Boyer-Lindquist coordinates, theKerr metric (2.6.36) can be written

ds2 ∼H −
(
1 − 2M

r

)
dt2 +

(
1 + 2M

r

)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
− 4J

r
sin2 θdφdt.

(2.6.39)
This is the weak field metric generated by a central body with massM and
angular momentumJ ; we shall return to this important solution in chapter 6.

2.7 CONSERVATION LAWS

In classical electrodynamics44 one defines the total charge on a three-
dimensional spacelike hypersurface6, corresponding tot H constant:Q H∫
6

j0d360. From the Maxwell equations with sourceFαβ
,β H 4πjα and from

the antisymmetry of the electromagnetic tensorFαβ , one has the differential
conservation law of chargejα

,α H 0. Therefore, by using the four-dimensional
divergence theorem (2.3.9), we verify thatQ is conserved:

0 H
∫

�

jα
,α d4� H

∫
∂�

jαd36α (2.7.1)

where� is a spacetime region and∂� its three-dimensional boundary, and
whered4� and d36α are respectively the four-dimensional and the three-
dimensional integration elements defined by expressions (2.8.21) and (2.8.20)
below. By choosing∂� composed of two spacelike hypersurfaces6 and6′,
corresponding to the timest H constant andt ′ H constant′, plus an embracing
hypersurface3, away from the source, on whichjα vanishes (see fig. 2.2), we
then have

Q H
∫

6

j0d360 H
∫

6′
j ′0d36′

0 H Q′, (2.7.2)

that is, the total chargeQ H constant, ordQ

dt
H 0.

Similarly, in special relativity, one defines the total four-momentum of a
fluid described by energy momentum tensorT αβ (see § 2.3), on a spacelike
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x0 D constant

x00 D constant

3

6

3

60
Q0

Q

J ®6D0

FIGURE 2.2. The hypersurface of integration∂�(3), boundary of�(4) (see equation
(2.7.2)).

hypersurface6, as

P α H
∫

6

T αβd36β (2.7.3)

whereE ≡ P 0 H ∫
T 0βd36β is the energy, and the angular momentum of the

fluid is defined (see also § 6.10) on a spacelike hypersurface6:

J αβ H
∫

6

(xαT βµ − xβT αµ)d36µ. (2.7.4)

From the special relativistic, differential conservation lawsT αβ
,β H 0, it then

follows that these quantities are conserved:

0 H
∫

�

T αβ
,βd4� H

∫
∂�

T αβd36β (2.7.5)

and

P α H
∫

6

T α0d360 H
∫

6′
T ′ α0d36′

0 H P ′α (2.7.6)

(zero total outflow of energy and momentum), or

dP α

dt
H 0, (2.7.7)
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and similarly, for the angular momentum:

dJ αβ

dt
H 0 (2.7.8)

where, in formula (2.7.6), we have chosen the hypersurface∂� as shown in
figure 2.2, with3 away from the source whereT αβ vanishes, and6 and6′

corresponding tot H constant andt ′ H constant′.
In this section we generalize these Minkowski-space definitions to geometro-

dynamics, to get conserved quantities in curved spacetime. In geometrody-
namics, the special relativistic dynamical equation generalize to the tensorial
equation,T αβ ;β H 0, consequence of the field equation and of the Bianchi
identities—that is, of the fundamental principle that the boundary of the bound-
ary of a region is zero (§ 2.8). However, the divergence theorem does not
apply to the covariant divergence of a tensor, therefore the geometrodynamical
conserved quantities cannot involve only the energy-momentum tensorT αβ .

Before describing the mathematical details of the definition of the conserved
quantities in general relativity, let us first discuss what one would expect from
the fundamental analogies and differences between electrodynamics and ge-
ometrodynamics. First, the gravitational fieldgαβ has energy and momentum
associated with it. We know that, in general relativity, gravitational waves carry
energy133–135and momentum (see § 2.10); this has been experimentally indi-
rectly confirmed with the observations of the decrease of the orbital period of
the binary pulsar PSR 1913+1916, explained by the emission of gravitational
waves, in agreement with the general relativistic formulae (§ 3.5.1). Two gravi-
tons may create matter, an electron and a positron, by the standard Ivanenko
process;70 therefore, for the conservation of energy, gravitons and gravitational
waves must carry energy. We also know that the gravitational geon,71 made of
gravitational waves (see § 2.10), carries energy and momentum. Therefore, since
gravitational waves are curvature perturbations of the spacetime, the spacetime
geometry must have energy and momentum associated with it. In general rel-
ativity the geometrygαβ , where the various physical phenomena take place, is
generated by the energy and the energy-currents in the universe, through the
field equation. Since the gravity fieldgαβ has energy and momentum, the grav-
itational energy contributes itself, in a loop, to the spacetime geometrygαβ .
However, in special relativistic electrodynamics the spacetime geometryηαβ

where the electromagnetic phenomena take place, is completely unaffected by
these phenomena. Indeed, the fundamental difference between electrodynam-
ics and geometrodynamics is the equivalence principle: locally, in a suitable
spacetime neighborhood, it is possible to eliminate everyobservableeffect of
the gravitational field (see § 2.1). This is true for gravity only.

Therefore, what should one expect from this picture, before one defines the
conserved quantities in geometrodynamics? First, one should not expect the
conserved quantities to involve only the energy and momentum of matter and
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nongravitational fields, described by the energy-momentum tensorT αβ (see ex-
pressions 2.3.24 and 2.3.23 for the energy-momentum tensor of a fluid and of an
electromagnetic field). Indeed, since the gravitational fieldgαβ itself carries en-
ergy and momentum, it must, somehow, be included in the definition of energy,
momentum, and angular momentum. However, because of the equivalence prin-
ciple, we should not expect any definition of the energy of the gravitational field
to have any local validity; in general relativity, gravitational energy and momen-
tum should only have nonlocal (or quasi-local)74 validity. Indeed, the gravity
field can be locally eliminated, in every freely falling frame, in the sense of

eliminating the first derivatives of the metricgαβ and have
(i)

gαβ −→ ηαβ at a
pointlike event; and in the sense of locally (in a spacetime neighborhood of the
event) eliminating any measurable effect of gravity, this should also apply to
the gravitational energy.

Let us now define the general relativistic conserved quantities. In special
relativity, one defines quantities that can be shown to be conserved by using the
four-dimensional divergence theorem applied to the differential conservation
laws jα

,α H 0 andT αβ
,β H 0. On a curved manifold, from the covariant

divergence of the charge current density we can still define conserved quantities
by using formula (2.3.6): ∫

jα ;α
√−gd4� H∫ (

jα
√−g

)
,α

d4� H∫
jα

√−gd36α.

(2.7.9)

However, the four-dimensional divergence theorem is valid for standard di-
vergences but not for the vanishing covariant divergence of the tensorT αβ in
geometrodynamics,T αβ ;β H 0; for a tensor fieldT αβ , expression (2.3.7) holds,
and we cannot directly apply the divergence theorem.

Therefore, we should define quantitiestαβ , representing the energy and mo-
mentum of the gravitational field, such that the sum of these quantities and of
the energy-momentum tensorT αβ

T αβ + tαβ ≡ T
αβ

eff (2.7.10)

will satisfy an equation of the typeT αβ

eff,β H 0. We could then apply the four-
dimensional divergence theorem. Of course, on the basis of what we have just
observed, we should not expect these quantitiestαβ to form a tensor, since
locally the gravity field and its energy should be eliminable.

There are several possible choices fortαβ . We follow here the useful con-
vention of Landau-Lifshitz.17 By our making zero the first derivatives of the
metric tensor at a pointlike event, the gravity field can be “eliminated” in a local
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inertial frame. Therefore, the quantitiestαβ representing energy and momentum
of the gravity field should go to zero in every local inertial frame, and should
then be a function of the first derivatives ofgαβ . Indeed, at any event, in a local
inertial frame, one can reduce the differential conservation laws toT αβ

,β H 0.
Therefore, in order to define the pseudotensor,tαβ , for the gravity field, we first
write the field equation at an event, in a local inertial frame, where the first
derivatives of the metric are zero. At this event the field equation will involve
only the metric and its second derivatives. After some rearrangements, the field
equation can then be written

(i)

3αβµν
,νµ H (−(i)

g)
(i)

T αβ (2.7.11)

where
(i)

gαβ,µ H 0 (2.7.12)

and

3αβµν ≡ 1

16π
(−g)

(
gαβgµν − gαµgβν

)
. (2.7.13)

We may now rewrite the field equation in a general coordinate system, where the
first derivatives ofgαβ are in general different from zero, by defining a quantity
(−g)tαβ that represents the difference between the field equation written in the
two systems (2.7.11 and 2.3.14), depending on the first derivatives of the metric:

(−g)tαβ ≡ 3αβµν
,νµ − (−g)T αβ. (2.7.14)

Then this Einstein field equation (2.7.14) lets itself be translated into the lan-
guage of the effective energy-momentum pseudotensor of expression (2.7.10);
that is,

(−g)T
αβ

eff ≡ (−g)
(
T αβ + tαβ

)
H 3αβµν

,νµ. (2.7.15)

From expression (2.7.13) we know that3αβµν is antisymmetric with respect
to β andµ. Hence the quantity3αβµν

,νµβ is zero, and therefore from the field
equation we have (

(−g)T
αβ

eff

)
,β

H 3αβµν
,νµβ H 0. (2.7.16)

The explicit expression of the pseudotensortαβ can be found after some
cumbersome calculations.tαβ can be symbolically written in the form( energy-momentum

pseudotensor for the
gravity field

)
H tαβ ∼

∑(
g · g · 0 · 0

)
, (2.7.17)
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that is,tαβ is the sum of various terms, each quadratic in bothgαβ and0α
µν . The

precise expression oftαβ is (see Landau-Lifshitz)17

tαβ H 1

16π

[ (
gαµgβν − gαβgµν

) (
20σ

µν0
ρ
σρ − 0σ

µρ0
ρ
νσ − 0σ

µσ0ρ
νρ

)
+ gαµgνσ

(
0β

µρ0
ρ
νσ + 0β

νσ0ρ
µρ − 0β

σρ0
ρ
µν − 0β

µν0
ρ
σρ

)
+ gβµgνσ

(
0α

µρ0
ρ
νσ + 0α

νσ0ρ
µρ − 0α

σρ0
ρ
µν − 0α

µν0
ρ
σρ

)
+ gµνgσρ

(
0α

µσ0β
νρ − 0α

µν0
β
σρ

) ]
.

(2.7.18)
Using the effectiveenergy-momentum pseudotensor formatter, fields and

gravity field , in analogy with special relativity and electromagnetism, we finally
define the conserved quantities on an asymptotically flat spacelike hypersurface
6 (see below):

P α ≡
∫

6

(
T αβ + tαβ

)
(−g)d36β : four-momentum (2.7.19)

E ≡ P 0: energy (2.7.20)

J αβ ≡
∫

6

(
xαT

βµ

eff − xβT
αµ

eff

)
(−g)d36µ: angular momentum. (2.7.21)

From equations (2.7.16), as in special relativity, we then have thatE, P α, and
J αβ are conserved.

Of coursetαβ (and thereforeT αβ

eff ) is not a tensor; however, it transforms as
a tensor for linear coordinate transformations, as is clear from its expression
(2.7.18). Even if the spacetime curvature is different from zero, the pseudotensor
for the gravity fieldtαβ can be set equal to zero at an event. Vice versa, even in a
flat spacetime,tαβ can be made different from zero with some simple nonlinear
coordinate transformation, not even a physical change of frame of reference,
but just a mathematical transformation of the spatial coordinates, for example,
a simple spatial transformation from Cartesian to polar coordinates. However,
the fact thattαβ can be made different from zero in a flat spacetime, and that
it can be made zero, at an event, in a spacetime with curvature, is what we
expected, even before definingtαβ , on the basis of the equivalence principle,
that is, on the basis that, locally, we can eliminate the observable effects of the
gravity field, and therefore, locally, we should not be able to define an energy
associated with the gravity field.

However, the situation is different nonlocally; for example, one can define the
effective energy carried by a gravitational wave by integrating over a region large
compared to a wavelength (see next section). In fact, the energy, momentum, and
angular momentum,E ≡ P 0, P α, andJ αβ , as defined by expressions (2.7.20),
(2.7.19), and (2.7.21), have the fundamental property that in an asymptotically
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flat spacetime, if evaluated on a large region extending far from the source, have
a value independent from the coordinate system chosen near the source, and
behave as special relativistic four-tensors for any transformation that far from
the source is a Lorentz transformation. This happy feature appears when the
integrals are transformed to two-surface integrals evaluated far from the source.
We have, in fact,

P α H
∫

6

T
αβ

eff (−g)d36β H
∫

6

3αβµν
,νµd36β. (2.7.22)

By choosing a hypersurfacex0 H constant, with volume elementd360, and
by using the divergence theorem, we find

P α H
∫

6

3α0iν
,νid

360 H
∫

∂6≡S

3α0iν
,νd

2Si, (2.7.23)

and similarly forJ αβ , whered2Si ≡ (∗dS)0i is defined by expression (2.8.19)
below. Therefore,P α is invariant for any coordinate transformation near the
source, that far from the source, and thus on∂6, leaves the metric unchanged.
Then, sincetαβ behaves as a tensor for linear coordinate transformations (see ex-
pression 2.7.18) andP α andJ αβ have a value independent from the coordinates
chosen near the source,P α andJ αβ behave as special relativistic four-tensors
for any transformation that far from the source is a Lorentz transformation.

In an asymptotically flat manifold, in the weak field region far from the
source, wheregαβ H ηαβ + hαβ , and|hαβ | � 1, from expression (2.7.23), we
have theADM formula for thetotal energy:72

E ≡ P 0 H 1

16π

∫
S

(
gij,j − gjj,i

)
d2Si. (2.7.24)

In a spacetime that in the weak field region matches the Schwarzschild (or the
Kerr) solution, one then gets, from the post-Newtonian expression (3.4.17) of
chapter 3, in asymptotically Minkowskian coordinates,E H M, whereM is
the observed (Keplerian) mass of the central object.

If the interior of the hypersurface of integration6 contains singularities with
apparent horizons or wormholes, one can still prove73 the gauge invariance and
the conservation ofP α, without the use of the divergence theorem.

Penrose74 has given an interestingquasi-local definitionof energy-momen-
tum and angular momentum, using twistors (a type of spinor field), valid, unlike
the ADM formula,72 even if the integration is done over a finite spacelike
two-surface on a manifoldnot necessarily asymptotically flat.

One may now ask an important question. In general, when dealing with
arbitrarily strong gravitational fields at the source and with arbitrary matter
distributions as sources, is the total energyE of an isolated system positive in
general relativity? The solution of this problem is given by the so-called Positive
Energy Theorem.
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ThePositive Energy Theoremof Schoen and Yau75–79 (see also Choquet-
Bruhat, Deser, Teitelboim, Witten, York, etc.)73,80–83 states that given a
spacelike, asymptotically Euclidean, hypersurface6, and assuming the so-
called dominance of energy condition, that is,ε ≥ (j iji)

1
2 , whereε is the

energy density on6 andj i is the momentum-density on6 (the dominance of
energy condition implies also the weak energy conditionε ≥ 0; see § 2.9), and
the validity of the Einstein field equation (2.3.14), then: (1)|E| ≡ |P 0| > | P |,
that is,the ADM four-momentum is timelike, and (2)future-pointing, E > 0,
unlessP α H 0 (occurring only for Minkowskian manifolds).

2.8 [THE BOUNDARY OF THE BOUNDARY PRINCIPLE AND

GEOMETRODYNAMICS]

Einstein’s “general relativity,” or geometric theory of gravitation, or “geometro-
dynamics,” has two central ideas: (1) Spacetime geometry “tells” mass-energy
how to move; and (2) mass-energy “tells” spacetime geometry how to curve.

We have just seen that the way spacetime tells mass-energy how to move is
automatically obtained from the Einstein field equation (2.3.14) by using the
identity of Riemannian geometry, known as the Bianchi identity, which tells us
that the covariant divergence of the Einstein tensor is zero.

According to an idea of extreme simplicity of the laws at the foundations of
physics, what one of us has called “the principle of austerity” or “law without
law at the basis of physics,”84 in geometrodynamics it is possible to derive85,11

the dynamical equations for matter and fields from an extremely simple but
central identity of algebraic topology:86,39 the principle that theboundary of
the boundary of a manifold is zero. Before exploring the consequences of
this principle in physics, we have to introduce some concepts and define some
quantities of topology and differential geometry.39–43,86,87

An n-dimensionalmanifold, M, with boundary is a topological space, each
of whose points has a neighborhood homeomorphic (two topological spaces
are homeomorphic if there exists a mapping between them that is bijective and
bicontinuous, called a homeomorphism; see mathematical appendix), that is,
topologically equivalent, to an open set in half<n, that is to the subspaceHn

of all the points(x1, x2, · · · , xn) of <n such thatxn ≥ 0. The boundary∂M

of this manifoldM is the (n − 1)-dimensional manifold of all points ofM
whose images under one of these homeomorphisms lie on the submanifold of
Hn corresponding to the pointsxn H 0. Anorientable manifold is a manifold
that can be covered by a family of charts or coordinate systems(x1, · · · , xn),
(x1, · · · , xn), . . ., such that in the intersections between the charts, the Jacobian,
that is, the determinant

∣∣ ∂xi

∂x
j

∣∣ ≡ det
(

∂xi

∂x
j

)
of the derivatives of the coordinates,

is positive. Examples of nonorientable manifolds are the Möbius strip and the
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FIGURE 2.3. Two examples of nonorientable manifolds: the Klein bottle or twisted
torus and the M̈obius strip.

Klein bottle or twisted torus (see fig. 2.3). In the theory of integration39 on a
manifold M which is smooth (that is, differentiable, or which is covered by
a family of charts, such that in their intersections the∂xi

∂x
j areC∞ functions)

and orientable, one defines a singularn-cube (see fig. 2.4) as a smooth map
in the manifoldM of ann-cube in the Euclidean<n; singular means that the
correspondence between a standardn-cube of<n and its image in the manifold
M is not necessarily one to one. Then,n-chainsc of n-cubes are formally
defined as finite sums ofn-cubes (multiplied by integers).39 On thesen-chains
one defines integration. The boundary∂c (see figs. 2.4, 2.5, and 2.6) of ann-
chainc of n-cubes is the sum of all the properly oriented singular(n − 1)-cubes
which are the boundary of each singularn-cube of then-chainc. One can then
define an operator∂ that gives the boundary, with a definite orientation, of an
n-cube or of ann-chain. It is in general possible to prove39 that the boundary
of the boundary of anyn-chainc is zero (see figs. 2.5 and 2.6), that is,

∂(∂c) H 0 or formally ∂2 H 0. (2.8.1)

Next, let us consider adifferential n-form θ that is, a completely antisym-
metric covariantn-tensor, in componentsθα1···βγ ···αn

H −θα1···γβ···αn
, against

exchange of any pair of nearby indices such asβ, γ ; n is the degree of the
form. Similarly one can consider a completely antisymmetric contravariant
n-tensor calledn-polyvector. The operation ofantisymmetrization of ann-
tensorTα1···αn

, that we shall denote by writing the indices of the tensor within
square brackets, is defined as

T[α1···αn] H 1

n!

∑
all

permutations, p

εpTα1···αn
(2.8.2)
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c

@

@c

c
c

<2

FIGURE 2.4. A standard two-cubec and its(2 − 1)-dimensional boundary∂c.

where the sum is extended to all the permutations ofα1 · · · αn, with a plus sign
for even permutations,εp even ≡ +1, and minus sign for odd permutations,
εp odd ≡ −1. An n-form θ can then be defined in components as

θα1···αn
H θ[α1···αn] . (2.8.3)

From ap-form θα1···αp
and from aq-form ωα1···αq

, one can construct a (p + q)-
form, by defining thewedge productor exterior product ∧ between the two
forms, in components

(θ ∧ ω)α1···αp+q
H (p + q)!

p! q!
θ[α1···αp

ωαp+1···αp+q ] (2.8.4)

FIGURE 2.5. The oriented one-dimensional boundary of the two-dimensional
boundary of a three-cube is zero.
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FIGURE 2.6. The two-dimensional boundary of the three-dimensional boundary of
a four-dimensional singular four-cube, here a four-simplex, is zero. A two-dimensional
projection of the four-simplex is shown in the center. A four-simplex has five vertices,
ten edges, ten triangles, and five tetrahedrons. The three-dimensional boundary of the
four-simplex is made out of the five tetrahedrons shown in the figure. Each of the ten,
two-dimensional, triangles is counted twice with opposite orientations. Therefore, the
two-dimensional boundary of the three-dimensional boundary of the four-simplex is
zero (adapted from W. Miller 1988).88

where [α1 · · · αp+q ] means antisymmetrization (2.8.2), with respect to the
indices within square brackets. The wedge product satisfies the properties

(θ1 ∧ θ2) ∧ θ3 H θ1 ∧ (θ2 ∧ θ3)

(θ1 + θ2) ∧ ω H θ1 ∧ ω + θ2 ∧ ω

θ ∧ (ω1 + ω2) H θ ∧ ω1 + θ ∧ ω2

θ ∧ ω H (−1)pqω ∧ θ.

(2.8.5)

Then, from ann-form θα1···αn
H θ[α1···αn] , one can construct an(n + 1)-form,

by defining theexterior derivative dθ of θ, that is the exterior product of∂
∂xα
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with θα1···αn
, in components

dθα1···αn+1 H (n + 1)
∂

∂x [α1
θα2···αn+1]

H 1

n!

∑
all

permutations, p

εp

∂

∂xα1
θα2···αn+1.

(2.8.6)

The exterior derivative of the exterior product (whereθ is ap-form) satisfies
the property

d(θ ∧ ω) H dθ ∧ ω + (−1)pθ ∧ dω. (2.8.7)

We introduce theLevi-Civita pseudotensor, εαβγλ ≡ √−g[αβγλ], where√−g is the square root of minus the determinant of the metric (equal to one
whengαβ H ηαβ H diag(−1, +1, +1, +1) H Minkowski tensor), and the
symbol [αβγλ] is equal to+1 for even permutations of(0, 1, 2, 3), −1 for
odd permutations of(0, 1, 2, 3), and 0 when any indices are repeated. We then
haveεαβγλ H − 1√−g

[αβγλ], and the Levi-Civita pseudotensor satisfies the
following relations:

εαβγλεαβγλ H −4! (2.8.8)

ερσταερστβ H −3! δα
β (2.8.9)

ερσαβερσγλ H −2!
(
δα

γ δβ
λ − δα

λδ
β

γ

)
H −2!

(
2!δα

[γ δβ
λ]

)
(2.8.10)

≡ −2!δαβ
γλ

εαβγσ ελµνσ H −3!δα
[λδ

β
µδγ

ν] ≡ −δαβγ
λµν (2.8.11)

and

εαβγλεµνρσ H −4!δα
[µδβ

νδ
γ

ρδ
λ
σ ] ≡ −δαβγλ

µνρσ (2.8.12)

whereδα1···αn
β1···βn

is equal to+1 if α1 · · · αn is an even permutation ofβ1 · · · βn

with no repeated indices(1 ≤ n ≤ 4), equal to−1 if it an odd permutation,
and 0 otherwise. Theδ-tensors satisfy

δαβγσ
λµνσ H δαβγ

λµν; δαβσ
µνσ H 2δαβ

µν;
δασ

βσ H 3δα
β and δα

α H 4.
(2.8.13)

They can be used to antisymmetrize a tensor

T[α1···αn] H 1

n!
Tβ1···βn

δβ1···βn
α1···αn

(2.8.14)
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(where in a four-manifold: 1≤ n ≤ 4) and to write the determinant of a tensor
T α

β

det(T α
β) H 1

4!
δαβγλ

µνρσ T µ
αT ν

βT ρ
γ T σ

λ H [µνρσ ]T µ
0T

ν
1T

ρ
2T

σ
3.

(2.8.15)
Finally, by using theδ-tensors, one can compactly rewrite atwo-dimensional
surface elementdSαβ , a three-dimensional hypersurface elementd6αβγ ,
and afour-dimensional volume elementd�αβγλ, respectively built on two,
three, and four infinitesimal displacementsdxα

(ρ):

dSαβ ≡ δαβ
µνdx

µ

(1)dxν
(2) H

∣∣∣∣∣ dxα
(1) dxα

(2)

dx
β

(1) dx
β

(2)

∣∣∣∣∣ (2.8.16)

d6αβγ ≡ δαβγ
µνρdx

µ

(1)dxν
(2)dx

ρ

(3) (2.8.17)

d�αβγλ ≡ δαβγλ
µνρσ dx

µ

(0)dxν
(1)dx

ρ

(2)dxσ
(3). (2.8.18)

Thedualsof these elements, for
√−g H 1, are defined as

(∗dS)αβ ≡ 1

2
[ρσαβ]dSρσ (2.8.19)

d36α ≡ 1

3!
[αµνρ]d6µνρ (2.8.20)

d4� ≡ 1

4!
[µνρσ ]d�µνρσ . (2.8.21)

In particular, for the four infinitesimal coordinate displacements,dxα
(ρ) H

δα
ρdxα (no summation overα), with ρε(0, 1, 2, 3), we have

d4� ≡ d4x H dx0dx1dx2dx3, (2.8.22)

and corresponding to a hypersurfacex0 H constant:

d360 ≡ d3V H dx1dx2dx3. (2.8.23)

On ann-dimensional manifold, we can then define the(n − p)-polyvector∗θ
dual to thep-form θ in components

(∗θ)α1···αn−p H 1

p!
εβ1···βpα1···αn−p θβ1···βp

(2.8.24)

with a similar definition for the(n − p)-form, ∗v dual of ap-polyvectorv.
Now, on ann-dimensional manifoldM, we have the beautiful and fun-

damentalStokes theorem(for the mathematical details see Spivak 1979,
vol. 2)39 ∫

c

dθ H
∫

∂c

θ Stokes theorem (2.8.25)
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wherec is ann-chain on the manifoldM,∂c the(n−1)-chain oriented boundary
of c, θ a (n − 1)-form onM, anddθ then-form exterior derivative ofθ. For
an oriented,n-dimensional manifoldM with boundary∂M (with the induced
orientation)39 and for an(n − 1)-form θ onM, with compact support (i.e., the
smallest closed set containing the region ofM whereθ is nonzero is compact),
we then have ∫

M

dθ H
∫

∂M

θ Stokes theorem. (2.8.26)

Furthermore, as a consequence of the boundary of the boundary principle
(2.8.1), for every(n − 2)-form θ on ann-dimensional, differentiable, oriented
manifoldM, we have ∫

∂∂M

θ H 0. (2.8.27)

Therefore, from the boundary of the boundary principle (2.8.1) and from Stokes
theorem: ∫

c

ddθ H
∫

∂c

dθ H
∫

∂∂c

θ H 0. (2.8.28)

By applying this result to an arbitrary neighborhood of an arbitrary point, one
has then, automatically,

ddθ H 0, or formally d2 H 0. (2.8.29)

The exterior derivative of the exterior derivative of any form is zero. In other
words, the exterior derivative of any exact form is zero, whereexact is any
n-form that can be written asdθ andθ is an (n − 1)-form. Therefore, any
exact form isclosed, that is, with null exterior derivative (as one can also
directly calculate from the definition ofd). For a vector fieldW in the three-
dimensional Euclidean space<3, from Stokes theorem we get two well-known
corollaries, the so-calleddivergence theorem(Ostrogradzky-Green formulaor
Gauss theorem): ∫

V

∇ · Wd3V H
∫

∂V HS

W · n d2S (2.8.30)

and theRiemann-Amp̀ere-Stokes formula:∫
S

(∇ × W) · n d2S H
∫

∂SHl

W · d1l (2.8.31)

whered3V, d2S andd1l are the standard Euclidean volume, surface, and line
elements, andn is the normal to the surfaceS.

We are now ready to investigate on some physical consequences89,90 of the
boundary of the boundary principle.
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In electrodynamics, one defines (see § 2.3) the electromagnetic field tensor
F as the 2-form:

F H dA (2.8.32)

or in components,Fαβ H Aβ,α − Aα,β, whereA is the four-potential 1-form,
with componentsAα.

From the boundary of the boundary principle, in the formd2 H 0, we
automaticallyget thesourceless Maxwell equationsfor F:

dF H ddA H 0 (2.8.33)

in components

F[αβ,γ ] H 0. (2.8.34)

TheMaxwell equations with sourceare

Fαβ
,β H 4πjα (2.8.35)

wherejα H ρuα is the charge current density four-vector. This equation can
be rewritten by defining the dual form,?F, of the formF and the dual form,?j,
of the charge current density 1-formj (see expression 2.8.63 for the general
definition of?(· · ·)):

(?F)µν ≡ 1

2
εαβµνF

αβ (2.8.36)

(?j)βµν ≡ εαβµνj
α; (2.8.37)

therefore

(d?F)αβγ H 3

2
εµν[αβFµν

,γ ]

H 4πεσαβγ jσ

(2.8.38)

or

d?F H 4π?j. (2.8.39)

From the boundary of the boundary principle, in the formd2 H 0, we then
automaticallyget thedynamical equations forj:

4πd?j H dd?F H 0 (2.8.40)

in components (
jαεα[βµν

)
,γ ] H 0, (2.8.41)

that is, multiplying byεβµνγ and summing over all its indices,

jα
,α H 0. (2.8.42)
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Summarizing, in electrodynamics we have

F ≡ dA

(
definition

of F

)
d2H0HH⇒

⌈
dF H 0

 sourceless
Maxwell
equations

 (2.8.43)

and⌊
d?F H 4π?j

 Maxwell
equations

with source

 d2H0HH⇒ d?j H 0

 dynamical
equations

for j

 (2.8.44)

In geometrodynamics, the Riemann curvature tensor satisfies the so-calledfirst
Bianchi identity :

Rα
[βγ δ] H 0, (2.8.45)

and thesecond Bianchi identity(§ 2.4)

Rα
β[γ δ;µ] H 0. (2.8.46)

Consequently the Einstein tensorGαβ satisfies the contracted second Bianchi
identities

Gσ
α;σ ≡

(
Rσ

α − 1

2
Rδσ

α

)
;σ

H 0. (2.8.47)

As in electrodynamics, these identities can be derived from the boundary of
the boundary principle,∂2 H 0, directly from its consequence that the second
exterior derivative of any form is zero,d2 H 0.

Let us first consider,91,39,43on ann-dimensional manifold,n linearly indepen-
dent vector fieldsX1,···,Xn, called amoving frame(theCartan’s Rep̀ere Mobile).
We can then consider the 1-formsθα which define the dual basis (different con-
cept from the dual of a form (2.8.24) or the dual of a polyvector), that is, the
formsθα such thatθα

σXσ
β H δα

β . Furthermore, by using the exterior product
(2.8.4), on a Riemannian manifoldM with metricgαβ , one can construct the
connection 1-formsωα

β H 0α
βγ θγ , defined by

dgαβ H gασωσ
β + gσβωσ

α (2.8.48)

wheredgαβ H Xρ(gαβ)θρ , and in a coordinate basisdgαβ H gαβ,ρdxρ , and by

Θα H 0 (2.8.49)

whereΘα H dθα + ωα
σ ∧ θσ (first Cartan structure equation), andΘα are the

torsion 2-forms (see below).
Using the connection 1-formsωα

β , the exterior derivative (2.8.6) and the
exterior product (2.8.4), one can then construct thecurvature 2-forms Ωα

β ,
for the moving frameXα:

Ωα
β H dωα

β +ωα
σ ∧ωσ

β (second Cartan structure equation). (2.8.50)
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By taking the exterior derivative of expression (2.8.49), from the boundary of
the boundary principle, in the formd2 H 0, we get thefirst Bianchi identity :

0 H ddθα H d
(−ωα

σ ∧ θσ
) H − (

Ωα
σ − ωα

ρ ∧ ωρ
σ

) ∧ θσ

− ωα
σ ∧ ωσ

ρ ∧ θρ H −Ωα
σ ∧ θσ

(2.8.51)

and by taking the exterior derivative of expression (2.8.50), fromd2 H 0, we
get

dΩα
β H dωα

σ ∧ ωσ
β − ωα

σ ∧ dωσ
β . (2.8.52)

By substitutingdωα
β H Ωα

β − ωα
σ ∧ ωσ

β , we then have

dΩα
β + ωα

σ ∧ Ωσ
β − Ωα

σ ∧ ωσ
β H 0. (2.8.53)

This is thesecond Bianchi identity. Finally, by defining theexterior covariant
derivative, D: DΩα

β ≡ dΩα
β + ωα

σ ∧ Ωσ
β − Ωα

σ ∧ ωσ
β , which maps

a tensor-valuedp-form (a p-form with tensor indices) into a tensor-valued
(p + 1)-form, we can rewrite the second Bianchi identity as:

DΩα
β H 0. (2.8.54)

Equation (2.8.49) expresses that the torsionΘα is zero, and equation (2.8.48)
that the connection is metric-compatible, that is, the covariant derivative of the
metric is zero. It follows that the connection is uniquely39 determined to be the

standard Riemannian connection. Using thenatural coordinate basis, {
(c)

Xα} H
{ ∂

∂xα } (a coordinate basis is also calledholonomic,and a noncoordinate basis
anholonomic), on a Riemannian manifold, one has then(

(c)

ωα
β

)
γ

H 0α
βγ H Christoffel symbols (expression 2.2.3) (2.8.55)

(for the expression of0α
βγ in a general basis see the mathematical appendix),(

(c)

Θα

)
βγ

H 0α
γβ − 0α

βγ ≡ T α
[γβ] H 0, i.e., no torsion, (2.8.56)

and (
(c)

Ωα
β

)
γ δ

H Rα
βγ δ H Riemann curvature tensor (expression 2.2.5)

(2.8.57)
and we can rewrite equations (2.8.51) and (2.8.54), in components, as

Rα
[βγ δ] H 0, (eq. 2.8.45) (2.8.58)

and

Rα
β[γ δ;µ] H 0, (eq. 2.8.46). (2.8.59)
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Equations (2.8.50) and (2.8.57) define the curvature tensorRα
βγ δ without the

use of the covariant derivatives as in the standard definition (2.2.4).
In geometrodynamics the contracted second Bianchi identity, consequence of

d2 H 0, is especially important. In fact, the dynamical equations for matter and
fields automatically follow from this identity plus the Einstein field equation
(2.3.14). To derive the dynamical equations from the boundary of the boundary
principle we first construct11 the double dual of the Riemann tensor:(∗R∗)

αβ

γ δ ≡ 1

4
εαβµνR

µν
ρσ ερσγ δ. (2.8.60)

We can then rewrite the Einstein tensor,Gα
β , as

Gα
β H (∗R∗)ασ

βσ . (2.8.61)

We have, in fact,(∗R∗)ασ
βσ H 1

4
εασγλεµνβσRµν

γλ H − 1

4
δαγλ

µνβRµν
γλ

H − 1

4

(
2δα

βR − 2Rαγ
βγ − 2Rαλ

βλ

)
H Gα

β

(2.8.62)

where we have used the relation (2.8.11). We now define thestar operator
?(· · ·), with a star on theleft, a duality operator which acts only onm-forms
(with m ≤ n on ann-dimensional manifold) and gives(n − m)-forms, that
is, a duality operator which acts only on them (0 ≤ m ≤ n) antisymmetric
covariant indices of a tensor and generatesn − m antisymmetric covariant
indices. In other words, the?(· · ·) operator acts only on the antisymmetric
covariant indices of a tensorT αβ···

γ δ···, by first raising each covariant index
with gµν and then by taking the dual, withεαβ···µ, of these raised indices:

(?T)αβ··· ···µ H 1

m!
εσρ···µT αβ···

γ δ···gσγ gρδ··· . (2.8.63)

Similarly, we define thestar operator(· · ·)?, with a star on theright, as a dual-
ity operator which acts only onm-polyvectors (antisymmetricm-contravariant
tensors) and gives(n − m)-polyvectors, that is, a duality operator which acts
only on them (0 ≤ m ≤ n) antisymmetric contravariant indices of a tensor
and generatesn − m antisymmetric contravariant indices:

(T?)···µγ δ··· H 1

m!
εσρ···µT αβ···

γ δ···gασ gβρ··· . (2.8.64)

We then introduce the vector-valued (a form with a vector index) 1-form,
(dP)αβ H δα

β , sometimes called the Cartan unit tensor. By taking the star
dual?(· · ·) of both sides of the Einstein field equationGα

β H χT α
β ,

?G H χ?T, (2.8.65)
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we have in components

εσβγ δG
ασ H χεσβγ δT

ασ . (2.8.66)

By defining

[dP ∧ R]αµν
βρσ ≡ 3!

2!

3!

2!
δ

[α
[βRµν]

ρσ ] (2.8.67)

here by [S ∧ T] we mean exterior product ofboth the covariant and the con-
travariant parts of the antisymmetric tensorsS andT, that is we mean both
antisymmetrization of the covariant indices of the product ofS with T times a
factor (p+q)!

p!q! and antisymmetrization of thecontravariantindices times a factor
(n+m)!
n! m! . We can rewrite the left-hand side of the star dual,?G, of the Einstein

tensor,G,

[dP ∧ R]? H ?G H χ?T (2.8.68)

Indeed, we have, in components, using expressions (2.8.14) and (2.8.62):

3

2
gγ τ εαµντ δ

[α
[βRµν]

ρσ ] H 1

4
gγ τ εαµντ δ

αµν
λθϕδλ

[βRθϕ
ρσ ] H

− 3

2
gγ τ εµντ [βRµν

ρσ ] H − 1

4
gγ τ εµντλδβρσ

λθϕRµν
θϕ H

− 1

4
gγ τ εµντλεβρσαεαλθϕRµν

θϕ H εαβρσGαγ .

(2.8.69)

By taking the exterior covariant derivative of equation (2.8.68) we then have

D[dP ∧ R]? H (
D[dP ∧ R]

)? H (
[DdP ∧ R] − [dP ∧ DR]

)? H 0 (2.8.70)

whereDdP H 0, that is, there is no torsion, andDR H 0 is the second Bianchi
identity (2.8.54) as a consequence ofd2 H 0, that is, as a consequence of the
boundary of the boundary principle. Finally, from the Einstein field equation
(2.8.68), we have

D?G H D?T H 0, (2.8.71)

that is, in components, using (2.3.7),

T αβ ;β H 0. (2.8.72)

The quantity [dP∧R]? has a geometrical interpretation.91,84,11It may be thought
of as the star dual of the moment of rotation, of a vector, associated with a
three-cube and induced by the Riemann curvature (see fig. 2.7). The Einstein
field equation may then be geometrically interpreted as identifying the star dual
of the moment of rotation associated with a three-cube with the amount of
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A 0

C0

B0

FIGURE 2.7. The rotation of a vectorv associated with each face of a three-cube and
induced by the Riemann curvature tensor, and the one-boundary of the two-boundary
of a three-cube.Left: the rotation of a vector transportedvt parallel to itself around the
indicated circuit, this rotation measures some components of the spacetime curvature
(see eq. 2.4.19).Right: the rotations associated with all six faces together add up to
zero; the diagram closes. It closes because each edge of the cube is traversed twice, and
in opposite directions, in the circumnavigation of the two abutting faces of the cube:
∂∂ H 0.

energy-momentum of matter and fields contained in that three-cube:
dual of

moment of
rotation

associated with
a three-cube

 H 8π


amount of

energy-momentum
in that

three-cube

 . (2.8.73)

This is the geometrical content of the Einstein equation. Then, by applying to
the Einstein field equation the simple but central topological 2-3-4 (in two-
three-four dimensions)boundary of the boundary principle, ∂2 H 0, one
gets thedynamical equationsfor matter and fields.

2.9 BLACK HOLES AND SINGULARITIES

Black Holes and Gravitational Collapse

Collapse of a spherically symmetric star to a dense configuration92–96 can on
occasion put enough massM inside a spherical surface of circumference 2πr
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as to make the terms−(1− 2M
r

)dt2 and(1− 2M
r

)−1dr2 in the metric (2.6.35)
reverse sign inside this surface. By analyzing the radial light cones (θ and
φ constant), as calculated fromds2 H 0 in the Schwarzschild coordinates of
expression (2.6.35), we find thatdr

dt
H ±(1− 2M

r
) tends to zero as it approaches

the regionr H 2M, and inside this region, wherer < 2M, the future light
cones point inward, towardr H 0 (fig. 2.8). Since particles, or photons, prop-
agate within, or on, the light cones, no photon can escape from such a region,
nor any particle that follows classical physics. It is no wonder that such a col-
lapsed star received92 the name “black hole” 19,97–101,144as early as 1967. This
strange behavior of the Schwarzschild spacetime geometry extends over the
region wherer is less than the so-called Schwarzschild radius,rs H 2M. A
black hole with Earth mass has a Schwarzschild radius of about 0.88 cm and
one of Sun’s massM� of about 3 km.

The X-ray telescope UHURU floating above the atmosphere discovered in
1971 (see ref. 130) the first compelling evidence for a black hole, Cygnus
X-1. Its mass is today estimated as of the order of 10M� (since then, other
black hole candidates have been found in X-ray binary systems, for example in
nova V404 Cygni142 and in Nova Muscae143). Recently, H. Ford et al., using
the Faint Object Spectrograph of theHubble Space Telescope, have observed
gas orbiting at high velocity near the nucleus of the elliptical galaxy M87.147

This observation provides a decisive experimental evidence for a supermassive
black hole, source of the strong gravitational field that keeps the gas orbiting
(see picture 4.5, p. 203). A star collapses by contraction,93–96 after the end of
the nuclear reactions that kept the star in equilibrium, if the mass of the star is

t

2M
r

world line

of test particle

world lines

of photons

FIGURE 2.8. Future light cones in Schwarzschild coordinates outside, near, and inside
the regionr H 2M.



The Bartlett Press, Inc. ciufolin 4:00 p.m. 6 · iii · 1995

EINSTEIN GEOMETRODYNAMICS 89

larger than a critical value, thecritical mass(in general relativity, for a neutron
star and depending from the equation of state used, at most∼ 2–3M�; the
Chandrasekhar limitfor the mass of a white dwarf is about 1.2M�).

The first detailed treatment of gravitational collapse within the framework of
Einstein geometrodynamics was given in 1939 by Oppenheimer and Snyder.93

For simplicity they treated the collapsing system as a collection of dust particles
(p H 0), so that all the problems of pressure and temperature could be over-
looked. Each particle would then move freely under the gravitational attraction
of the others. More realistic equations of state have been later used,96,99without
avoiding the collapse.

However, do we know enough about matter to be sure that it cannot success-
fully oppose collapse? We understand electromagnetic radiation better than we
understand the behavior of matter at high density. Then why not consider a star
containing no matter at all, an object built exclusively out of light, a “gravi-
tational electromagnetic entity” or “geon,” described in section 2.10, deriving
its mass solely from photons, and these photons held in orbit solely by the
gravitational attraction of that very mass?71 It turns out that a geon has the
stability—and the instability—of a pencil standing on its tip.95 The geon does
not let its individual photons escape any more than the pencil lets its individual
atoms escape. But that swarm of photons, collectively, like the assembly of
atoms that make up the pencil, collectively, can fall one way or the other. Start-
ing slowly at first, it can expand outward more and more rapidly and explode
into its individual photons. Equally easily, it can fall the other way slowly at
first, then more and more rapidly to complete gravitational collapse. Thus it
does not save one from having to worry about gravitational collapse to turn
from matter to “pure” radiation.

A closer look at matter itself shows that “the harder it resists, the harder
it falls”: pressure itself has weight, and that weight creates more pressure, a
“regenerative cycle” out of which again the only escape is collapse (see § 4.5).96

Gravitational collapse will have quite a different appearance according as it
is studied by a faraway observer or a traveler falling in with, and at the outskirts
of, the cloud of dust. The traveler will arrive in a very short time at a condition
of infinite gravitational stress. If he sends out a radio “beep” every second of
his existence, he will get off only a limited number of messages before the
collapse terminates. In contrast, the faraway observer will receive these beeps
at greater and greater time intervals; and, wait as long as he will, he will never
receive any of the signals given out by the traveler after his crossing of the
intangible horizon,rs H 2M. Moreover, the cloud of dust will appear to the
faraway observer, not to be falling ever faster, but to slow up and approach
asymptotically a limiting sphere with the dimensions of the horizon. As it
freezes down to this standard size it grows redder and fainter by the instant, and
quickly becomes invisible. In other words, the observer on the surface of the
collapsing star will pass through the horizon in a finite amount of his proper
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time, measured by his clocks. In contrast, an observer far from the collapsing
star will see the collapse slow down and only asymptotically reach the horizon.
However, since the intensity of the light he receives will exponentially decrease
as the surface of the star approaches the horizon, after a short time he essentially
will not receive any more light emitted from the collapsing star (however, see the
Hawking radiation below). This phenomenon of different speed of the collapse
is due to the gravitational time dilation of clocks, explained in section 3.2.2, and
experimentally observed in a variety of experiments in weak fields (§ 3.2.2).21

From the metric (2.6.35), we have

1τ |r ′∼H2M ≡


interval of proper time

measured by an external
observer, atr ′, near the

horizonrs H 2M


H
(

1 − 2M

r ′

)1/2

1t H
(

1 − 2M

r ′

)1/2

1τ∞

H ε ×
 interval of proper time

measured by an asymptotic
observer

 (2.9.1)

whereε ≡ (1− 2M
r ′ )1/2 � 1. This is the sense in which time goes slower near

a black hole. Put an atomic clock on the surface of a planet. Let it send signals to
a higher point. The interval from pulse to pulse of this clock is seen to be greater
than the interval between pulse and pulse of an identical clock located at the
higher point. In this sense the clock closer to the planet’s surface goes slower
than the clock further away. Likewise a clock somehow suspended close above
a black hole, measuring proper time:1τBH H (1 − 2M

r ′ )1/21t H ε1t , will
send signals to a faraway observer, equipped with an identical clock, measuring
proper time:1τ∞ ∼H 1t H 1τBH/ε. Therefore, the spacing between ticks of
the clock just above the black hole is seen to be much larger than the spacing
between ticks of the clock of the faraway observer.

Features of a Black Hole

Not even light signals or radio messages will escape from inside the horizon of
the collapsed object. The only feature of the black hole that will be observed is
its gravitational attraction97–101,19(however, see the Hawking radiation below).
What falls into a black hole carries in mass and angular momentum, and it
can also carry in electric charge. These are the only attributes that a black
hole conserves out of the matter that falls into it. All other particularities, all
other details, all other physical properties of “matter” are extinguished. The
resulting stationary black hole, according to all available theoretical evidence,
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is completely characterized by its mass, its charge, and its angular momentum,
and by nothing more. Jokingly put, “a black hole has no hair.”11

Of the number of particles that went in not a trace is left, if present physics
is safe as our guide. Not the slightest possibility is evident, even in principle,
to distinguish between three black holes of the same mass, charge, and angular
momentum, the first made from particles, the second made from antiparticles,
and the third made primarily from pure radiation. This circumstance deprives
us of all possibility to count or even define the number of particles at the end
and compare it with the starting count. In this sense the laws of conservation of
particle number are not violated; they are transcended.

The typical black hole is spinning and has angular momentum. This is a very
strange kind of spin. One cannot “touch one’s finger to the flywheel” to find
it. The flywheel, the black hole, is so “immaterial,” so purely geometrical, so
untouchable, that no such direct evidence for its spin is available. Evidence for
the spin of the black hole is obtainable by indirect means. For this purpose it
is enough to put a gyroscopic compass in polar orbit around the black hole.
The gyroscopic compass, pointed originally at a distant star, will slowly sweep
about the circuit of the heavens, in sympathy with the rotation of the black hole,
but at a far slower rate. At work on the gyro, in addition to the normal direct
pull of gravity, is a new feature of geometry predicted by Einstein’s theory. This
“gravitomagnetic force” is as different from standard gravity as magnetism is
different from electricity. An electric charge circling in orbit creates magnetism.
A spinning mass creates gravitomagnetism.

We are far from being able today to observe gravitomagnetism of a spinning
black hole. However, space experiments are in active development (GP-B and
LAGEOS III; chap. 6) to measure the gravitomagnetic effects, on an orbiting
gyroscope, due to the slow rotation of Earth.

The Event Horizon

Using the Schwarzschild coordinates of expression (2.6.35), at the Schwarz-
schild horizon,rS H 2M, we haveg11 H −g−1

00
rH2M−−−→ ∞. However,

the Schwarzschild horizon is not a true singularity but just acoordinate
singularity .

The quantities that have an intrinsic geometrical meaning, independent from
the particular coordinates that are used, are the scalar invariants15 constructed
using the Riemann curvature tensor and the metric tensor. No invariant,19 built
with the curvature and metric tensors, diverges on the horizon,rs H 2M. The
Schwarzschild horizon is just a pathology of the coordinates of expression
(2.6.35), but not a true geometrical singularity (see below). Indeed, with a coor-
dinate transformation, for example to Eddington-Finkelstein102,103coordinates,
or to Kruskal-Szekeres104,105coordinates, one can extend the solution (2.6.35)
to a solution covering the whole Schwarzschild geometry with nonsingular
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FIGURE 2.9. Alternative interpretations of the three-dimensional “maximally ex-
tended Schwarzschild metric” of Kruskal at timet ′ H 0. (a) A connection in the sense
of Einstein and Rosen (Einstein-Rosen bridge)106 between two otherwise Euclidean
spaces. (b) and (c) Awormhole connecting two regions in one Euclidean space, in (c)
not orientable with the topology of a M̈obius strip (in the case where these regions are
extremely far apart compared to the dimensions of the throat of the wormhole). Case (a)
has the same curvature but different topology from cases (b) and (c). For a discussion
on causality in a case of type (b) or (c) see refs. 107–109 and 138–141.
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metric components atrs H 2M (see fig. 2.9). With the transformation to
Kruskal-Szekeres coordinates:11,19

x ′ H
(

r

2M
− 1

) 1
2

er/4M cosh

(
t

4M

)

t ′ H
(

r

2M
− 1

) 1
2

er/4M sinh

(
t

4M

) : for r > 2M


x ′ H

(
1 − r

2M

) 1
2

er/4M sinh

(
t

4M

)

t ′ H
(

1 − r

2M

) 1
2

er/4M cosh

(
t

4M

) : for r < 2M, (2.9.2)

one thus gets

ds2 H
(

32M3

r

)
e−r/2M

(
−dt ′2 + dx ′2

)
+ r2(t ′, x ′)

(
dθ2 + sin2 θdφ2

) (2.9.3)

wherer is a function ofx ′ andt ′ implicitly determined, from expression (2.9.2),
by (

r

2M
− 1

)
er/2M H x ′2 − t ′2. (2.9.4)

The metric (2.9.3), in Kruskal-Szekeres coordinates, explicitly shows that the
Schwarzschild geometry is well-behaved atrs H 2M and that is possible
to extend analytically the Schwarzschild solution (2.6.35) to cover the whole
Schwarzschild geometry (see fig. 2.9).

Black Hole Evaporation

In 1975 Hawking110 discovered the so-called process ofblack hole evaporation
(fig. 2.10). Quantum theory allows a process to happen at the horizon analogous
to the Penrose process.111 In the Penrose process two already existing particles
trade energy in a region outside the horizon of a spinning black hole (see 2.6.36)
called the ergosphere, the only domain where macroscopic masses of positive
energy and of negative energy can coexist. Because the ergosphere shrinks to
extinction when a black hole is deprived of all spin, the Penrose process applies
only to a rotating, or “live,” black hole. In contrast, the Hawking process takes
place at the horizon itself and thus operates as effectively for a nonrotating black
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Black Hole

T
im

e

FIGURE 2.10. The Hawking110 evaporation process capitalizes on the fact that space
is nowhere free of so-called quantum vacuum fluctuations, evidence that everywhere
latent particles await only opportunity—and energy—to be born. Associated with such
fluctuations at the surface of a black hole, a might-have-been pair of particles or photons
can be caught by gravity and transformed into a real-life particle or photon (solid arrow)
that evaporates out into the surroundings and an antiparticle or counterphoton (dashed
arrow) that “goes down” the black hole.

hole as for a rotating one. Furthermore, unlike the Penrose process, it involves
a pair of newly created microscopic particles.

According to the uncertainty principle for the energy,1E1t & h̄, that is,
space—pure, empty, energy-free space—all the time and everywhere experi-
ences so-called quantum vacuum fluctuations at a very small scale of time, of
the order of 10−44 s and less. During these quantum fluctuations, pairs of parti-
cles appear for an instant from the emptiness of space—perhaps an electron and
an antielectron pair or a proton and an antiproton pair. Particle-antiparticle pairs
are in effect all the time and everywhere being created and destroyed. Their de-
struction is so rapid that the particles never come into evidence at any everyday
scale of observation. For this reason, the pairs of particles everywhere being
born and dying are called virtual pairs. Under the conditions at the horizon, a
virtual pair may become a real pair.

In the Hawking process, two newly created particles exchange energy, one
acquiring negative energy−E and the other positive energyE. Slightly outside
the horizon of a black hole, the negative energy photon has enough time1t

to cross the horizon. Therefore, the negative energy particle flies inward from
the horizon; the positive energy particle flies off to a distance. The energy it
carries with it comes in the last analysis from the black hole itself. The massive
object is no longer quite so massive because it has had to pay the debt of energy
brought in by the negative energy member of the newly created pair of particles.
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Radiation of light or particles from any black hole of a solar mass or more
proceeds at an absolutely negligible rate—the bigger the mass the cooler the
surface and the slower the rate of radiation. The calculated Bekenstein-Hawking
temperature of a black hole of 3M� is only 2×10−8 degrees above the absolute
zero of temperature. The total thermal radiation calculated to come from its
986 square kilometers of surface is only about 1.6 × 10−29 watt, therefore this
evaporation process would not be able to affect in any important way black
holes of about one solar mass or more. A black hole of any substantial mass is
thus deader than any planet, deader even than any dead moon—when it stands
in isolation.

Singularities

The r H 2M region of the Schwarzschild metric (2.6.35) is a mere coordi-
nate singularity; however, ther H 0 region, whereg00 H −g−1

11
rH0−→ ∞, is a

true geometrical singularity,19 where, as for the big bang and big crunch singu-
larities of some cosmological models (see chap. 4), some curvature invariants
diverge; for example the Kretschmann invariant for the Schwarzschild metric
is Rαβγ δR

αβγ δ ∼ m2

r6
rH0−→ ∞ (see § 6.11).

Indeed, besides coordinate singularities, or pathologies of a coordinate sys-
tem removable with a coordinate transformation, there are various types of true
geometrical singularities.112–115

Usually, in a physically realistic solution, a singularity is characterized by
diverging curvature.19 However, on a curved manifold the individual compo-
nents of the Riemann tensor depend on the coordinates used. Therefore, one
defines the true curvature singularities using the invariants built by contracting
the Riemann tensorRα

βµν , with gαβ and withεαβµν . The regions where these
invariants diverge are calledscalar polynomial curvature singularities. One
may also measure the components of the Riemann tensor with respect to a local
basis parallel transported along a curve. In this case the corresponding curvature
singularities are calledparallelly propagated curvature singularities.

It is usual to assume that spacetime is a differentiable manifold (i.e., a mani-
fold that is covered by a family of charts, such that in the intersections between
the charts, the coordinatesxα of a chart as a function of the coordinatesxα of
another chart,xα H xα(xα), are continuous and with continuous derivatives,
C∞), where space and time intervals and other physical quantities can be mea-
sured, and standard equations of physics hold in a neighborhood of every event.
Then a curvature singularity is not part of the differentiable manifold called
spacetime. Therefore, in such manifolds with singularities cut out, there will
exist curves incomplete in the sense that they cannot be extended.

To distinguish between different types of incompleteness of a manifold, var-
ious definitions have been given. First, a manifold is called inextendible if
it includes all the nonsingular spacetime points.19 The definition of geodesic
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completeness is useful to characterize an incomplete manifold. A manifold is
called geodesically complete if every geodesic can be extended to any value
of its affine parameter (§ 2.4). In particular a manifold isnot timelike or null
geodesically complete, if it has incomplete timelike or null geodesics. In this
case the history of a freely moving observer (or a photon), on one of these
incomplete geodesics, cannot be extended after (or before) a finite amount of
proper time. However, this definition does not include the type of singularity
that a nonfreely falling observer, moving with rockets on a nongeodesic curve,
may encounter in some manifolds. To describe these types of singularities on
nongeodesic curves, one can give the definition of bundle-completeness or b-
completeness. One first constructs on any continuous curve, with continuous
first derivatives, a generalized affine parameter that in the case of a geodesic
reduces to an affine parameter. An inextendible manifold (with all nonsingu-
lar points) is calledbundle-complete, or b-complete, if for every curve of
finite length, measured by the generalized affine parameter from a pointp,
there is an endpoint of the curve in the manifold. Bundle-completeness implies
geodesic completeness, but not vice versa. Usually, in physically realistic so-
lutions, a spacetime which is bundle-incomplete has curvature singularities on
the b-incomplete curves (however, see the Hawking-Ellis discussion19 of the
Taub-NUT space).

In 1965 Roger Penrose proved a theorem about the existence of singular-
ities,112 of the type corresponding to null geodesic incompleteness, without
using any particular assumption of exact symmetry.

Incomplete null geodesics exist on a manifold if:

1. Thenull convergence conditionis satisfied:Rαβkαkβ ≥ 0, for every null
vectorkα.

2. In the manifold there exists a noncompact Cauchy surface, that is, a
noncompact spacelike hypersurface such that every causal path without
endpoint intersects it once and only once (see chap. 5).

3. In the manifold there exists aclosed trapped surface.A closed trapped
surface is a closed (compact, without boundary) spacelike two-surface
such that both the ingoing and the outgoing light rays moving on the null
geodesics orthogonal to the surface converge toward each other.

Such a closed trapped surface is due to a very strong gravitational field
that attracts back and causes the convergence even of the outgoing light rays.
An example of closed trapped surface is a two-dimensional spherical surface
inside the Schwarzschild horizon. Even the outgoing photons emitted from this
surface are attracted back and converge due to the very strong gravitational
field. Since not even the outgoing orthogonal light rays can escape from the
closed trapped surface, all the matter, with velocity less thanc, is also trapped
and cannot escape from this surface. Closed trapped surfaces occur if a star
collapses below its Schwarzschild radius. As we have previously observed, this
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should happen if a cold star, white dwarf, or neutron star, or white dwarf or
neutron star core of a larger star, after the end of the nuclear reactions that kept
the star in equilibrium, has a mass above a critical value of a few solar masses (in
general relativity, for a neutron star, depending from the equation of state used,
at most∼ 3 M�). Therefore, any such star or star core should collapse within
the horizon and generate closed trapped surfaces and singularities, according
to various singularity theorems112–115and in particular according to the 1965
Penrose theorem112 and to the 1970 Hawking-Penrose theorem.115

Singularities of the type of incomplete timelike and null geodesics occur in
a manifold, if:

1. Rαβuαuβ ≥ 0 for every nonspacelike vectoruα.
2. Every nonspacelike geodesic has at least a point where:

u[αRβ]γ δ[µuν]u
γ uδ 6H 0,

whereuα is the tangent vector to the geodesics (the manifold is not too
highly symmetric): this is the so-calledgeneric condition.

3. There are no closed timelike curves; this causality condition is called
chronology condition (see the 1949 G̈odel model universe, discussed in
§ 4.6, as an example of solution violating the chronology condition).

4. There exists a closed trapped surface (or some equivalent mathematical
condition is satisfied; see Hawking and Ellis).19

We note that the null convergence condition (1) of the Penrose theorem
is a consequence of theweak energy condition, Tαβuαuβ ≥ 0, for every
timelike vectoruα, plus the Einstein field equation (2.3.14) (even including a
cosmological term),Rαβ − 1

2 Rgαβ +3gαβ H χTαβ . Thetimelike convergence
condition, Rαβuαuβ ≥ 0, for every timelike vectoruα, is a consequence of the
Einstein field equation plus the conditionTαβuαuβ ≥ uαuα( 1

2 T − 1
8π

3), for
every timelike vectoruα; for 3 H 0 this is called thestrong energy condition
for the energy-momentum tensor.

We conclude this brief introduction to spacetime singularities by observing
that, probably, the problem of the occurrence of the singularities in classical
geometrodynamics might finally be understood95 only when a consistent and
complete quantum theory of gravity116,145is available. Question: Does a proper
quantum theory of gravity rule out the formation of such singularities?

2.10 GRAVITATIONAL WAVES

As in electromagnetism in which there are electromagnetic perturbations propa-
gating with speedc in a vacuum—electromagnetic waves—Einstein geometro-
dynamics predicts curvature perturbations propagating in the spacetime—
gravitational waves.117–121
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In this section we derive a simple, weak field, wave solution of the field
equation (2.3.14). Let us first consider a perturbation of the flat Minkowski
metricηαβ :

gαβ H ηαβ + hαβ (2.10.1)

wherehαβ is a small perturbation ofηαβ : |hαβ | � 1. We then define

hα
β ≡ ηασhσβ

hαβ ≡ ηασ ηβρhσρ

h ≡ hα
α H ησρhσρ.

(2.10.2)

Therefore, to first order in|hαβ |, we have

gαβ H ηαβ − hαβ. (2.10.3)

From the definition of Ricci tensor (§ 2.3), we then have up to first order

R
(1)
αβ H 0σ

αβ,σ − 0σ
ασ,β H 1

2

(−�hαβ + hσ
β,σα + hσ

α,σβ − h,αβ

)
(2.10.4)

where� H ηαβ ∂2

∂xα∂xβ is the d’Alambertian operator. Therefore the Einstein
field equation, in the alternative form (2.3.17), can be written

−�hαβ + hσ
β,σα + hσ

α,σβ − h,αβ H 16π
(
Tαβ − 1

2
ηαβT

)
(2.10.5)

whereT H ησρTσρ H − 1
8π

R. With an infinitesimal coordinate, or gauge,
transformation,x ′α H xα + ξα (see § 2.6), we then have

h′
αβ H hαβ − ξα,β − ξβ,α (2.10.6)

where, of course,h′
αβ is still a solution of the field equation (gauge invariance of

the field equation). Therefore, if forξα we choose a solution of the differential
equation

�ξα H hσ
α,σ − 1

2
hσ

σ,α , (2.10.7)

we have

h′σ
α,σ − 1

2
h′σ

σ,α H hσ
α,σ − 1

2
hσ

σ,α − ξα,σ
σ H 0. (2.10.8)

In this gauge,(h′σ
α − 1

2 δσ
αh′),σ H 0, sometimes called theLorentz gauge,

the field equation becomes (dropping the prime inh′
αβ)

�hαβ H −16π
(
Tαβ − 1

2
ηαβT

)
. (2.10.9)
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As in electromagnetism,44 a solution to this equation is the retarded potential:

hαβ(x, t) H 4
∫ { [

Tαβ − 1
2 ηαβT

]
(x′, t − |x − x′|)

|x − x′|
}
d3x ′. (2.10.10)

This solution represents a gravitational perturbation propagating at the speed
of light, c ≡ 1. WhenTαβ H 0, we then have, in the Lorentz gauge,

�hαβ H 0. (2.10.11)

This is the wave equation forhαβ . We recall that in electromagnetism, in the
Lorentz gauge,Aα

,α H 0, we have the sourceless wave equation forAα:�Aα H
0. Correspondingly, a simple solution of the wave equation (2.10.11) forhαβ is
a plane wave. By choosing thez-axis as the propagation axis of the plane wave,
we then have ( ∂2

∂z2
− ∂2

∂t2

)
hαβ H 0 (2.10.12)

wherehαβ H hαβ(z ± t), that is,hαβ is a function of(z ± t), wherec ≡ 1.
From expression (2.10.6), it follows that the Lorentz condition (2.10.8) and
the simple form (2.10.11) of the vacuum field equation forhαβ are invariant
for any infinitesimal transformationx ′α H xα + ξα, if ξα is a solution of
�ξα H 0. Here gravity is similar to electromagnetism where, with the gauge
transformationA′ α H Aα +φ,α, if �φ H 0, the Lorentz condition is preserved,
Aα

,α H A′ α
,α H 0, and we still have�A′ α H 0. Therefore, by performing

an infinitesimal coordinate transformation, with the four components ofξα

solutions of�ξα H 0, for a plane gravitational wave,hαβ H hαβ(z ± t), it is
possible to satisfy the four conditions:hi0 H 0 andh ≡ hσ

σ H 0; that is, the
trace ofhαβ equal to zero. Since in this gauge we havehα

β − 1
2 δα

βh H hα
β , the

Lorentz gauge condition becomes simplyhσ
α,σ H 0. Therefore, for the weak

field plane gravitational wavehαβ(z ± t), and more generally for any weak
field gravitational wave, linear superposition of plane waves, in this gauge,
from hσ

α,σ H 0, we can seth00 H 0.
Summarizing in thisgauge, calledtransverse-traceless(transverse because

the wave is orthogonal to its direction of propagation), we have

hTT
α0 H 0, i.e.,hTT

αβ has spatial components only, (2.10.13)

and

hTT ≡ hTTα
α H 0, i.e.,hTT

αβ is traceless, (2.10.14)

and

hTTk
i,k H 0, i.e.,hTT

ij is transverse. (2.10.15)

Finally, from expressions (2.10.13), (2.10.14), and (2.10.15), for the plane wave
hTT

αβ (z ± t) described by equation (2.10.12), apart from integration constants,
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in the transverse-traceless gauge we gethTT
zz H hTT

zx H hTT
zy H 0, and a solution

to�hTT
αβ H 0 is

hTT
xx H −hTT

yy H A+e−iω(t−z)

hTT
xy H hTT

yx H A×e−iω(t−z)
(2.10.16)

where as usual we take the real part of these expressions, with all the other com-
ponents ofhTT

αβ equal to zero to first order. This expression (2.10.16) describes a
plane gravitational wave as a perturbation of the spacetime geometry, traveling
with speedc. This perturbation of the spacetime geometry corresponds to the
curvature perturbationRi0j0 H −Ri0jz H Rizjz H − 1

2 hTT
ij,00 traveling with

speedc on the flat background, wherei andj are 1 or 2.
In this simple case of a weak field, plane gravitational wave, in the transverse-

traceless coordinate system (2.10.13)–(2.10.15), one can easily verify that test
particles originally at rest in the flat backgroundηαβ before the passage of the
gravitational wave will remain at restwith respect to the coordinate system
during the propagation of the gravitational wave. In fact, from the geodesic
equation (2.4.13), to first order inhTT

αβ , we have

Duα

ds
∼H duα

ds
H 0. (2.10.17)

However, theproper distancebetween the two test particles at rest inxi and
xi +dxi is given bydl2 H gikdxidxk. Therefore, sincegik H ηik +hik changes
with time, the proper distance between the test particles willchangewith time
during the passage of the gravitational wave. For a plane wave propagating
along thez-axis in the transverse-traceless gauge, the proper distance between
particles in thexy-plane is given by

dl H
[(

1 + hTT
xx

)
dx2 +

(
1 − hTT

xx

)
dy2 + 2hTT

xy dxdy

] 1
2

. (2.10.18)

For the particlesA, B, andC of figure 2.11, on a circumference with center at
xα H 0, with coordinates

xi
A ≡ (l, 0, 0); xi

B ≡
(

l√
2

,
l√
2

, 0

)
; and xi

C ≡ (0, l, 0) (2.10.19)

from the expression (2.10.18) fordl and from the expression (2.10.16) forhTT
xx

andhTT
xy , we immediately find the behavior of the proper distance between test

particles on a circumference due to the passage of a plane gravitational wave
perpendicularly to the circumference, behavior that is shown in figure 2.11.
Case I,A+ 6H 0 andA× H 0, and case II,A+ H 0 andA× 6H 0, describe two
waves with polarizations at 45◦ one from the other. Of course one can get the
same result by using the geodesic deviation equation (see § 3.6.1).
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FIGURE 2.11. Effect of weak plane gravitational wave, propagating along thez-axis,
on the proper distance between a ring of test particles in thexy-plane.
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We observe that in general relativity there are gravitational wave pulses that
after their passage leave test particles slightly displaced from their original
position for a very long time compared to the duration of the pulse (the pulse
is characterized by a nonzero curvature tensor); thus, after the propagation of
such gravitational-wave pulse, the position of the test particles may represent a
record of the passage of the gravitational wave. This phenomenon is sometimes
calledposition-coded memoryand may be a linear effect122–125or an effect due
to nonlinear terms126 in the Einstein field equation. Gravitational-wave pulses
with avelocity-coded memoryhave been also inferred in general relativity.127

By applying to a plane gravitational wave the definition (2.7.18) for the
pseudotensor of the gravitational field,120 in the TT gauge (2.10.13)–(2.10.15),
after some calculations one gets:11

tGW
αβ H 1

32π

〈
hTT

ij,αhTTij
,β

〉
(2.10.20)

where〈 〉 means average over a region of several wavelengths. In particular,
applying this expression fortGW

αβ to the case of the plane gravitational wave
(2.10.16), traveling along thez-axis withhxx H −hyy H A+ cosω(t − z) and
hxy H hyx H A× cosω(t − z), we get

tGW
zz H tGW

t t H −tGW
tz H 1

32π
ω2
(
A2

+ + A2
×
)

, (2.10.21)

that is, theenergy-momentum pseudotensor for a plane gravitational waveprop-
agating along thez-axis, averaged over several wavelengths. From section 2.7
we find that the expression (2.10.21) represents the flux of energy carried by a
plane gravitational wave propagating along thez-axis.

Finally, we give the so-calledquadrupole formula for the outgoing flux of
gravitational wave energy emitted by a system characterized by a weak gravita-
tional field and slow motion, that is, such that its size,R, is small with respect to
the reduced wavelengthλ2π

≡ −λ of the gravitational waves emitted:R � λ
2π

.
The transverse and traceless linearized metric perturbation for gravitational
waves in the wave zone,r � −λ, and where the background curvature can be
ignored,118,137has been calculated to be:5,11,51,118,136,137

hTT
ij H 2

r

∂2

∂t2

[
−ITT

ij (t − r)
]

+ O

(
1

r2

∂

∂t
−ITT

ij

)
(2.10.22)

where t − r is the retarded time,r the distance to the source center,t the
proper time of a clock at rest with respect to the source, and−ITT

ij the transverse
(with respect to the radial direction of propagation of the gravitational waves)
and traceless part of the mass quadrupole moment of the source. For a source
characterized by a weak gravitational field and small stresses, the symmetric
reduced quadrupole moment(traceless), of the source mass densityρ, is given
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by11:

−Iij H
∫

ρ(xixj − 1

3
δij r

2)d3x. (2.10.23)

We can expand in powers of1
r

the Newtonian gravitational potentialU ,
generated by this source, as a function of the reduced quadrupole moment−Iij .
By a suitable choice of origin at the source, we have

U H M

r
+ 3

2

−Iijn
inj

r3
+ O

(
1

r4

)
(2.10.24)

whereni ≡ xi

r
. By inserting the transverse and traceless metric perturbation

(2.10.22) in the expression (2.10.20) for the flux of energy carried by a gravita-
tional wave and by integrating over a sphere of radiusr, we then get the rate of
gravitational-wave energy from the source crossing, in the wave zone, a sphere
of radiusr at timet :

dE

dt
H
∫

t0r r2d� H −
∫

t00r2d�

H 1

5

〈∑
ij

[
∂3

∂t3
−Iij (t − r)

]2〉
≡ 1

5

〈...
−I ij

...

−I ij
〉

(2.10.25)

where d� H sinθdθdφ and 〈 〉 means an average over several
wavelengths.

From this formula for the emission of gravitational-wave energy due to the
time variations of the quadrupole moment, one can calculate the time decrease
of the orbital period of some binary star systems. This general relativistic theo-
retical calculation agrees with the observed time decrease of the orbital period
of thebinary pulsar PSR 1913+1916(see § 3.5.1).

Geons

In the 1950s one of us71 found an interesting way to treat the concept of body in
general relativity. An object can, in principle, be constructed out of gravitational
radiation or electromagnetic radiation, or a mixture of the two, and may hold
itself together by its own gravitational attraction. The gravitational acceleration
needed to hold the radiation in a circular orbit of radiusr is of the order of
c2/r. The acceleration available from the gravitational pull of a concentration
of radiant energy of massM is of the orderGM/r2. The two accelerations
agree in order of magnitude when the radiusr is of the order

r ∼ GM/c2 H (0.742× 10−28 cm/g)M. (2.10.26)
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A collection of radiation held together in this way is called ageon(gravitational
electromagnetic entity) and is a purely classical object. It has nothing whatso-
ever directly to do with the world of elementary particles. Its structure can be
treated entirely within the framework of classical geometrodynamics, provided
that a size is adopted for it sufficiently great that quantum effects do not come
into play. Studied from a distance, such an object presents the same kind of
gravitational attraction as any other mass. Moreover, it moves through space as
a unit, and undergoes deflection by slowly varying fields of force just as does
any other mass. Yet nowhere inside the geon is there a place where one can put a
finger and say “here is mass” in the conventional sense of mass. In particular, for
a geon made of pure gravitational radiation—gravitational geon—there is no
local measure of energy, yet there is global energy. The gravitational geon owes
its existence to a localized—but everywhere regular—curvature of spacetime,
and to nothing more.

In brief, a geon is a collection of electromagnetic or gravitational-wave en-
ergy, or a mixture of the two, held together by its own gravitational attraction,
that describesmass without mass.
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