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Einstein Geometrodynamics

If Einstein gave us a geometric account of motion and gravity, if according
to his 1915 and still-standard geometrodynamics spacetime tells mass how
to move and mass tells spacetime how to curve, then his message requires
mathematical tools to describe position and motion, curvature and the action
of mass on curvature. The tools (see the mathematical appendix) will open
the doorways to the basic ideas—equivalence principle, geometric structure,
field equation, equation of motion, equation of geodesic deviation—and these
ideas will open the doorways to more mathematical tools—exact solutions
of Einstein’s geometrodynamics field equation, equations of conservation of
source, and the principle that the boundary of a boundary is zero. The final
topics in this chapter—black holes, singularities, and gravitational waves—
round out the interplay of mathematics and physics that is such a central feature
of Einstein’s geometrodynamics.

2.1 THE EQUIVALENCE PRINCIPLE

Atthe foundations of Einstein'°geometrodynamid$-2*and of its geometrical
structure is one of the best-tested principles in the whole field of physics (see
chap. 3): the equivalence principle.

Among the various formulations of tieguivalence principlet®?!(see § 3.2),
we give here three most important versions:weak form, also known as the
uniqueness of free fatlr theGalilei equivalence principlat the base of most
known viable theories of gravity; theedium strong form, at the base of
metric theories of gravity; and theery strong form, a cornerstone of Einstein
geometrodynamics.

Galilei in hisDialogues Concerning Two New Sciertesrites: “The vari-
ation of speed in air between balls of gold, lead, copper, porphyry, and other
heavy materials is so slight thatin a fall of 100 cubits a ball of gold would surely
not outstrip one of copper by as much as four fingers. Having observed this, |
came to the conclusion that in a medium totally void of resistance all bodies
would fall with the same speed.”

We therefore formulate theeak equivalence principle or Galilei equiva-
lence principlé?23in the following way:the motion of any freely falling test
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particle is independent of its composition and structuxdest particle is de-
fined to be electrically neutral, to have negligible gravitational binding energy
compared to its rest mass, to have negligible angular momentum, and to be
small enough that inhomogeneities of the gravitational field within its volume
have negligible effect on its motion.

The weak equivalence principle—that all test particles fall with the same
acceleration—is based on the princffl¢hat the ratio of the inertial mass to
the gravitational—passive—mass is the same for all bodies (see chap. 3). The
principle can be reformulated by saying that in every local, nonrotating, freely
falling frame the line followed by a freely falling test particle is a straight line,
in agreement with special relativity.

Einstein generalizéd the weak equivalence principle to all the laws of spe-
cial relativity. He hypothesized thatin no local freely falling frame can we detect
the existence of a gravitational field, either from the motion of test particles, as
in the weak equivalence principle, or from any other special relativistic physical
phenomenon. We therefore state thedium strong form of the equivalence
principle, also called th&instein equivalence principlén the following way:
for every pointlike event of spacetime, there exists a sufficiently small neighbor-
hood such that in every local, freely falling frame in that neighborhood, all the
nongravitational laws of physics obey the laws of special relati¥isyalready
remarked, the medium strong form of the equivalence principle is satisfied by
Einstein geometrodynamics and by the so-called metric theories of gravity, for
example, Jordan-Brans-Dicke theory, etc. (see chap. 3).

If we replacé?® all the nongravitational laws of physiagith all the laws of
physicswe get thevery strong equivalence principle which is at the base of
Einstein geometrodynamics.

The medium strong and the very strong form of the equivalence principle
differ: the former applies to all phenomena except gravitation itself whereas
the latter applies to all phenomena of nature. This means that according to the
medium strong form, the existence of a gravitational field might be detected in
a freely falling frame by the influence of the gravitational field on local grav-
itational phenomena. For example, the gravitational binding energy of a body
might be imagined to contribute differently to the inertial mass and to the passive
gravitational mass, and therefore we might have, for different objects, differ-
ent ratios of inertial mass to gravitational mass, as in the Jordan-Brans-Dicke
theory. This phenomenon is called the Nordtvedt effect(see chap. 3). If
the very strong equivalence principle were violated, then Earth and Moon, with
different gravitational binding energies, would have different ratios of inertial
mass to passive gravitational mass and therefore would have different acceler-
ations toward the Sun; this would lead to some polarization of the Moon orbit
around Earth. However, the Lunar Laser Ranéfirexperiment has put strong
limits on the existence of any such violation of the very strong equivalence
principle.
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The equivalence principle, in the medium strong form, is at the foundations
of Einstein geometrodynamics and of the other metric theories of gravity, with
a “locally Minkowskian” spacetime. Nevertheless, it has been the subject of
many discussions and also criticisms over the y&ar32%:30

First, the equivalence between a gravitational field and an accelerated frame
in the absence of gravity, and the equivalence between a flat region of spacetime
and afreelyfalling frame in a gravity field, hasto be considered valid only locally
and not globally® However, the content of the strong equivalence principle has
been criticized even “locally.” It has been argued that if one puts a spherical
drop of liquid in a gravity field, after some time one would observe a tidal
deformation from sphericity of the drop. Of course, this deformation does not
arise in a flat region of spacetime. Furthermore, let us consider a freely falling
frame in a small neighborhood of a point in a gravity field, such as the cabin of
a spacecraft freely falling in the field of Earth. Inside the cabin, according to the
equivalence principle, we are in a local inertial frame, without any observable
effect of gravity. However, let us take a gradiometer, that is, an instrument which
measures the gradient of the gravity field between two nearby points with great
accuracy (present room temperature gradiometers may reach a sensitivity of
about 101! (cm/g)/cm per HzY/? = 1072 Edtvos per Hz/? between two
points separated by a few tens of cm; future superconducting gradiometers may
reach about 1@ Eodtvos Hz /2 at certain frequencies, see 8§ 3.2 and 6.9).
No matter if we are freely falling or not, the gradiometer will eventually detect
the gravity field and thus will allow us to distinguish between the freely falling
cabin of a spacecraft in the gravity field of a central mass and the cabin of a
spacecraft away from any mass, in a region of spacetime essentially flat. Then,
may we still consider the strong equivalence principle to be valid?

From a mathematical point of view, at any poihbf a pseudo-Riemannian,
Lorentzian, manifold (see § 2.2 and mathematical appendix), one can find co-
ordinate systems such that,Ritthe metric tensog.s (8 2.2) is the Minkowski
metric n,s = diag(—1, +1, +1, +1) and the first derivatives of,g, with
respect to the chosen coordinates, are zero. However, one cannot in general
eliminate certain combinations of second derivativeg.gfwhich form a ten-
sor called the Riemann curvature tensBf, s (see § 2.2 and mathematical
appendix). The Riemann curvature tensor represents, at each point, the intrinsic
curvature of the manifold, and, since it is a tensor, one cannot transform it to
zero in one coordinate system if it is nonzero in some other coordinate system.
For example, at any poin® on the surface of a sphere one can find coordi-
nate systems such that,”tthe metric isg11(P) = g22(P) = 1. However, the
Gaussian curvature of the sphere (see mathematical appendix), thaRigthe
component of the Riemann tensor, is, at each point, an intrinsic (independent
of coordinates) property of the surface and therefore cannot be eliminated with
a coordinate transformation. The metric tensor can indeed be written using the
Riemann tensor, in a neighborhood of a spacetime event, in a freely falling,
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nonrotating, local inertial frame, to second order in the separatigh,from
the origin:

800 = —1 — Roio;8x'8x/
2 o
8ok = — 3 Roiyjox"dx (2.1.1)
1 e
8kl = O — 3 Ryirjdx'6x’.

These coordinates are calledrmi Normal Coordinates

In section 2.5 we shall see that in general relativity, and other metric
theories of gravity, there is an important equation, tedesic devia-
tion equation which connects the physical effects of gravity gradients just
described with the mathematical structure of a manifold, that is, which
connects the physical quantities measurable, for example with a gradiome-
ter, with the mathematical object representing the curvature: the Riemann
curvature tensor. We shall see via the geodesic deviation equation that the
relative, covariant, acceleration between two freely falling test particles is pro-
portional to the Riemann curvature tensor, thatis, ~ R%g,,8x", where
3x* is the “small” spacetime separation between the two test particles. On a
two-surface, this equation is known as the Jacobi equation for the second deriva-
tive of the distance between two geodesics on the surface as a function of the
Gaussian curvature.

The Riemann curvature tensor, however, cannot be eliminated with a coordi-
nate transformation. Therefore, the relative, covariant, acceleration cannot be
eliminated with a change of frame of reference. In other words, by the mea-
surement of the second rate of change of the relative distance between two test
particles, we can detect, in every frame, the gravitational field, and indeed, at
least in principle, we can measure all the components of the Riemann curvature
tensor and therefore completely determine the gravitational field. Furthermore,
the motion of one test particle in a local freely falling frame can be described by
considering the origin of the local frame to be comoving with another nearby
freely falling test particle. The motion of the test particle in the local frame,
described by the separation between the origin and the test particle, is then given
by the geodesic deviation equation of section 2.5. This equation gives also a
rigorous description of a falling drop of water and of a freely falling gradiome-
ter, simply by considering two test particles connected by a spring, that is, by
including a force term in the geodesic deviation equation (see § 3.6.1).

From these examples and arguments, one might think that the strong equiva-
lence principle does not have the contentand meaning of a fundamental principle
of nature. Therefore, one might think to restrict to interpreting the equivalence
principle simply as the equivalence between inertial nddsand gravitational
massM,. However,M; = M, is only a part of the medium (and strong)
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equivalence principle whose complete formulation is at the basis of the locally
Minkowskian spacetime structure.

In general relativity, the content and meaning of the strong equivalence prin-
ciple is thatin a sufficiently small neighborhood of any spacetime event, in a
local freely falling frame, no gravitational effects are observablere, neigh-
borhood means neighborhoodipaceandtime Therefore, one might formulate
the medium strong equivalence principle, or Einstein equivalence principle, in
the following form: for every spacetime event (then excluding singularities),
for any experimental apparatus, with some limiting accuracy, there exists a
neighborhood, in space and time, of the event, and infinitely many local freely
falling frames, such that for every nongravitational phenomenon the differ-
ence between the measurements performed (assuming that the smallness of the
spacetime neighborhood does not affect the experimental accuracy) and the
theoretical results predicted by special relativity (including the Minkowskian
character of the geometry) is less than the limiting accuracy and therefore un-
detectable in the neighborhood. In other words, in the spacetime neighborhood
considered, in a freely falling frame all the nongravitational laws of physics
agree with the laws of special relativity (including the Minkowskian character
of spacetime), apart from a small difference due to the gravitational field that
is; however, unmeasurable with the given experimental accuracy. We might
formulate the very strong equivalence principle in a similar way.

For a test particle in orbit around a mads the geodesic deviation equation
gives

8x% ~ R%0podx? ~ w38x” (212

whereuwy is the orbital frequency. Thus, one would sample large regions of the
spacetime if one waited for even one period of this “oscillator.” We must limit
the dimensions in space and time of the domain of observation to values small
compared to one period if we are to uphold the equivalence principle.

A liquid drop which has a surface tension, and which resists distortions from
sphericity, supplies an additional example of how to interpret the equivalence
principle. In order to detect a gravitational field, threeasurablequantity—
the observable—is the tidal deformatiox of the drop. If a gravity field acts
on the droplet and if we choose a small enough drop, we will not detect any
deformation because the tidal deformations from sphericity are proportional to
the sizeD of the small drop, and even for a self-gravitating drop of liquid in
some external gravitational field, the tidal deformatiérsare proportional to
its sizeD. This can be easily seen from the geodesic deviation equation with a
springlike force term (§ 3.6.1), in equilibriund: sx ~ R'gjoD ~ % D,where
M is the mass of an external body aRth ;o ~ % are the leading components
ofthe Riemann tensor generated by the external westa distanc®. Thus, in
a spacetime neighborhood, with a given experimental accuracy, the deformation
6x, is unmeasurable for sufficiently small drops.
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We overthrow yet a third attempt to challenge the equivalence principle—
this time by use of a modern gravity gradiometer—by suitably limiting the
scale or time of action of the gradiometer. Thus either one needs large dis-
tances over which to measure the gradient of the gravity field, or one needs
to wait a period of time long enough to increase, up to a detectable value,
the amplitude of the oscillations measured by the gradiometer. Similarly, with
gravitational-wave detectors (resonant detectors, laser interferometers, etc.; see
§ 3.6), measuring the time variations of the gravity field between two points, one
may be able to detect very small changes of the gravity field (present relative
sensitivity to a metric perturbation or fractional change in physical dimensions
~ 10718 to 10719, “near” future sensitivity~ 10~%! to 107%?; see § 3.6) dur-
ing a small interval of time (for example a burst of gravitational radiation of
duration~ 102 s). However, all these detectors basically obey the geodesic
deviation equation, with or without a force term, and in fact their sensitivity
to a metric perturbation decreases with their dimensions or time of action (see
§ 3.6).

In a final attempt to challenge the equivalence principle one may try to mea-
sure thelocal deviations from geodesic motion of a spinning particle, given
by the Papapetrou equation described in section 6.10. In agreement with the
geodesic deviation equation, these deviations are of dype~ RiguJ™,
whereJ*" is the spin tensor of the particle anl = 1, defined in section 6.10.
However, general relativity is a classical—nonquantized—theory. Therefore,
in the formulation of the strong equivalence principle one has to consider only
classicalangular momentum of finite size particles. However, the classical an-
gular momentum of a patrticle goes to zero as its size goes to zero, and we thus
have a case analogous to the previous ones: sufficiently limited in space and
time, no observations of motion will reveal any violation of the equivalence
principle.

Of course, the local “eliminability” of gravitational effects is valid for grav-
ity only. Two particles with arbitrary electric charge to mass ratifis,# 2,
for exampleq; = 0 and ZTZZ > 1 (in geometrized units), placed in an ex-
ternal electric field, will undergo a relative acceleration that can be very large
independently from their separation going to zero.

In summary, since the gravitational field is represented by the Riemann cur-
vature tensor it cannot be transformed to zero in some frame ifitis different from
zero in some other frame; however, the measurable effects of the gravitational
field, that is, of the spacetime curvature, between two nearby events, go to zero
as the separation in space and time between the two events, or equivalently as
the separation between the space and time origin of a freely falling frame and
another local event. Thuany effect of the gravitational field is unmeasurable,
in a sufficiently small spacetime neighborhood in a local freely falling frame of
reference
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2.2 THE GEOMETRICAL STRUCTURE

In 1827 Carl Friedrich Gauss (1777-1855) published what is thought to be
the single most important work in the history of differential geomeigqui-
sitiones generales circa superficies cunf@&eneral Investigations of Curved
Surfaces§! In this work he defines the curvature of two-dimensional surfaces,
the Gaussian curvature, from the intrinsic properties of a surface. He concludes
that all the properties that can be studied within a surface, without reference to
the enveloping space, are independent from deformations, without stretching,
of the surface-theorema egregium-and constitute the intrinsic geometry of

the surface. The distance between two points, measured along the shortest line
between the points within the surface, is unchanged for deformations, without
stretching, of the surface.

The study of non-Euclidean geometries really began with the ideas and works
of Gauss, Nikolai Ivanovich Loli@vskij (1792-1856j2 and Anos Bolyai
(1802-1860). In non-Euclidean geometries, Euclid’'s 5th postulate on straight
lines is not satified (that through any point not lying on a given straight line,
there is one, and only one, straight line parallel to the given line; see § 1.1).

In 1854 Georg Friedrich Bernhard Riemann (1826—-1866) delivered his qual-
ifying doctoral lecture (published in 1868)tber die Hypothesen, welche der
Geometrie zu Grunde liegé®n the Hypotheses Which Lie at the Foundations
of Geometry)*® This work is the other cornerstone of differential geometry;
it extends the ideas of Gauss from two-dimensional surfaces to higher dimen-
sions, introducing the notions of what we call today Riemannian manifolds,
Riemannian metrics, and the Riemannian curvature of manifolds, a curvature
that reduces to the Gaussian curvature for ordinary two-surfaces. He also dis-
cusses the possibilities of a curvature of the universe and suggests that space
geometry may be related to physical forces (see § 1.1).

The absolute differential calculus is also known as tensor calculus or
Ricci calculus. Its development was mainly due to Gregorio Ricci Curbastro
(1853-1925) who elaborated the theory during the ten years 188724896.
Riemann’s ideas and a formula (1869) of Christffeere at the basis of
the tensor calculus. In 1901 Ricci and his student Tullio Levi-Civita (1873—
1941) published the fundamental memMéthods de calcul di&rential absolu
et leurs applicationgMethods of Absolute Differential Calculus and their
Applications)?® a detailed description of the tensor calculus; that is, the gen-
eralization, on a Riemannian manifold, of the ordinary differential calculus. At
the center of attention are geometrical objects whose existence is independent
of any particular coordinate system.

From the medium strong equivalence principle, it follows that spacetime
must be at an event, in suitable coordinates, Minkowskian; furthermore, it may
be possible to show some theoretical evidence for the existence of a curvature
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of the spacetimé’ The Lorentzian, pseudo-Riemanniari®-43 character of
spacetime is the basic ingredient of general relativity and other metric theories
of gravity; we therefore assume tepacetimeto be al orentzian manifold:

that is, a four-dimensional pseudo-Riemannian manifold, with signatRi@r

—2, depending on convention); that is, a smooth maniféfdvith a continuous
two-index tensor fielg, the metric tensor, such thafg is covariant (see the
mathematical appendix), symmetric, and nondegenerate or, simply, at each point
of M, in components:

8pa = 8ap

(2.2.1)
det(gog) # O; and signatureg,g) = +2 (or —2).

The metricg,s(x) determines the spacetime squared “distanb& between
two nearby events with coordinate$ andx® + dx*:ds? = gupdx®dx®.
On a pseudo-Riemannian manifold (the spacetime), for a given vegtor
P, the squared norrgaﬁv%vﬁ can be positive, negative, or null, the vector
is then respectively called spacelike, timelike, or null. The metric tensor with
both indices up, that issontravariant g*#, is obtained from theovariant
componentsgqg, by g% g5, = 8%, wheres®, is the Kronecker tensor, 0 for
a # y and 1fora = y.

Let us briefly recall the definition of a few basic quantities of tensor calculus
on a Riemannian manifol##*3for a more extensive description see the math-
ematical appendix. We shall mainly use quantities written in components and
referred to a coordinate basis on/adimensional Riemannian manifold.

A p-covariant tensor T,,...,, or T, is a mathematical object made of
quantities that under a coordmate transformatvd‘ﬁ = x*(x%), change ac-

cording to the transformation law, ., = a"‘ ”Tﬂl By wherea =
)
f,’jc‘ﬁll > 3",‘;7) denotes the partial derlvatlves of the old coordlnat%ewnh

respect to the new coordinate : 85, =

— oxe
A g-contravariant tensor 7%% is a mathematical object madeisfquan-

al o

tities that transform according to the rufgs< = 9y’ " Si TP where

dx'el

a;‘j;; = &0 a " . The covariant and contravariant components of a
tensor are obtained from each other by lowering and raising the indices with
8op andg®’.

The covariant derivative V, of a tensorT“"4.., written here with a
semicolon % y” is a tensorial generalization to curved manifolds of the stan-
dard partial derivative of Euclidean geometry. Applied to raovariant,
m-contravariant tensof “ ... it forms a(n + 1)-covariant,m-contravariant
tensorr*4....,, defined as

T sy = Ty + T8 T7 5 = TG T .. (2.2.2)
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where thel'; are theconnection coefficientsThey can be constructed, on a
Riemannian manifold, from the first derivatives of the metric tensor:

o o 1 oo o
Fyﬁ = Fﬁy = Eg (gaﬂ,y + 8oy.B — gﬂy,o) = { ,3)/ } . (223)

On a Riemannian manifold, in @oordinate basis(holonomic basig, the
connection coefficients have the above fo{ as a function of the metric
and of its first derivatives, and are usually cared Christoffel symbols (see § 2.8
and mathematical appendix). TBaristoffel symbolsI'y, are not tensors, but

i _ "ok —
traazn?form according to the ruléf), = o7 959, 'y, + a“ ﬁ,y, Whereaﬂ, =
X
axPaxr * . . . . .
TheRiemann curvature tensorR® g, s is the generalization to-dimensional

manifolds of the Gaussian curvatufe of a two-dimensional surface; it is
defined as the commutator of the covariant derivatives of a vectoAfield

A%y — A%yp = R%ypA°. (2.2.4)
In terms of the Christoffel symbols (2.2.3) the curvature is given by
Ra/gyg = ng,y - ng,s + ngrgs - Fg5F§y~ (225)

The various symmetry properties of the Riemann curvature tensor are given in
the mathematical appendix.

2.3 THE FIELD EQUATION

In electromagnetisfthe four components of the electromagnetic vector poten-
tial A“ are connected with the density of chapgend with the three components
of the density of currentj’ = pv’, by the Maxwell equation

F 5 = (APY — A%P) 4 = 4rj® = Ampu® (2.3.1)

in flat spacetime. Her&*? = Af* — A%f s the electromagnetic field tensor,

Jj¢ = pu” is the charge current density four-vector, asfd= % is the four-

velocity of the charge distribution. The commag” means partial derivative
9A%

with respect toc? : 24 = A% 4

We search now for a field equation that will connect the gravitational tensor
potentialg.s with the density of mass-energy and its currents. Let us follow
David Hilbert* (1915) to derive this Einstein field equatfoinom a variational
principle, or principle of least action. We are motivated by Richard Feynman'’s
later insight that classical action for a system reveals and follows the phase
of the quantum mechanical wave function of that system (see below, refs. 128

and 129). We write the total action over an arbitrary spacetime re@ias

1= / (Lo + Ly)d*x (2.3.2)
Q
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whered*x = dx'-dx?-dx®-dx®andL¢; andL,, are the Lagrangian densities
for the geometry and for matter and fields, respectivBly,= Ls./—g and

Ly = Ly+/—g,andg isthe determinant of the metrig, : ¢ = det(gqp). The

field variables describing the geometry, that is, the gravitational field, are the ten
components of the metric tensgyg. In order to have a tensorial field equation
for g.5, we search for &£ + L) that is a scalar density, that is, we search
for an action/ that is a scalar quantity. By analogy with electromagnetism we
then search for a field equation of the second order in the field varigfles
which, to be consistent with the observations, in the weak field and slow motion
limit, must reduce to the classical Poisson equation. Thereforkatirangian
density for the geometryshould contain the field variablggs and their first
derivativesg,g ,, only. In agreement with these requirements we assume

_ 1 =g R. (2.3.3)
2x

Here % is a constant to be determined by requiring that we recover classical

gravity theory in the weak field and slow motion limR, = R%, = g*’R.s
is theRicci or curvature scalar, and Rz is theRicci tensor constructed by
contraction from the Riemann curvature tensyz = R°,,5. The curvature
scalarR has a part linear in the second derivatives of the metric; however, it
turns out that the variation of this part does not contribute to the field equation
(see below).

Before evaluating the variation of the actiépwe need to introduce a few
identities and theorems, valid on a Riemannian manifold, that we shall prove
at the end of this section.

Lg

1. The covariantderivative (defined by the Riemannian connection, see § 2.8)
of the metric tensog®? is zero (Ricci theorem):

g, =0. (2.3.4)
2. The variationgg, with respect tgg,g, of the determinant of the metric
is given by
88 = g8 - 8gup = —8 - gup - 5. (2.3.5)
3. For a vector field*, we have the useful formula
1
Vi = (V=81") , ——, (2.3.6)
( ).a \/Tg
and similarly for a tensor field*?
«, «, 1 o o,
T 5 = (V—gT ﬂ)’ﬁﬁ +TE,TP. (23.7)

4. Eventhoughthe Christoffel symbdl§ are nottensors and transform ac-
cording to the rule that follows expression (2.213'3; = ag’ag, o, Iy, +
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ag’a;;,y,, the difference between two sets of Christoffel symbols on the
manifold M, 8rg, (x) = I'gi(x) — Ty, (%), is a tensor. This immedi-
ately follows from the transformation rule for th‘% (x). The two sets
of Christoffel symbols onv, F;‘;(x) anngy (x), may, for example, be
related to two tensor fieldg;ﬂ (x) andgeg(x), on M.

5. The variatiors R, of the Ricci tensorR, is given by

SRup = (8T54)., — (OT0,) - (2.3.8)

6. The generalization of thé&tokes divergence theoremto a four-
dimensionalmanifold M, is

V7 oo/ —gd*x = f (vv/=g) d% = f V—gv'd®%,. (2.3.9)
Q Q ’ Q

Here v° is a vector field,2 is a four-dimensional spacetime region,
d*x = dx°dx' dx? dx® its four-dimensional integration elemeag is

the three-dimensional boundary (with the induced orientation; see § 2.8
and mathematical appendix) of the four-dimensional regioandd =,

the three-dimensional integration element¢f (see § 2.8).

We now require the actiohto be stationary for arbitrary variatiodg*? of
the field variableg*?, with certain derivatives of*? fixed on the boundary of
Q: 81 = 0. By using expression (2.3.5) we then find that

1 1 1
81 = —— | (Rup — > 8upR)v/—g8gPd*x + — / g% /=g SRypd*x

5L
+ f Msg*d*x = 0.
Q

dgeb
(2.3.10
The second term of this equation can be written
1
= | ¢¥J/—¢g SRaﬂdAx
2x Jo
1
— o [ etvmalrg), - 6r2)
“ (2.3.11)

1 o, o o o 4
= 5 [ vEsleers,) - (e ar,) Jats

1
T2 /Q [(V=g&*8T¢s) — (V=g 876T%,)] ,d*x.
V\{hereSng = %g"‘"[(Sgﬂ(,);y'—i— (8g7y);ﬁ — (88,p):0]- Thisis an integral of a .
divergence and by the four-dimensional Gauss theorem can be transformed into
an integral over the bounda#y2 of 2, where it vanishes if certain derivatives
of g, are fixed on the boundag2 of 2. Then, this term gives no contribution
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to the field equation. Indeed, the integral over the bound&ry= > S; of Q
1

can be rewritten (see York 1986)as
3y / VapS N d3x (2.3.12)
7 2x Js,

wheree; = n; - n; = 41 andn; is the unit vector field normal to the hyper-
surfaceS;, vup = gup — €1nanip is the three-metric on each hypersurfage
of the boundary <2 of ©, and

1
N = /ly|(Ky* — K*) = —égy““yﬁvén(g_l Yiv) (2.3.13)

wherey is the three-dimensional determinantj@f, Kog = — 3 £avap iS
the so-called second fundamental form or “extrinsic curvature” of Sa¢bee

§ 5.2.2 and mathematical appendik),= y*# Kz, and£, is the Lie derivative
(see § 4.2 and mathematical appendix) along the naertmthe boundary 2

of Q. Therefore, if the quantitie’*# are fixed on the boundas2, for an
arbitrary variatiorsg®?, from the first and last integrals of (2.3.10), we have the
field equation

Gaﬁ = XTaﬁ (2.3.14)

whereGyp = Rop — %Rgaﬂ is the Einstein tensor, and—following the last
integral of 2.3.10—we have defined tArergy-momentum tensorof matter
and fieldsT,z (see below) as:

8Ly
Top = —2—— + Lygus- 231
8 58“’3 + Ly &ap ( 5

Let us now determine the constgnby comparison with the classical, weak
field, Poisson equatiomU = —4mp, whereU is the standard Newtonian
gravitational potential. We first observe that in any metric theory of gravity (see
chap. 3), without any assumption on the field equations, in the weak field and
slow motion limit (see § 3.7), the metrgccan be written at the lowest order in
U,goo = —142U, gix = 8ix, andg;o = 0 and the energy-momentum tensor,
at the lowest ordeflpy = —7 = p. From the definition of Ricci tens,g, it
then follows thatRgg = —AU. From the field equation (2.3.14) we also have

1
Ry — ER(SQ“ = —R = xT% = xT (2.3.16)

whereT = T, is the trace ofT*f. Therefore, the field equation can be
rewritten in the alternative form

Rap = X(Taﬂ - %Tgaﬁ). (2.3.17)
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From the 00 component of this equation, in the weak field and slow motion
limit, we have

N 1
Roo = x (Too + > T), (2.3.18

and therefore
AU = — g p. (2.3.19)

Requiring the agreement of the very weak field limit of general relativity with
the classical Newtonian theory and comparing this equation (2.3.19) with the
classical Poisson equation, we finally get= 8.

An alternative method of variation—tHealatini method*’—is to take as
independent field variables not only the ten componetitsout also the forty
components of the affine connectibf,, assuming, a priori, no dependence of
thel'; from theg®® and their derivatives. Taking the variation with respect to
thel'y, and theg®?, and assuming., to be independent from any derivative
of g*¥, we thus have

1 1
= [ (&, ——O,R)(S o /g d*
2x Q( P pBapll)O8 N TEAE

1
+ f 8 (57850 — 870, 5 )/ =g d'x (2.3.20)
2X Q 5 5

SL 1
+/ ( M fgaﬂLM>8g°’ﬂ\/?gd4x =0.
Q

8gf 2
From the second integral, after some calculatidrane then gets
8opiy = 8upy — 8aol'fy — 8oply, =0, (2.3.21)

and therefore, by calculating from expression (2.3.2%):(gs0,y + &oy.p —
8gy.0)» ON a Riemannian manifold, one gets the expression of the affine
connection as a function of thgg, that is, the Christoffel symbol{sﬁ“y }

1 o
T, = égw(gﬁa,y + 8oy.p — 8py.o) = { By } : (2322
From the first and third integral in expression (2.3.20), we finally have the field
equation (2.3.14).

Let us give the expression of the energy-momentum tensor in two cases: an
electromagnetic field and a matter fluid.

In special relativity the energy-momentum tensor for an electromagnetic
field*is 7 = L (F*,FF* — 1n*PF,sF"?), whereF*/ is the electromag-
netic field tensor. Moreover treergy-momentum tensét32of a matter fluid
can be writterf®? = (¢ + p)u®u® + (q“u” +u*q?) + pn*# + n*#, wherez is
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thetotal energy densitgf the fluid,u” its four-velocity ¢* theenergy fluxela-
tive tou® (heat flow, p theisotropic pressureandz*# the tensor representing
viscous stresses the fluid. Therefore, by replacing,s with g,z (in agreement
with the equivalence principle), we define in Einstein geometrodynamics:

1 1
T = ~ (F*,FF° — ~g“PF,,F"° 2.3.23

A ( 4g 12 ) ( )
for an electromagnetic fieJchnd

T = (¢ + p)uu? + (¢“u? + u“q?) + pg® + n** (2.3.29

for a matter fluid wherer*# may be written! 7%¢ = —2no* — ¢ @ (g% +
u“uf), wheren is the coefficient of shear viscosity the coefficient of bulk
viscosity ando*? and® are theshear tensoland theexpansion scalaof the
fluid (see § 4.5).

In the case of a perfect fluid, defined by; = g, = 0, we then have

T% = (¢ + p)u®u® + pg®. (2.3.25)

The general relativity expressions (2.3.23) and (2.3.24), for the energy-
momentum tensor of an electromagnetic field and for a matter fluid, agree
with the previous definition (2.3.15) of energy-momentum tensor, with a proper

choice of the matter and fields Lagrangian density.
Let us finally prove the identities used in this section.

1. From the definition of covariant derivative and Christoffel symbols, we

have
(09 o, 1 o v
8 ﬁ;y =8 ﬁ,y + ég Mgﬂ (&yvu + vy — gy.y,v)
1 up Hav
+ Eg 8 (g,uv,y + gvy,u - gyu,v) (2326)

= gaﬂ,y + gap.gﬁvg‘m.y
— gaﬂ’y + gaﬁ’y . gﬂv,yga”'gvu _ gau,.ygﬁvg‘m -0

2. By using the symbai5”>, defined to be equal te1 if By A is an even
permutation ofuvpo, equal to—1 if 8y A is an odd permutation of

uvpo, and 0 otherwise (see § 2.8), we can write the determinant of a

4 x 4 tensorgeg, in the form
g = detgus = 85755840 851 812 813 (2.3.27)
By taking the variation of we then have

88 = dgap - (87 - 9) (2.3.28)
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and therefore

1
5—g = 5\/?5; 2P 88ap. (2.3.29
Moreover, froms(g*# g.5) = 0, we also have
8gup - 87 = —88°" - gup. (2.3.30)
3. From the definition (2.3.22) of Christoffel symbols, we have
1
Fow = 5 8mas™, (2.3.30)

and therefore, from the rule for differentiation of a determingnt, =
88" 8uv.ar We get

(Iny=g) , =TZ, (2.3.32
and finally

Ve = 1% +07Te, = (V=g %), (2.3.33)

i

4. From the rule for transformation of the connection coefficients, it im-
mediately follows that the difference between two sets of connection
coefficients is a tensor.

5. Atany event of the spacetime Lorentzian manifold, we can find infinitely

many local inertial frames of reference Whé)c@ = Nap ‘5";'&,37), = 0and
(i)
thereforel* = 0. From the definition of Ricci tensor (contraction of the

Y

Riemann tensoR“ g, 5 of expression (2.2.5) on the two indicesandy)
we then have at the event in any such local inertial frame

(@) @)

SRap = (07%4) , — (6T2,) . (2.3.34)
or equivalently
@ i i
SRap = (57%,),, — (67%,).,. (2335
and since this is a tensorial equation, it is valid in any coordinate system
8Rap = (8T35),, = (5T00) - (2336)

2.4 EQUATIONS OF MOTION

According to thefield equationG*# = x T*#, mass-energ¥*? “tells” geom-
etry g how to “curve”; furthermore, from the field equation itself, geometry
“tells” mass-energy how to move. The key to the prooBianchi's second
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identity 4849 (for the “boundary of a boundary interpretation” of which see
§2.8):

Raﬂw:u + Raﬂm:y + Raﬁuy:v =0

Raising the indiceg andv and summing ovex andy, and over8 andu, we
get thecontracted Bianchi's identity:

2

By taking the covariant divergence of both sides of the field equation (2.3.14),
we get

Gy = (R“ﬁ _ }Rg”ﬁ).ﬂ —0 (2.4.1)

T 5 =0. (2.4.2)

This statement summarizes the dynamical equations for matter and fields
described by the energy-momentum teng&f. Therefore, as a consequence
of the field equation, we have obtained ttiygnamical equationsfor matter
and fields.

There exists an alternative approach to get the contracted Bianchi’s identity.
Consider an infinitesimal coordinate transformation:

x = x¥ — £“. (2.4.3)
Under this transformation the metric tensor changes to (see § 4.2)
g;ﬁ = 8ap t+ 08ap = 8ap + Eu;p + Epia- (2.4.4)

This coordinate change bringing with it no real change in the geometry or the
physics, we know that the action cannot change with this alteration. In other
words, from the variational principlé, [ £ d*x = 0, corresponding to the
variationsg® = £%# + £F* we have

1 . .
8[6 = Z /Gaﬂ(éa’ﬂ + sﬁ,d)«/ —gd4x = 0 (245)

We translate
1
Gapt™’ = —Gop 6" + (Gupt™)? = —Gop " + —— (V3G
B B B B H ( ),ﬂ
and use the four-dimensional divergence theorem (2.3.9), to get
1 B 4
8l = —— | Gup'PE%/—gd’x = 0. (2.4.6)
X
Since I; is a scalar its value is independent of coordinate transformations;

therefore this expression must be zero for every infinitesigfialvhence the
contracted Bianchi identities (2.4.1).
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For a pressureless perfect fluid, = 0, that is, for dust particles, from
expression (2.3.25) we have

T%% = eu®u®, (2.4.7)
and from the equation of moticfi*?.; = 0,
T 5 = (eu®uP).p = u® geul + (8uﬂ);ﬂu"‘ =0. (2.4.8)

Multiplying this equation by, (and summing oves), recognizingu®u, =
—1, and (u®uy).p = 0 or u®pu, = 0, we get(suf).; = 0. Then, on
substituting this result back into equation (2.4.8) we obtain ghedesic
equation

u® guf = 0. (2.4.9)

Therefore, each particle of dust follows a geod&$it,in agreement with the
equivalence principle and with the equation of motion of special relativity,
"” = u® guP = 0. In alocal inertial frame, from expressmn (2.4.8), we get
to Iowest order the classical equation of contlnumtys,Jr (pv"); = 0,and also
the Euler equations for fluid motiop,(v') o + p(v') ;v* = 0, wherep is the
fluid mass density.

In general, we assume that the equation of motion of any test particle is
a geodesic, where we defiffea geodesicas theextremal curve, or history,
x%(t) that extremizes the integral of half of the squared intei/abetween
two events: = x(z,) andb = x(1,):

1 [ dx® dx?
) = / o (x0) S (2.4.10)
t(l

In this sense a geodesic counts as a critical point in the space of all histories.
We demand that any first-order small chaidgé(r) of the history, that keeps

the end point fixedx*(¢,) = 6x%(¢,) = 0, shall cause a change in the integral
E’(x(1)) that is of higher order. The first-order change is required to vanish:
SEb(x%(t)) = 0. Itis the integral of the product ¢f*(¢) with the Lagrange
expression:

oL d oL
i = o, (2.4.11)
ox« dl 5 (dx“ )
whereL = 3 gup(x (1)) 4 djf , and we have
d?xP dx? dxv 1 dx? dx?

af — ;.9 «, - o = O 2412
8up iz T 8aby g g T p8Bre g ( )
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This equation for a geodesictranslates into the language (2.3.22) of the
Christoffel symbols:

2, .« B Y
A% | e dXFdxV (2.4.13)
dr? B dr  dt

The geodesic equation keeps the standard form (2.4.13) for every transformation
of the parameter of the types = ¢t + d, wherec # 0 andd are two
constants; when the geodesic equation has the standard form (2.4 13)led

affine parameter. A special choice of parametgris thearc-lengthitself s(p)

along the curve(p) = Li(x) = [’ \/:i:gaﬂ(x(p/)) fj;f ‘flﬁ dp’ (+ sign for
spacelike geodesics andsign for timelike geodesics), whegeis a parameter
along the curve. Whep = s, the geodesic is said to be parametrized by arc-
length. For a timelike geodesic,= 7 is theproper time measured by a clock
comoving with the test particle (“wrist-watch time”).

On a proper Riemannian manifold there is a variational principle that gives
the geodesic equation parametrized with any parameter. This principle defines

a geodesi® as theextremal curve for the length L (x(p)):

dx® dxP

Db a
Lixr) = [ /gaﬂ(x@)) i

SLY(x(p)) =0 (2.4.15)

forany variationsx® (p) of the curvex®(p), suchthaéx*(p,) = éx%(py) = 0O,
taking the variation of.2(x(p)), from the Lagrange equations, we thus find

dp. (2.4.14)

From

(2.4.16)

B ds/dp

d?x® N dxP dxv  dx® (d3s/dp®\ 0
dp? Bv dp dp dp B

wheres(p) is the arc-length.

Extremal curve for the quantitg? and extremal curve for the lengtt}?
When are the two the same on a proper Riemannian manifold? When and only
when the two equations (2.4.13) and (2.4.16) are both satisfied: that is, when
the quantityj%; vanishes—that is, when the paramepegrows linearly with
arc-length. Therefore, an extremal curve for the quarftys also an extremal
curve for the lengthZ?, and vice versa; it is always possibi¢o reparametrize
acurve that on a proper Riemannian manifold is an extremal curve for the length
and with ‘{TX; # 0 everywhere, to give an extremal curve for the quarifify

For a test particle with proper mass different from zero, the geodesic equa-
tion of motion is the curve that extremizes the proper time= [dr =
[ /—gupdx*dxP along the world line of the particle. For a photon, the equa-
tion of motion follows from the variational principle fat?, (2.4.10), and is a
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null geodesic (withis? = 0), in agreement with special relativity and with the
equivalence principle. On a timelike geodesic, we can write

D
—Uu
dt
wherer is the proper time measured by a clock moving on the geodesis;
4 its four-velocity, andi*u, = —1.
Parallel transport of a vectorv® along a curvex®(t), with tangent vector
n*(t) = % (1), is defined by requiring - v to be covariantly constant along

the curve:

«_Q (2.4.17)

%(nava) = (n%vy).pn? = 0. (2.4.18)
Therefore, for a geodesic, from equation (2.4.13), we havesthat? = 0.

In particular,a geodesic is a curve with tangent vectef, transported
parallel to itself all along the curven®.gnf = 0.

Finally, from the definition (2.2.5) of Riemann tensor, one can détitre
formula forthe change of a vectof parallel transported around aninfinitesimal
closed curve determined by the infinitesimal displacemértsandsx” (in-
finitesimal “quadrilateral” which is closed apart from higher order infinitesimals
inéx - 8x):

5v% = —R%p,, 0P 5x"8x". (2.4.19)

This equation shows that, on a curved manifold, the vector obtained by parallel
transport along a curve depends on the path chosen and on the curvature (and
on the initial vector; see fig. 2.1).

2.5 THE GEODESIC DEVIATION EQUATION

A fundamental equation of Einstein geometrodynamics and other metric the-
ories of gravity is theequation of geodesic deviatiod®5? It connects the
spacetime curvature described by the Riemann tensor with a measurable
physical quantity: the relative “acceleration” between two nearby test particles.

The equation of geodesic deviation, published in 1925 by Levi-C¥it3,
gives the second covariant derivative of the distance between two infinitesimally
close geodesics, on an arbitrarydimensional Riemannian manifold:

D? (8x%) _

ds?
Here,8x* is the infinitesimal vector that connects the geodesits= /L]

is the tangent vector to the base geodesic, Rityds; is the Riemann curvature
tensor. This equation generalizes the classiaabbi equationfor the distance

—R%guP 8x"u’. (2.5.1)
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FIGURE 2.1. A vector transported parallel to itself around the indicated circuit, on
the surface of a sphere of radiRs comes back to its starting point rotated through an
angle of 7 . The curvature of the surface is given by

(angle of rotation z 1

_ 2 .
(areacircumnavigated 1 (47R?)  R?

(curvature =

y between two geodesics on a two-dimensional surface:

d?y
1oz T Ky = 0 (2.5.2)
whereo is the arc of the base geodesic aifb] is the Gaussian curvaturef
the surfacél3°
The equation of geodesic deviation can be derived from the second variation
of the quantityE%(x(¢)), defined by expression (2.4.10), set equal to zero.
However, we follow here a more intuitive approach.
In order to derive the geodesic deviation equation (2.5.1) let us assume the

following:
1. The two curves are geodesics:

% =0 and %
dt do
wherez, o are affine parameters.

2. The law of correspondence between the points of the two geodesics—that
is, the definition of the connecting vecéx*[r]—is such that, iiz is an
infinitesimal arc on geodesic 1 ade the arc on geodesic 2 corresponding
to the connecting vectoss“[z] andsx[t + dt], we have®

do

dxr
— =1+A, where — =0 (2.5.4)
dt dt

—0 (2.5.3)
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3. The geodesics are infinitesimally close in a neighbortiéod

x5[o] = x7[t] + 8x%[7] (2.5.5)

wherex5eU andxfeU, and where the relative change in the curvature is
small:

a0x®
'R* Y« (2.5.6)

R

andR 2 is approximately the typical magnitude of the components of the
Riemann tensor.

. The difference between the tangent vectors to the two geodesics is
infinitesimally small in the neighborhodd:

Iou”] (2.5.7)
[l ]
where
Su® = uj[o] — ui[r]. (2.5.8)

. Equation (2.5.1) is derived neglecting terms higher than the first-order,
e, in 8x* and indu®. Furthermore, for simplicity, we define the con-
necting vectosx® as connecting points of equal arc-lengtten the two
geodesicg,then,§t = §o = ds ands satisfies

ullsluwls] = =1, where u%[s] = dx;s[sl (2.5.9)
and
us[sluzls] = —1, where u3[s] = dx; [s] . (2.5.10
N

Physicallys is the proper time measured by two observers comoving with
two test particles following the two geodesics.

The equation of geodesic 1 is

[ (22
Duf duf

T s + I [xa]ufuy =0, (2.5.11)
and the equation of geodesic (2) is
Du$ du$ o ; d? o o
dSz = dS2 + F//.v['xl + 8X]Mgbl2 = F (xl + dx )

(2.5.12)

d d v v
+ Iy, [xn + 8x] N (x} + 8x*) o (x] +8x") = 0.

*For simplicity, in this derivation we do not consider null geodesics.
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We also have

% (Bx“[s]) = %(xg[s] — xf[s]) = ub[s] — ul[s] = sut[s] (2.5.13

with this notation, and writing = u*, we can rewrite equation (2.5.12), with
a Taylor expansion to first order & andsu®, as

2
)+ ;Z(Sx) (T, T SxP)(uu’ 4 2u5u’) = 0. (25.14)

Taking the difference between equations (2.5.14) and (2.5.11) we find, to first
order,

d2(8x°‘)
ds?
and using the deflnltlorﬂ d? . '}, u*v" and the expression (2.2.5) of

the Riemann tensor in terms of the Christoffel symbols and their derivatives,
we have, to first order, the law of change of the geodesic separation,

D?(6x%)
ds2
In electromagnetisrfft one can determine all the six independent compo-

nents of the antisymmetric electromagnetic field ter&%, by measuring the
accelerations of test charges in the field, and by using the Lorentz force equation
d?x® e

G = e (2.5.17)

I, 0xPulu” + 2T utsu” = 0, (2.5.15)

— R uPsx"u”. (2.5.16)

wheree, m, andu” are charge, mass, and four-velocity of the test particles. In
electromagnetism, it turns out that the minimum number of test particles, with
proper initial conditions, necessary to fully meas#r¢ is two!

Similarly, on a Lorentziam-dimensional manifold, in any metric theory of
grawty (thus with geodesic motion for test particles), one can determine all
the ” (”12 Y independent components of the Riemann tensor, by measuring the
relative accelerations of a sufficiently large number of test particles and by using
the equation of geodesic deviation (2.5.1).

However, which is theninimum number of test particles necessary to de-
termine the spacetime curvature flllAs we observed, in a four-dimensional
spacetime the Riemann tensor has twenty independent components. However,
when the metric of the spacetime is subject to the Einstein equation in vacuum,
R.g = R°.p = 0, the number of independent components of the Riemann
tensor is reduced to ten, and they form Weyl tensor'! which is in general
defined by

1
= Rga[),g(g]g (2.5.18)

Capys = Rapys + 8uisRy1p + 881y Rsja + 3
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whereR = Rypg*".

Synge in his classic book on the general theory of relafivitiescribes a
method of measuring the independent components of the Riemann tensor. Synge
calls his device a five-point curvature detector. The five-point curvature detector
consists of a light source and four mirrors. By performing measurements of
the distance between the source and the mirrors and between the mirrors, one
can determine the curvature of the spacetime. However, in order to measure
all the independent components of the Riemann tensor with Synge’s method,
the experiment must be repeated several times with different orientations of
the detector; equivalently—and when the spacetime is not stationary—it is
necessary to use several curvature detectors at the same time.

Instead, one can measure the relative accelerations of test particles moving
oninfinitesimally close geodesics and use equation (2.5.1). However, in order to
minimize the number of test particles necessary to determine all the independent
components of the Riemann tensor at one event, it turns out that one has to use
nearby test particles, moving with arbitrarily different four-velocities.

Itis then possible to derive a generalized geodesic deviation eqidtiahid
for any two geodesics, with arbitrary tangent vectors, not necessarily parallel,
and describing the relative acceleration of two test particles moving with any
four-velocity on neighboring geodesics. This generalized equation can be de-
rived by dropping the previous condition (4)ii;l | < 1, and by retaining
the conditions (1), (2), (3), and (5) ory,and it is valid in any neighborhood
in which the change of the curvature is small (condition 3). Of course, when
the two geodesics are locally parallel one recovers the classical geodesic devi-
ation equation. Physically, one would measure the relative acceleration of two
test particles moving with arbitrary four-velocities (their differerie — u$)
need not necessarily be small) in an arbitrary gravitational field (in an arbitrary
Riemannian manifold), in a region where the relative change of the gravita-
tional field is small. The spacetime need not necessarily satisfy the Einstein
field equation so long as the test particles follow geodesic motion (metric theo-
ries). It turns out* that the minimum number of test particles can be drastically
reduced by using the generalized geodesic deviation equation instead of the
standard geodesic deviation equation (2.5.1). This number is reduced either
(1) under the hypothesis of an arbitrary four-dimensional Lorentzian manifold
or (2) when we have an empty region of the spacetime satisfying the Einstein
equationsR,s = 0 (the measurement of the Riemann tensor reduces then to
the measurement of the Weyl tengtftg,,s).

Itturns oub*that to fully determine the curvature of the spacetime in vacuum,
in general relativity, it isufficientto use four test particles, and in general space-
times (twenty independent components of the Riemann tensor) it is sufficient
to use six test particles. It is easy to show that in a vacuum, to fully determine
the curvature, it is alsoecessaryo use at least four test particles. With four
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test particles we have three independent geodesic deviation equations leading
to twelve relations between the ten independent components of the Riemann
tensor and the relative accelerations of the test particles. In general spacetimes it
is necessary to use at least six test particles. Of course, itis possible to determine
the curvature of the spacetime using test particles having approximately equal
four-velocities and using the standard geodesic deviation equation. However,
it turns out then that the minimum number of test particles which is required
in general relativity increases to thirteen in general spacetimes and to six in
vacuum.

2.6 SOME EXACT SOLUTIONS OF THE FIELD EQUATION

A Rigorous Derivation of a Spherically Symmetric Metric

Given athree-dimensional Riemannian manifoldi 2, one may defin@/® to
bespherically symmetric?®38-41about one poind (for the definition based on
the isometry group see § 4. 2) if, in some coordinate systénevery rotation
aboutO, of the typex” = 0’ X where&,, = 0’” 0" s and deO’ = +1,

is anisometry for the metr|Cg of M3. In other words the metrig in M3 is
defined spherically symmetric if it I]rmally invariant for rotations that is,
the new components gfare the same functions of the new coordinatésas
the old components @f were of the old coordinates® for rotations

Zup (V" = x) = s (V" = ). (2.6.1)

A Lorentzian manifold M* may then be definedpherically symmetric
about one poinD, if, in some coordinate system, the metgids formally
invariant for three-dimensional spatial rotations about x” = O,’;’x" (as
defined above) that is, three-dimensional spatial rotations are isometries for
g gup(x0 x) = gaﬁ(x x9). (In general, on a Lorentzian manifold a ge-
ometrical quantityG (x°, x’) may be defined to be spherically symmetnc if
G is formally invariant for three-dimensional spatial rotationgx?, x') =
G'(x%, x%).)

Formal invariance of the metrig under the infinitesimal coordinate trans-
formationx™™ = x* + &&%, wherele| <« 1, is equivalent to the requirement
that theLie derivative>>%¢ (see § 4.2 and mathematical appendix) of the metric
tensorg, with respect t&, be zero:

Legup = 8upok® + 8opt” a + 8ao§” s = 0. (2.6.2)
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This requirement follows from the definition (2.6.1) of formal invariance under
the infinitesimal coordinate transformatioff = x* + &%, thus

0 = gup(x”) — gop(x”)
= 8up(x”) + gup.o€E° — Bg,g,ggp(xy) (2.6.3)
= 8up.o8E” + 687 48op + €E” p&up-

As follows from the definition (2.3.22) of the Christoffel symbols that enter
into covariant derivatives, this condition on the metric is equivalent (see § 4.2)
to theKilling equation :

goz;ﬁ + Eﬁ;a =0. (2.6.4)

Therefore, th&illing vector £ describes the symmetries of the metric tensor
g by defining the isometric mappings of the metric onto itself, that is, the
isometries)’ We have just defined a metgdo be spherically symmetric if it is
formally invariant under three-dimensional spatial rotations, therefore a metric
is spherically symmetric if it satisfies the Killing equation for every Killing
vectorg,, thatrepresents athree-dimensional spatial rotation. The Killing vector

representingpherical symmetry, in “generalized Cartesian coordinates,” is
gsos =0, ) (2.6.5)

SsSs

wherec’* = —c* are three constants. In other words, spherical symmetry about
the pointO is equivalent to axial symmetry around each of the three-@x€s
represented by the Killing vector:

=g =0 gt =x5 & =-xt (2.6.6)

where(a, b, ¢) is some permutation of (2, 3). In particular, using generalized
Cartesian coordinates, we have

:;_a = (Oa 07 r _y)
2 =1(0,-2,0,x) (2.6.7)
éCl = (Oa y, =X, 0)

or using “generalized polar coordinates,” defined by the usual transformation
x = rsinf cosg, y = r sind sing andz = r cos, we have

&Y = (0, 0, sing, cotd cose)
&5 = (0, 0, — cosg, coth sing) (2.6.8)
& =(0,0,0,-1).
From the Killing equation (2.6.2), using the Killing vectgy, we ge?®
8app = 0, (2.6.9)
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and using the Killing vectorg§; andg&; in equation (2.6.2), we then get

g116 = 0, gooo = 0, g100 = 0, (2.6.10
and by applying equation (2.6.2) £:
cos¢

Sing = 2go3 ———
8220 SN 823 S o

(g330 — 2g33C0tA) Sing = —2g>3C0SP

sing cos¢
2, = 813 —
812,60 81 S0

(8139 — g13COtH) Sing = —g12 COSP (2.6.11)

1
— coth) sing = (—goo + ——— ) cos
(8230 — 823 )sing = (—ga2 + g33 sze) )

sing cos¢
20, = 830 . 5 -
8200 80t o

(8306 — g30COtH) SN = —g20COSP,

plus the seven similar equations #r obtained by replacing both sinwith
— c0s¢ and cosp with sing in the equations (2.6.11). From equations (2.6.9),
(2.6.10), and (2.6.11) and the seven similes we get

goo = goo(r, 1), g11 = gu(r, 1), 822 = goo(r, 1),

. (2.6.12)
833 = gzg(}", t) Sll"l2 0 and 801 = g01(", t)»

that is, goo, g11. 822, g33/ SiN? 6, andgo; are functions of ands only; all the
other components @f are identically equal to zero.

The general form of four-dimensional spherically symmetric metricis
then

ds?> = A(r, t)dt? + B(r, t)dr? + C(r, t)drdt

(2.6.13
+ D(r, 1)(d6? + sir? 0d¢?).
This we simplify by performing the coordinate transformation
/=t and r?=D@1) (2.6.14)

where we assum®(r, t) # constant. We then get (dropping the prime’in
andr’)

ds? = E(r, 1)dt? + F(r, t)dr? + G(r, t)drdt + r2(d6? + sin? 0d¢?).
(2.6.15)
With the further coordinate transformation

' =H(rt) and ' =r (2.6.16)
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where we assum# ; # 0, we have

go1 = 39 91 gy + 05 07 800 = H 180y + H .1 H + 800 (2.6.17)
and

goo = 90 99 8o = (H .1)*g00: (2.6.18)

to simplify the metric in its new form, we impose the condition
H,-G H,-E
2(H ;)2 (H ,)?

This condition can always be satisfied, for any funct@rand E # 0, by
finding a solution to the differential equation:

0. (2.6.19

/ J—
801 =

1
EH" -G—H,-E=0. (2.6.20
Therefore, we finally have (dropping the primerirandr’)
ds® = —e""0di® + "Vdr® + r(d6” + sir? 0d¢?) (2.6.21)

asmetric of a spherically symmetric spacetimein a particular coordinate
system. The signs were determined according to the Lorentzian character of the
Riemannian manifold, in agreementwith the equivalence prin((g")pbe:—> Nap-

Let us now find the expression of a spherically symmetric metric satisfying
the vacuum Einstein field equation (2.3.14), wittf = 0:

G =0  or equivalently, R* = 0. (2.6.22)
From the definition of Ricci tensor, that we symbolically write here
o e B 1"0'0 1"(7 — o e
R 4op = ro, Y, + Fgg ng =T, T+ . (2629

and from the definition (2.3.22) of Christoffel symbols, we then get

m—n 1 1 1 2 m,,
Rogp = —e <§m,,, - Zmﬁ,n,, + Zm,, + —)
N L 4 (2.6.24)
+ En,” + Zn’[z - Zm,,n,, = 0
PO 1 NEER
11 = My — M N, -m, — —
2 4 4 r (2.6.25)
- ”"”(En +}n2—}mn)—0
e 2 [t 4 ot 4 AN ) =
1
Ryy=—-1+¢e"+ Eef”r(m,, —-n,)=0 (2.6.26)

R33 = Ry SinP0 =0 (2.6.27)
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and
n;

Rp=—-—-—+ =0 (2.6.28)
r

with all the other nondiagonal componentsRys identically zero. From the
00 and 11 components we then have

(m+n), =0, (2.6.29)
and from the 01 component (2.6.2%} = 0; therefore,
m+n(r)=f@ or " =e Ve (2.6.30)

The time dependencg(r) can be absorbed in the definition ofvith a co-
ordinate transformation of the typé = [ e2/0dr. Therefore, in the new
coordinates (dropping the primewandm’), we have the result

o _ Im 0 and "0 =0, (2.6.31)
ot ot

Therefore, a spherically symmetric spacetime satisfying the vacuum Einstein
field equation (2.6.22) is static, that is, there is a coordinate system in which
the metric is time independent,s o = 0, and in whichgo; = O.

We recall that spacetimeis calledstationary if it admits a timelike Killing
vector field,,. For it, there exists some coordinate system in wigicban be
written &, = (1, 0, 0, 0). In this system, from the Killing equation (2.6.2), the
metricg is then time independerg,z,0 = 0. A spacetimeis calledstatic if it
is stationary and the timelike Killing vector fief is orthogonal to a foliation
(8 5.2.2) of spacelike hypersurfaces. Therefore, there exists some coordinate
system, called adapted §p, in which the metrig satisfies botlg,s o = 0 and
goi = 0.

Fromthe 22, or the 33, component of the vacuum field equation, plus equation
(2.6.29), we then have

—1+e¢"—re"n, =0 (2.6.32
and therefore
(re™, =1 (2.6.33)
with the solution
e =1+ g (2.6.34)
By writing the constan€ = —2M, we finally have
ds? = —(1— ZTM )dt2+ (1— ZTM )_ldr2+r2(d92+sin2 0d¢?). (2.6.35)

This is theSchwarzschild (1916) solution.*® In conclusion, any spherically
symmetric solution of the vacuum Einstein field equation must be static and in
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some coordinate system must have the Schwarzschild Birkhff Theo-
rem).®% By assuming that the spacetime geometry generated by a spherically
symmetric object is itself spherically symmetric, and by requiring that we re-
cover the classical gravity theory, for larggin the weak field region, we find
that M is the mass of the central body (see § 3.7).

However, inside a hollow, static, spherically symmetric distribution of matter,
forr — 0, to avoidgep — oo andgi; — 0, we getC = 0. Therefore,
the solution internal to a nonrotating, empty, spherically symmetric shell is the
Minkowski metricn, (for the weak field, slow motion solution inside a rotating
shell, see § 6.1 and expression 6.1.37).

Other One-Body Solutions

A solution of the field equation with no matter but with an electromagnetic field,
with three parameterdf, Q, andJ that in the weak field limit are identified
with the massM, the chargeQ, and the angular momenturh of a central
body, is theKerr-Newman solution,%2-%?that in ther, r, 6, ¢ Boyer-Lindquist
coordinate® can be written

Y
T
P

AMr — 20%a sir 0 2
- <( ! sz )a )dtdgb n %drz + p%d6%  (2.6.36)

22 i
N <r2+a2+ Mr iz)a sze)sir‘lzé)d(j)z

where

AErZ—ZMr—l—a2+Q2
) . (2.6.36)
p? =r?+a’cos o
anda = % = angular momentum per unit mass.
In the caseQ = J = 0 andM # O we have the Schwarzschild metric
(2.6.35); when/ = 0, M # 0 andQ # 0, we have th&eissner-Nordstrgm
metric:64.65

2 (1o M Qe (1o MO
as?= — (1= "5 + 5 )art+ (1= "5+ %) ar 2637
+ r?(d6” + sir? 0d¢?).

This solution describes a spherically symmetric spacetime satisfying the Ein-
stein field equation in a region with no matter, but with a radial electric field to
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be included in the energy-momentum tenggy (see § 2.3),

E = gze, B=0 (2.6.39
r

wheree, is the radial unit vector of a static orthonormal tetrad. In the weak
field region,M andQ are identified with the mass and the charge of the central
object.

Finally, whenQ = 0 andM # 0,J # O we have the Kerr solutiott.
In the weak field and slow motion limi€®° M/r « 1, (J/M)/r < 1,in
Boyer-Lindquist coordinates, théerr metric (2.6.36) can be written

M 2M .
ds? = (1= =2 )ar? + (14 =5 )ar? + r2(do? + sir? 6d¢?)
r r
4J
— — sif0dgdt.
,
(2.6.39
This is the weak field metric generated by a central body with masand
angular momentund; we shall return to this important solution in chapter 6.

2.7 CONSERVATION LAWS

In classical electrodynamits one defines the total charge on a three-
dimensional spacelike hypersurfake corresponding to = constant.;Q =

[5 i°d®0. From the Maxwell equations with souré&”? ; = 47 j* and from
the antisymmetry of the electromagnetic teng6f, one has the differential
conservation law of charg¢ , = 0. Therefore, by using the four-dimensional
divergence theorem (2.3.9), we verify th@tis conserved:

0=/j“,a d“fz:/ Jed3E, (2.7.1)
Q IQ

whereQ is a spacetime region arif2 its three-dimensional boundary, and
where d*Q and d®%, are respectively the four-dimensional and the three-
dimensional integration elements defined by expressions (2.8.21) and (2.8.20)
below. By choosingy2 composed of two spacelike hypersurfagesnd X',
corresponding to the times= constant and’ = constartt plus an embracing
hypersurface\, away from the source, on whigtf vanishes (see fig. 2.2), we
then have

0 :/jodSEo:/ JPds, = Q' (2.7.2)
D) py

that is, the total charge = constant, or’¢ = 0.
Similarly, in special relativity, one defines the total four-momentum of a
fluid described by energy momentum tengs¥ (see § 2.3), on a spacelike
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x%° D constant

o X0 D constant

FIGURE 2.2. The hypersurface of integratidi2®, boundary of2® (see equation
(2.7.2)).

hypersurface, as
PY = / T°Pd3%, (2.7.3)
X

whereE = P° = [ T%43% is the energy, and the angular momentum of the
fluid is defined (see also 8§ 6.10) on a spacelike hypersuace

JP — / (xeTPr — xPT*" 3%, (2.7.9)
x

From the special relativistic, differential conservation lai#é ; = 0, it then
follows that these quantities are conserved:

0= / T 4d*Q = f TP d®3, (2.7.5)
Q Q2
and
P = / T35y = f T'%%%y = P* (2.7.6)
5 ,
(zero total outflow of energy and momentum), or

d P*

=0, 2.7.7
7 2.7.7)
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and similarly, for the angular momentum:

dJje?
dt

where, in formula (2.7.6), we have chosen the hypersurdazas shown in
figure 2.2, withA away from the source wher®*® vanishes, an@® and ©’
corresponding to = constant and’ = constart

In this section we generalize these Minkowski-space definitions to geometro-
dynamics, to get conserved quantities in curved spacetime. In geometrody-
namics, the special relativistic dynamical equation generalize to the tensorial
equation,7*#.; = 0, consequence of the field equation and of the Bianchi
identities—that is, of the fundamental principle that the boundary of the bound-
ary of a region is zero (§ 2.8). However, the divergence theorem does not
apply to the covariant divergence of a tensor, therefore the geometrodynamical
conserved quantities cannot involve only the energy-momentum tééor

Before describing the mathematical details of the definition of the conserved
quantities in general relativity, let us first discuss what one would expect from
the fundamental analogies and differences between electrodynamics and ge-
ometrodynamics. First, the gravitational figjgh has energy and momentum
associated with it. We know that, in general relativity, gravitational waves carry
energy>313°and momentum (see § 2.10); this has been experimentally indi-
rectly confirmed with the observations of the decrease of the orbital period of
the binary pulsar PSR 19343916, explained by the emission of gravitational
waves, in agreement with the general relativistic formulae (§ 3.5.1). Two gravi-
tons may create matter, an electron and a positron, by the standard Ivanenko
process? therefore, for the conservation of energy, gravitons and gravitational
waves must carry energy. We also know that the gravitational femade of
gravitational waves (see § 2.10), carries energy and momentum. Therefore, since
gravitational waves are curvature perturbations of the spacetime, the spacetime
geometry must have energy and momentum associated with it. In general rel-
ativity the geometry,z, where the various physical phenomena take place, is
generated by the energy and the energy-currents in the universe, through the
field equation. Since the gravity fields has energy and momentum, the grav-
itational energy contributes itself, in a loop, to the spacetime geomggry
However, in special relativistic electrodynamics the spacetime geomgiry
where the electromagnetic phenomena take place, is completely unaffected by
these phenomena. Indeed, the fundamental difference between electrodynam-
ics and geometrodynamics is the equivalence principle: locally, in a suitable
spacetime neighborhood, it is possible to eliminate eabservablesffect of
the gravitational field (see § 2.1). This is true for gravity only.

Therefore, what should one expect from this picture, before one defines the
conserved quantities in geometrodynamics? First, one should not expect the
conserved quantities to involve only the energy and momentum of matter and

=0 (2.7.8)
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nongravitational fields, described by the energy-momentum téiféqisee ex-
pressions 2.3.24 and 2.3.23 for the energy-momentum tensor of a fluid and of an
electromagnetic field). Indeed, since the gravitational gldtself carries en-

ergy and momentum, it must, somehow, be included in the definition of energy,
momentum, and angular momentum. However, because of the equivalence prin-
ciple, we should not expect any definition of the energy of the gravitational field
to have any local validity; in general relativity, gravitational energy and momen-
tum should only have nonlocal (or quasi-loé¢4lyalidity. Indeed, the gravity

field can be locally eliminated, in every freely falling frame, in the sense of

eliminating the first derivatives of the metrigs and have(jg)u,g —> nep ata
pointlike event; and in the sense of locally (in a spacetime neighborhood of the
event) eliminating any measurable effect of gravity, this should also apply to
the gravitational energy.

Let us now define the general relativistic conserved quantities. In special
relativity, one defines quantities that can be shown to be conserved by using the
four-dimensional divergence theorem applied to the differential conservation
laws j*, = 0 andT* ; = 0. On a curved manifold, from the covariant
divergence of the charge current density we can still define conserved quantities
by using formula (2.3.6):

[ itav=sata =
f (j“J?g) ad“Q = (2.7.9)
/ JON—8d%%..

However, the four-dimensional divergence theorem is valid for standard di-
vergences but not for the vanishing covariant divergence of the t@itéan
geometrodynamicg;*?.; = 0O; for a tensor field"*#, expression (2.3.7) holds,
and we cannot directly apply the divergence theorem.

Therefore, we should define quantiti€4, representing the energy and mo-
mentum of the gravitational field, such that the sum of these quantities and of
the energy-momentum tenspf?

T 419 = T (2.7.10)

will satisfy an equation of the typﬁgfffﬁ = 0. We could then apply the four-
dimensional divergence theorem. Of course, on the basis of what we have just
observed, we should not expect these quantitiésto form a tensor, since
locally the gravity field and its energy should be eliminable.

There are several possible choices #4t. We follow here the useful con-
vention of Landau-LifshitZ/ By our making zero the first derivatives of the
metric tensor at a pointlike event, the gravity field can be “eliminated” in alocal
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inertial frame. Therefore, the quantitie?§ representing energy and momentum

of the gravity field should go to zero in every local inertial frame, and should
then be a function of the first derivatives gj;. Indeed, at any event, in a local
inertial frame, one can reduce the differential conservation law$tg = 0.
Therefore, in order to define the pseudotensér,for the gravity field, we first

write the field equation at an event, in a local inertial frame, where the first
derivatives of the metric are zero. At this event the field equation will involve
only the metric and its second derivatives. After some rearrangements, the field
equation can then be written

@) )
Aaﬂ/u)’v# = (_iq))Taﬂ (2711)

where
Sopu =0 (2.7.12)

and
1
apuv T af juv _ jap By

A = 1671( 2) (g g g"g ) (2.7.13

We may now rewrite the field equation in a general coordinate system, where the
first derivatives ok, are in general different from zero, by defining a quantity

(—g)t*f that represents the difference between the field equation written in the
two systems (2.7.11 and 2.3.14), depending on the first derivatives of the metric:

(_g)taﬂ = Aaﬂ#v,vu - (_g)Taﬂ' (2714)

Then this Einstein field equation (2.7.14) lets itself be translated into the lan-
guage of the effective energy-momentum pseudotensor of expression (2.7.10);
that is,

()Tef = (g (T +1) = A, (2715

From expression (2.7.13) we know that’*" is antisymmetric with respect
to g andw. Hence the quantith*?*” ,, 4 is zero, and therefore from the field
equation we have

((—(gf)T.;'?f3 ) 5= AP 5 = 0. (2.7.16)

The explicit expression of the pseudotensdt can be found after some
cumbersome calculations? can be symbolically written in the form

pseudotensor for the | = r*# ~ Z (g-g-T-T), (2.7.17)

( energy-momentum )
gravity field
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that st is the sum of various terms, each quadratic in hgthandrs, . The
precise expression of? is (see Landau-Lifshitz}

o = - [ (se? = ¢ g™) (200,18, = T3, 10 = T5,T%,)

@ uv- op up~ vo ot vp
+ g¥g"? (ngrfa + Ffarﬁp — ngf‘fjv - FﬁUF§p>

up vo Vo pup op* uv nvs oop

+ ghrgr (r“ [P 4 TP _T¢ [P _ [P )

+ guvgap (anI‘fp - F;Oivrﬁp) ]
(2.7.18
Using the effectivenergy-momentum pseudotensor fomatter, fields and
gravity field, in analogy with special relativity and electromagnetism, we finally
define the conserved quantities on an asymptotically flat spacelike hypersurface

¥ (see below):
P* = /E (T“ﬂ + t"‘ﬂ> (—g)d®%4:  four-momentum (2.7.19)
E = P% energy (2.7.20)
JoP = A (x"‘Tef;“ - xﬁT:ﬂ“) (—g)d®%,: angular momentum. (2.7.21)

From equations (2.7.16), as in special relativity, we then haveRh#®*, and
J* are conserved.

Of courser*? (and thereforéfgff) is not a tensor; however, it transforms as
a tensor for linear coordinate transformations, as is clear from its expression
(2.7.18). Evenifthe spacetime curvature is different from zero, the pseudotensor
for the gravity fieldt®? can be set equal to zero at an event. Vice versa, evenin a
flat spacetime,®® can be made different from zero with some simple nonlinear
coordinate transformation, not even a physical change of frame of reference,
but just a mathematical transformation of the spatial coordinates, for example,
a simple spatial transformation from Cartesian to polar coordinates. However,
the fact that*® can be made different from zero in a flat spacetime, and that
it can be made zero, at an event, in a spacetime with curvature, is what we
expected, even before definintf, on the basis of the equivalence principle,
that is, on the basis that, locally, we can eliminate the observable effects of the
gravity field, and therefore, locally, we should not be able to define an energy
associated with the gravity field.

However, the situation is different nonlocally; for example, one can define the
effective energy carried by a gravitational wave by integrating over aregion large
compared to a wavelength (see next section). In fact, the energy, momentum, and
angular momentun® = P°, P¢, andJ*#, as defined by expressions (2.7.20),
(2.7.19), and (2.7.21), have the fundamental property that in an asymptotically
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flat spacetime, if evaluated on a large region extending far from the source, have
a value independent from the coordinate system chosen near the source, and
behave as special relativistic four-tensors for any transformation that far from
the source is a Lorentz transformation. This happy feature appears when the
integrals are transformed to two-surface integrals evaluated far from the source.
We have, in fact,

P :/ TH (—g)d®Ts = / AP A5 (2.7.22)
D) z

By choosing a hypersurface® = constant, with volume elemedfx,, and
by using the divergence theorem, we find

P = / A id®Tg = / A S, (2.7.23
z 1X=S

and similarly forJ*#, whered?S; = (*dS)q; is defined by expression (2.8.19)
below. ThereforeP“ is invariant for any coordinate transformation near the
source, that far from the source, and thu$ah leaves the metric unchanged.
Then, since®® behaves as a tensor for linear coordinate transformations (see ex-
pression 2.7.18) and® andJ*# have a value independent from the coordinates
chosen near the sourcB andJ*# behave as special relativistic four-tensors
for any transformation that far from the source is a Lorentz transformation.

In an asymptotically flat manifold, in the weak field region far from the
source, wher@us = n¢p + hag, and|hqeg| < 1, from expression (2.7.23), we
have theADM formula for thetotal energy:’?

1
E=P= e [g(gij,j ~ 8ji) d°Si. (2.7.24)

In a spacetime that in the weak field region matches the Schwarzschild (or the
Kerr) solution, one then gets, from the post-Newtonian expression (3.4.17) of
chapter 3, in asymptotically Minkowskian coordinat&€&s—= M, whereM is

the observed (Keplerian) mass of the central object.

If the interior of the hypersurface of integrati@hcontains singularities with
apparent horizons or wormholes, one can still pfétiee gauge invariance and
the conservation oP¢, without the use of the divergence theorem.

Penrosé& has given an interestinguasi-local definitiorof energy-momen-
tum and angular momentum, using twistors (a type of spinor field), valid, unlike
the ADM formula/? even if the integration is done over a finite spacelike
two-surface on a manifoldot necessarily asymptotically flat

One may now ask an important question. In general, when dealing with
arbitrarily strong gravitational fields at the source and with arbitrary matter
distributions as sources, is the total enefygf an isolated system positive in
general relativity? The solution of this problem is given by the so-called Positive
Energy Theorem.
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The Positive Energy Theoremof Schoen and Yad~"® (see also Choquet-
Bruhat, Deser, Teitelboim, Witten, York, etC$°-83 states that given a
spacelike, asymptotically Euclidean, hypersurfateand assuming the so-
called dominance of energy condition, thatds> (jij:) 2, wheres is the
energy density oft and;’ is the momentum-density an (the dominance of
energy condition implies also the weak energy condition 0O; see § 2.9), and
the validity of the Einstein field equation (2.3.14), then:|@) = |P°| > | P |,
that is,the ADM four-momentum is timelikand (2)future-pointing £ > 0,
unlessP® = 0 (occurring only for Minkowskian manifolds).

2.8 [THE BOUNDARY OF THE BOUNDARY PRINCIPLE AND
GEOMETRODYNAMICS]

Einstein’s “general relativity,” or geometric theory of gravitation, or “geometro-
dynamics,” has two central ideas: (1) Spacetime geometry “tells” mass-energy
how to move; and (2) mass-energy “tells” spacetime geometry how to curve.

We have just seen that the way spacetime tells mass-energy how to move is
automatically obtained from the Einstein field equation (2.3.14) by using the
identity of Riemannian geometry, known as the Bianchi identity, which tells us
that the covariant divergence of the Einstein tensor is zero.

According to an idea of extreme simplicity of the laws at the foundations of
physics, what one of us has called “the principle of austerity” or “law without
law at the basis of physic§¥in geometrodynamics it is possible to defv/é&!
the dynamical equations for matter and fields from an extremely simple but
central identity of algebraic topolodi:3° the principle that theboundary of
the boundary of a manifold is zera Before exploring the consequences of
this principle in physics, we have to introduce some concepts and define some
quantities of topology and differential geometpy*3.86.87

An n-dimensionamanifold, M, with boundary is a topological space, each
of whose points has a neighborhood homeomorphic (two topological spaces
are homeomorphic if there exists a mapping between them that is bijective and
bicontinuous, called a homeomorphism; see mathematical appendix), that is,
topologically equivalent, to an open set in h&lf, that is to the subspade”
of all the points(x?, x2, - - -, x") of %" such thatc” > 0. The boundarp M
of this manifold M is the (n — 1)-dimensional manifold of all points a#/
whose images under one of these homeomorphisms lie on the submanifold of
H" corresponding to the point$ = 0. An orientable manifold is a manifold
that can be covered by a family of charts or coordinate systefs - -, x"),

&t .-+, %"),...,such thatin the intersections between the charts, the Jacobian,
that is, the determinalﬁtg% | = det( % ) of the derivatives of the coordinates,
is positive. Examples of nonorientable manifolds are trigMs strip and the
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<

FIGURE 2.3. Two examples of nonorientable manifolds: the Klein bottle or twisted
torus and the Nbius strip.

'\

Klein bottle or twisted torus (see fig. 2.3). In the theory of integra&flan a
manifold M which is smooth (that is, differentiable, or which is covered by
a family of charts, such that in their intersections %@ are C* functions)
and orientable, one defines a singutacube (see fig. 2.4) as a smooth map
in the manifoldM of anr-cube in the Euclideam”; singular means that the
correspondence between a standaodibe ofi” and its image in the manifold
M is not necessarily one to one. Thenchainsc of n-cubes are formally
defined as finite sums afcubes (multiplied by integers§.On these:-chains
one defines integration. The boundary(see figs. 2.4, 2.5, and 2.6) of an
chainc of n-cubes is the sum of all the properly oriented singutar 1)-cubes
which are the boundary of each singutacube of the:-chainc. One can then
define an operatar that gives the boundary, with a definite orientation, of an
n-cube or of am-chain. It is in general possible to proVehat the boundary
of the boundary of any-chainc is zero (see figs. 2.5 and 2.6), that is,

9@dc) =0  orformally 982=0. (2.8.1)

Next, let us consider differential n-form 6 that is, a completely antisym-
metric covariant:-tensor, in component,,..gy..., = —0u;.yp.-a,, agaINSt
exchange of any pair of nearby indices suchBag; n is the degree of the
form. Similarly one can consider a completely antisymmetric contravariant
n-tensor called:-polyvector. The operation oaintisymmetrization of ann-
tensorT,, ..., that we shall denote by writing the indices of the tensor within
square brackets, is defined as

1
T = > T, (2.8.2)

all
permutationsp
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FIGURE 2.4. A standard two-cube and its(2 — 1)-dimensional boundargc.

<2

where the sum is extended to all the permutationsof - «,,, with a plus sign
for even permutationss, even = +1, and minus sign for odd permutations,
€podd = —1. Ann-form @ can then be defined in components as

By, = Oy (2.8.3)

From ap-form 6,,..,, and from ag-form w,, .., , ONe can construct @+ ¢)-
form, by defining thavedge productor exterior product A between the two
forms, in components

_(pt )

O A Wayoayry = or (2.8.4)

[0(1---0(,, a)a;)+l"'a[)+q]

FIGURE 2.5. The oriented one-dimensional boundary of the two-dimensional
boundary of a three-cube is zero.
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FIGURE 2.6. The two-dimensional boundary of the three-dimensional boundary of

a four-dimensional singular four-cube, here a four-simplex, is zero. A two-dimensional
projection of the four-simplex is shown in the center. A four-simplex has five vertices,
ten edges, ten triangles, and five tetrahedrons. The three-dimensional boundary of the
four-simplex is made out of the five tetrahedrons shown in the figure. Each of the ten,
two-dimensional, triangles is counted twice with opposite orientations. Therefore, the
two-dimensional boundary of the three-dimensional boundary of the four-simplex is
zero (adapted from W. Miller 1988§.

where [y - - - «,1,] means antisymmetrization (2.8.2), with respect to the
indices within square brackets. The wedge product satisfies the properties

(B1 A O3) AB3 =011 (0, AO3)
O14+0)ANwWw=0Aw+ 0, Aw

(2.8.5)
ON (W +wr) =0Aw;+ 0 A wp

ONhw=(—-DMwAB.

Then, from am-form 6,,..., = 64;.-«,], ONE Can construct a@m + 1)-form,
by defining theexterior derivative d@ of 0, that is the exterior product ofz—
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with 6,,..4,, i COMponents

ad
deal...a"H. = (n + 1) m eaz...a"Jrl]
1 ) (2.8.6)
= — Z Gp —_— 90,2...0[ 410
n! 7 oxot !
permutationsp

The exterior derivative of the exterior product (whérés a p-form) satisfies
the property

dOAw) =dOANw+ ()P0 Adw. (2.8.7)

We introduce thd evi-Civita pseudotensor, €,5,, = /—glaByA], where
+/—g is the square root of minus the determinant of the metric (equal to one
wheng.,s = 1y = diag(—1, +1, +1, +1) = Minkowski tensor), and the
symbol By A] is equal to+1 for even permutations ab, 1, 2, 3), —1 for

odd permutations a0, 1, 2, 3), and 0 when any indices are repeated. We then
havee®r* = — ﬁ [¢ByA], and the Levi-Civita pseudotensor satisfies the
following relations:

Ewﬁykeaﬂﬂ — _4l (2.8.8)
Epataep(”ﬁ = -3l 801/3 (2.8.9)

T Pe, ;= —2 (5%5% - 3%3%)

= —21 (26°,6") (2.8.10)
= 218,
P77 €3 e = —318%187 187 ) = 8P, (2.8.11)
and
€ P pe = — M8, 8P,87 )80 5] = =8P 0 (2.8.12

wheres*r g . g isequaltot-1if oy - - - «, is an even permutation gf - - - g,
with no repeated indiced < n < 4), equal to—1 if it an odd permutation,
and 0 otherwise. Thé&tensors satisfy

aaﬂyakuva = aaﬁyk;w; aaﬁduva = zsaﬁuv;

(2.8.13
aomﬂa = 35aﬂ and Saa = 4.
They can be used to antisymmetrize a tensor
1
Tioan] = HT,sr..,gnaﬁl B, (2.8.14)
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(where in a four-manifold: & n < 4) and to write the determinant of a tensor
T%g

det(T%g) = %(SLY*“V”,W,T*‘(XT“,ST%’VT"A = [uvpo | THoT 1 T?>T7 5.
' (2.8.15)
Finally, by using thel-tensors, one can compactly rewriténo-dimensional
surface elementd S*#, a three-dimensional hypersurface element/ *f7,
and afour-dimensional volume elementd Q“#7*, respectively built on two,
three, and four infinitesimal displacemedtﬁ’p):

dx(y,  dxp
dS? = 8%, dxlydxlty = dx%i dxg ' (2.8.16)
dxP = 8°P7 pdxy dxy dxly (2.8.17)
dQP7 = 597 dx(y dxly dx(p dxly. (2.8.18)
Theduals of these elements, faf—g = 1, are defined as
("dS)ep = %[poaﬁ]dS’)” (2.8.19
%z, = %[auvp]di]’”p (2.8.20)
d*Q = 1 [uvpo]daHore . (2.8.21)

4l

In particular, for the four infinitesimal coordinate displacemedtﬂ({p) =
8% ,dx® (no summation ovex), with pe(0, 1, 2, 3), we have

d*Q = d*x = dx%dx'dx?dx®, (2.8.22)
and corresponding to a hypersurfade= constant:
d®%o = d®V = dxtdx?dx®. (2.8.23)
On ann-dimensional manifold, we can then define the— p)-polyvector 6
dual to thep-form @ in components
(*0)ans — pl! Eﬁl...ﬂpal...an,peﬁlmﬂp (2.8.24)

with a similar definition for the&n — p)-form, *v dual of ap-polyvectory.

Now, on ann-dimensional manifoldV, we have the beautiful and fun-
damentalStokes theorem(for the mathematical details see Spivak 1979,
vol. 2)%°

/de =/ 0 Stokes theorem (2.8.25)
c dc
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wherec is anr-chain on the manifold?, dc the(n — 1)-chain oriented boundary
of ¢, 8 a(n — 1)-form on M, andd@ the n-form exterior derivative 08. For
an orientedn-dimensional manifold/ with boundaryo M (with the induced
orientation§® and for an(n — 1)-form @ on M, with compact support (i.e., the
smallest closed set containing the regiobivhered is nonzero is compact),
we then have

/dG:/ (7] Stokes theorem (2.8.26)
M oM

Furthermore, as a consequence of the boundary of the boundary principle
(2.8.1), for everyn — 2)-form 6 on ann-dimensional, differentiable, oriented
manifold M, we have

f 6 =0. (2.8.27)
doM

Therefore, from the boundary of the boundary principle (2.8.1) and from Stokes

theorem:
/dde = / do = / 0=0. (2.8.28)
c dc ddc

By applying this result to an arbitrary neighborhood of an arbitrary point, one
has then, automatically,

dde = 0, orformally  d? = 0. (2.8.29

The exterior derivative of the exterior derivative of any form is zero. In other
words, the exterior derivative of any exact form is zero, whexactis any
n-form that can be written ag80 and @ is an (n — 1)-form. Therefore, any
exact form isclosed that is, with null exterior derivative (as one can also
directly calculate from the definition af). For a vector fieldW in the three-
dimensional Euclidean spag¥, from Stokes theorem we get two well-known
corollaries, the so-calledivergence theorerfOstrogradzky-Green formular
Gauss theorein

/ V- Wdlv = W -nd?S (2.8.30)
|4 V=S

and theRiemann-Amgre-Stokes formula

/(V X W) -nd?S = W . d4 (2.8.31)
N 8=l
whered®V, d%S anddl are the standard Euclidean volume, surface, and line
elements, and is the normal to the surface

We are now ready to investigate on some physical conseqii@itesthe
boundary of the boundary principle.
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In electrodynamics, one defines (see § 2.3) the electromagnetic field tensor
F as the 2-form:

F =dA (2.8.32

or in componentsf,s = Ago — Aa,p, WhereA is the four-potential 1-form,
with components,,.

From the boundary of the boundary principle, in the fadf = 0, we
automaticallyget thesourceless Maxwell equationgor F:

dF =ddA =0 (2.8.33)
in components
Flap.y) = 0. (2.8.39)
The Maxwell equations with sourceare
F*? 4 = 4xj® (2.8.35)

wherej* = pu® is the charge current density four-vector. This equation can
be rewritten by defining the dual forr¥, of the formF and the dual formy,

of the charge current density 1-forjn(see expression 2.8.63 for the general
definition of*(- - -)):

1

(*F)/w = EGaﬂ;wFaﬂ (2.8.36)
(*j)ﬁ/w = Eaﬁuvja§ (2.8.37)

therefore

(d*F) _ 36 F;LU
afy 2 wvlap ] (2.8.39)
= 4mesapy j°
or

d'F = 4x%j. (2.8.39)

From the boundary of the boundary principle, in the fattn= 0, we then
automaticallyget thedynamical equations forj:

Andj = dd*F =0 (2.8.40)
in components

(j*€atpur) 1 = O, (2.8.41)
that is, multiplying bye?#* and summing over all its indices,

J%« =0. (2.8.42)
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Summarizing, in electrodynamics we have

definition 42— sourceles
F=dA ( of F ) — {dF =0| Maxwell (2.8.43)
equations
and
Maxwell ' o dynamical
Ld*F — 4% | equations | =2 @*j = 0| equations| (2.8.44)
with source forj

In geometrodynamics, the Riemann curvature tensor satisfies the soficatled
Bianchi identity:

Ra[ﬂy(;] =0, (2.8.45)
and thesecond Bianchi identity(§ 2.4)
R%grys;) = 0. (2.8.46)

Consequently the Einstein tensGy satisfies the contracted second Bianchi
identities

Gho = (R"a - ;Rm) =0. (2.8.47)
As in electrodynamics, these identities can be derived from the boundary of
the boundary principled? = 0, directly from its consequence that the second
exterior derivative of any form is zerd? = 0.

Let us first considet}3?*3on arm-dimensional manifold; linearly indepen-

dentvector fieldX; ... X,,, called anoving framédtheCartan’s Regre Mobilg.
We can then consider the 1-for@$ which define the dual basis (different con-
cept from the dual of a form (2.8.24) or the dual of a polyvector), that is, the
forms@* such that*, X g = §%4. Furthermore, by using the exterior product
(2.8.4), on a Riemannian manifold with metric g.5, one can construct the
connection 1-formsw”s = I'y 6", defined by

dgos = 8uow’p + 8opw’a (2.8.48)
wheredg,s = X,(g.p)0”, and in a coordinate bastg,s = g.s.,dx", and by
6" =0 (2.8.49)

where®@* = d@* + w*, A 6° (first Cartan structure equation), a@ are the
torsion 2-forms (see below).

Using the connection 1-forms®g, the exterior derivative (2.8.6) and the
exterior product (2.8.4), one can then constructdtevature 2-forms £2%g,
for the moving framex®:

2% = dwg+w’, AW g (second Cartan structure equatioi2.8.50)
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By taking the exterior derivative of expression (2.8.49), from the boundary of
the boundary principle, in the fora? = 0, we get thdirst Bianchi identity :

0=ddo” =d(—w"s NO°) = — (2% — W) Aw’s) AO°
(2.8.51)
— Wi AW, N0 =02 NO°

and by taking the exterior derivative of expression (2.8.50), fiBna= 0, we
get
ds =dws AW — w5 Adwg. (2.8.52
By substitutingdw®s = 2% — w*, A w’g, we then have
A% + W N2 — 2 AW = 0. (2.8.53
This is thesecond Bianchi identity. Finally, by defining thexterior covariant
derivative, D: D§2%p = d§2%g + w*, A 275 — 2%, A w7, Which maps

a tensor-valuegp-form (a p-form with tensor indices) into a tensor-valued
(p + 1)-form, we can rewrite the second Bianchi identity as:

DY, = 0. (2.8.54)

Equation (2.8.49) expresses that the tordhis zero, and equation (2.8.48)
that the connection is metric-compatible, that is, the covariant derivative of the
metric is zero. It follows that the connection is uniqulgietermined to be the

(©)
standard Riemannian connection. Usingrtatural coordinate basis {X,} =
{% } (a coordinate basis is also calledlonomic,and a noncoordinate basis
anholonomig), on a Riemannian manifold, one has then

(&B‘Xﬂ)y = I'j,, = Christoffel symbols (expression 2.2.3) (2.8.55)

(for the expression df, in a general basis see the mathematical appendix),

(©) . .
(@"‘)ﬂ = F‘;ﬂ —Tg, =T55 =0, i.e., no torsion (2.8.56)
14
and
()
<Q“ﬁ) = R”s,s = Riemann curvature tensor (expression 2.2.5)
Yo
(2.8.57)
and we can rewrite equations (2.8.51) and (2.8.54), in components, as
R%ys) = 0, (eq. 2.8.45) (2.8.58
and

R%grys:) = 0, (eq. 2.8.46). (2.8.59)
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Equations (2.8.50) and (2.8.57) define the curvature teR$gy; without the
use of the covariant derivatives as in the standard definition (2.2.4).

In geometrodynamics the contracted second Bianchiidentity, consequence of
d? = 0, is especially important. In fact, the dynamical equations for matter and
fields automatically follow from this identity plus the Einstein field equation
(2.3.14). To derive the dynamical equations from the boundary of the boundary
principle we first construét the double dual of the Riemann tensor:

1
(*R*)aﬂ vé = 21et,(,f,wze“”,,geﬂ”a. (2.8.60)
We can then rewrite the Einstein tensGf.s, as
G5 = ("R*)" 4. (2.8.61)
We have, in fact,
* k%0 1 ao v 1 o v
(R ) Bo = ZE MEMVﬁaRM yh = _15 MMVﬂRM YA
(2.8.62

- _% (256 R — 2R, — 2R",) = G
where we have used the relation (2.8.11). We now definestiieoperator
*(--+), with a star on theeft, a duality operator which acts only am-forms
(with m < n on ann-dimensional manifold) and giveg — m)-forms, that
is, a duality operator which acts only on the(0 < m < n) antisymmetric
covariant indices of a tensor and generates m antisymmetric covariant
indices. In other words, th&. - .) operator acts only on the antisymmetric
covariant indices of a tensd?"’f‘"'y,;..., by first raising each covariant index
with g#¥ and then by taking the dual, wit...,,, of these raised indices:

S % €opn TP 5877 8" . (2.8.63)
Similarly, we define thatar operator(- - -)*, with a star on theight, as a dual-
ity operator which acts only om-polyvectors (antisymmetri@-contravariant
tensors) and give&: — m)-polyvectors, that is, a duality operator which acts
only on them (0 < m < n) antisymmetric contravariant indices of a tensor
and generates — m antisymmetric contravariant indices:

1
(T*)”.Mmm = ol e”/’""‘T“ﬂ"'ya.“gwgﬂn-- . (2.8.64)

We then introduce the vector-valued (a form with a vector index) 1-form,
dP)*g = 38%g, sometimes called the Cartan unit tensor. By taking the star
dual*(- - -) of both sides of the Einstein field equatiotfs = x 7%,

G = x'T, (2.8.65)
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we have in components

GUﬁySGaU = Xéaﬂy(sTaa. (2866)
By defining
a 303 e
[P ARY, = 55 38R o (2.8.67)

here by § A T] we mean exterior product dfoththe covariant and the con-
travariant parts of the antisymmetric tensSrand 7, that is we mean both
antisymmetrization of the covariant indices of the producs wfith 7' times a

factor “;T—qq,)' and antisymmetrization of thmntravariantindices times a factor

(+ml \We can rewrite the left-hand side of the star deél, of the Einstein

nlm!

tensorG,

[dP AR])* =*G = x*T (2.8.69)

Indeed, we have, in components, using expressions (2.8.14) and (2.8.62):

3 1
E gyreumvr(s[[%RMU] po] — Z gyreauvraalwkf)(pg[kﬂ Re(ppa] =

3 1
- ngeuvr[ﬁRWpa] = - ZgwéuvrAS,spaw‘prew = (2.8.69
- Z‘rgyreltvﬂ\eﬁpdaeww(prow = €appo G*7.
By taking the exterior covariant derivative of equation (2.8.68) we then have

D[dP A R]* = (D[dP AR])" = ([DdP A R] — [dP ADR])" = 0 (2.8.70)

whereDdP = 0, that is, there is no torsion, aditR = 0 is the second Bianchi
identity (2.8.54) as a consequenceddf= 0, that is, as a consequence of the
boundary of the boundary principle. Finally, from the Einstein field equation
(2.8.68), we have

D*G =D'T =0, (2.8.7))
that is, in components, using (2.3.7),
7% 4 = 0. (2.8.72

The quantity@P A R]* has a geometrical interpretatiéh®*11it may be thought

of as the star dual of the moment of rotation, of a vector, associated with a

three-cube and induced by the Riemann curvature (see fig. 2.7). The Einstein
field equation may then be geometrically interpreted as identifying the star dual

of the moment of rotation associated with a three-cube with the amount of
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FIGURE 2.7. The rotation of a vector associated with each face of a three-cube and
induced by the Riemann curvature tensor, and the one-boundary of the two-boundary
of a three-cubel_eft: the rotation of a vector transportedparallel to itself around the
indicated circuit, this rotation measures some components of the spacetime curvature
(see eq. 2.4.19Right the rotations associated with all six faces together add up to
zero; the diagram closes. It closes because each edge of the cube is traversed twice, and
in opposite directions, in the circumnavigation of the two abutting faces of the cube:

00 = 0.

energy-momentum of matter and fields contained in that three-cube:

dual of

amount of
moment of energy-momentu
rotation = 8r 9y (2.8.73)
. . in that
associated with
three-cube

a three-cube

This is the geometrical content of the Einstein equation. Then, by applying to
the Einstein field equation the simple but central topological 2-3-4 (in two-
three-four dimensionshoundary of the boundary principle, 3> = 0, one
gets thedynamical equationfor matter and fields.

2.9 BLACK HOLES AND SINGULARITIES

Black Holes and Gravitational Collapse

Collapse of a spherically symmetric star to a dense configufZtitrcan on
occasion put enough mass inside a spherical surface of circumference-2
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as to make the terms(1 — 2% )ds2 and(1 — 2 )~1dr? in the metric (2.6.35)
reverse sign inside this surface. By analyzing the radial light comemnd

¢ constant), as calculated froi3?> = 0 in the Schwarzschild coordinates of
expression (2.6.35), we findthé} =+(1- ZTM )tendsto zero asitapproaches
the regionr = 2M, and inside this region, where < 2M, the future light
cones point inward, toward = 0 (fig. 2.8). Since particles, or photons, prop-
agate within, or on, the light cones, no photon can escape from such a region,
nor any particle that follows classical physics. It is no wonder that such a col-
lapsed star receivé@ithe name black hole’19.97-101.14%g early as 1967. This
strange behavior of the Schwarzschild spacetime geometry extends over the
region wherer is less than the so-called Schwarzschild radiys= 2M. A

black hole with Earth mass has a Schwarzschild radius of about 0.88 cm and
one of Sun’s mass/, of about 3 km.

The X-ray telescope UHURU floating above the atmosphere discovered in
1971 (see ref. 130) the first compelling evidence for a black hole, Cygnus
X-1. Its mass is today estimated as of the order oM (since then, other
black hole candidates have been found in X-ray binary systems, for example in
nova V404 Cygni*? and in Nova Muscaé®). Recently, H. Ford et al., using
the Faint Object Spectrograph of thieibble Space Telescopeave observed
gas orbiting at high velocity near the nucleus of the elliptical galaxy M87.
This observation provides a decisive experimental evidence for a supermassive
black hole, source of the strong gravitational field that keeps the gas orbiting
(see picture 4.5, p. 203). A star collapses by contradtiol? after the end of
the nuclear reactions that kept the star in equilibrium, if the mass of the star is

4
t

A

1
! world line
of test particle

v v ? world lines
of photons

1
!

| <

M

FIGURE 2.8. Futurelightconesin Schwarzschild coordinates outside, near, andinside
the regionr = 2M.
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larger than a critical value, thezitical mass(in general relativity, for a neutron
star and depending from the equation of state used, at ma&t3M; the
Chandrasekhar limifor the mass of a white dwarf is about I2).

The first detailed treatment of gravitational collapse within the framework of
Einstein geometrodynamics was given in 1939 by Oppenheimer and SAyder.
For simplicity they treated the collapsing system as a collection of dust particles
(p = 0), so that all the problems of pressure and temperature could be over-
looked. Each particle would then move freely under the gravitational attraction
of the others. More realistic equations of state have been latePti$adithout
avoiding the collapse.

However, do we know enough about matter to be sure that it cannot success-
fully oppose collapse? We understand electromagnetic radiation better than we
understand the behavior of matter at high density. Then why not consider a star
containing no matter at all, an object built exclusively out of light, a “gravi-
tational electromagnetic entity” or “geon,” described in section 2.10, deriving
its mass solely from photons, and these photons held in orbit solely by the
gravitational attraction of that very mag§?t turns out that a geon has the
stability—and the instability—of a pencil standing on its ¥The geon does
not let its individual photons escape any more than the pencil lets its individual
atoms escape. But that swarm of photons, collectively, like the assembly of
atoms that make up the pencil, collectively, can fall one way or the other. Start-
ing slowly at first, it can expand outward more and more rapidly and explode
into its individual photons. Equally easily, it can fall the other way slowly at
first, then more and more rapidly to complete gravitational collapse. Thus it
does not save one from having to worry about gravitational collapse to turn
from matter to “pure” radiation.

A closer look at matter itself shows that “the harder it resists, the harder
it falls”: pressure itself has weight, and that weight creates more pressure, a
“regenerative cycle” out of which again the only escape is collapse (see%4.5).

Gravitational collapse will have quite a different appearance according as it
is studied by a faraway observer or a traveler falling in with, and at the outskirts
of, the cloud of dust. The traveler will arrive in a very short time at a condition
of infinite gravitational stress. If he sends out a radio “beep” every second of
his existence, he will get off only a limited number of messages before the
collapse terminates. In contrast, the faraway observer will receive these beeps
at greater and greater time intervals; and, wait as long as he will, he will never
receive any of the signals given out by the traveler after his crossing of the
intangible horizony, = 2M. Moreover, the cloud of dust will appear to the
faraway observer, not to be falling ever faster, but to slow up and approach
asymptotically a limiting sphere with the dimensions of the horizon. As it
freezes down to this standard size it grows redder and fainter by the instant, and
quickly becomes invisible. In other words, the observer on the surface of the
collapsing star will pass through the horizon in a finite amount of his proper
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time, measured by his clocks. In contrast, an observer far from the collapsing
star will see the collapse slow down and only asymptotically reach the horizon.
However, since the intensity of the light he receives will exponentially decrease
as the surface of the star approaches the horizon, after a short time he essentially
will not receive any more light emitted from the collapsing star (however, see the
Hawking radiation below). This phenomenon of different speed of the collapse

is due to the gravitational time dilation of clocks, explained in section 3.2.2, and
experimentally observed in a variety of experiments in weak fields (§ $2.2).
From the metric (2.6.35), we have

interval of proper time

measured by an externgl

observer, at’, near the
horizonr, = 2M

2M \ Y2 2M \ Y2
(1_) m:<1_ ) At
r/ r/

interval of proper time
= ¢ x | measured by an asymptot (2.9.1)
observer

A.L’|r’;2/l/l =

wheres = (1— Zr—M )2 « 1. This is the sense in which time goes slower near

a black hole. Put an atomic clock on the surface of a planet. Let it send signals to
a higher point. The interval from pulse to pulse of this clock is seen to be greater
than the interval between pulse and pulse of an identical clock located at the
higher point. In this sense the clock closer to the planet’s surface goes slower
than the clock further away. Likewise a clock somehow suspended close above
a black hole, measuring proper timérgy = (1 — 22)Y2Ar = sAt, will

send signals to a faraway observer, equipped with an identical clock, measuring
proper time:At,, = Ar = Atgp/e. Therefore, the spacing between ticks of
the clock just above the black hole is seen to be much larger than the spacing
between ticks of the clock of the faraway observer.

Features of a Black Hole

Not even light signals or radio messages will escape from inside the horizon of
the collapsed object. The only feature of the black hole that will be observed is
its gravitational attractiot—1°11%(however, see the Hawking radiation below).
What falls into a black hole carries in mass and angular momentum, and it
can also carry in electric charge. These are the only attributes that a black
hole conserves out of the matter that falls into it. All other particularities, all
other details, all other physical properties of “matter” are extinguished. The
resulting stationary black hole, according to all available theoretical evidence,



THE BARTLETT PRESS, INC. CIUFOLIN  4:00 P.M. 6 - 11T - 1995

EINSTEIN GEOMETRODYNAMICS 91

is completely characterized by its mass, its charge, and its angular momentum,
and by nothing more. Jokingly puta‘black hole has no hair!

Of the number of particles that went in not a trace is left, if present physics
is safe as our guide. Not the slightest possibility is evident, even in principle,
to distinguish between three black holes of the same mass, charge, and angular
momentum, the first made from particles, the second made from antiparticles,
and the third made primarily from pure radiation. This circumstance deprives
us of all possibility to count or even define the number of particles at the end
and compare it with the starting count. In this sense the laws of conservation of
particle number are not violated; they are transcended.

The typical black hole is spinning and has angular momentum. This is a very
strange kind of spin. One cannot “touch one’s finger to the flywheel” to find
it. The flywheel, the black hole, is so “immaterial,” so purely geometrical, so
untouchable, that no such direct evidence for its spin is available. Evidence for
the spin of the black hole is obtainable by indirect means. For this purpose it
is enough to put a gyroscopic compass in polar orbit around the black hole.
The gyroscopic compass, pointed originally at a distant star, will slowly sweep
about the circuit of the heavens, in sympathy with the rotation of the black hole,
but at a far slower rate. At work on the gyro, in addition to the normal direct
pull of gravity, is a new feature of geometry predicted by Einstein’s theory. This
“gravitomagnetic force” is as different from standard gravity as magnetism is
different from electricity. An electric charge circling in orbit creates magnetism.
A spinning mass creates gravitomagnetism.

We are far from being able today to observe gravitomagnetism of a spinning
black hole. However, space experiments are in active development (GP-B and
LAGEOS llI; chap. 6) to measure the gravitomagnetic effects, on an orbiting
gyroscope, due to the slow rotation of Earth.

The Event Horizon

Using the Schwarzschild coordinates of expression (2.6.35), at the Schwarz-

schild horizon,rs = 2M, we havegiy = —go; 2% oo. However,
the Schwarzschild horizonis not a true singularity but just eoordinate
singularity .

The quantities that have an intrinsic geometrical meaning, independent from
the particular coordinates that are used, are the scalar invariaotsstructed
using the Riemann curvature tensor and the metric tensor. No invétiailt
with the curvature and metric tensors, diverges on the horizog, 2M. The
Schwarzschild horizon is just a pathology of the coordinates of expression
(2.6.35), but not a true geometrical singularity (see below). Indeed, with a coor-
dinate transformation, for example to Eddington-Finkelsf&itP3coordinates,
or to Kruskal-Szekeré®1%coordinates, one can extend the solution (2.6.35)
to a solution covering the whole Schwarzschild geometry with nonsingular
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FIGURE 2.9. Alternative interpretations of the three-dimensional “maximally ex-
tended Schwarzschild metric” of Kruskal at timie= 0. (a) A connection in the sense

of Einstein and Rosen (Einstein-Rosen bridéfebetween two otherwise Euclidean
spaces. (b) and (c) &wvormhole connecting two regions in one Euclidean space, in (c)
not orientable with the topology of adbius strip (in the case where these regions are
extremely far apart compared to the dimensions of the throat of the wormhole). Case (a)
has the same curvature but different topology from cases (b) and (c). For a discussion
on causality in a case of type (b) or (c) see refs. 107-109 and 138-141.
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metric components at, = 2M (see fig. 2.9). With the transformation to
Kruskal-Szekeres coordinates19

J=( —1 %e’/“MCOSh r
“\2m aAM

= -1
M

for r > 2M

for r <2M, (29.2)

r
' =1—- —
(-

one thus gets

32M3
ds? — () oT/2M (—dt/2+dx'2)
r (2.9.3)

+ 2, ) (d6? + sin? 0dg?)

wherer is a function ofx” andt’ implicitly determined, from expression (2.9.2),
by

(2;/[ - 1) &M — 2 2, (2.9.4)
The metric (2.9.3), in Kruskal-Szekeres coordinates, explicitly shows that the
Schwarzschild geometry is well-behavedrat= 2M and that is possible

to extend analytically the Schwarzschild solution (2.6.35) to cover the whole
Schwarzschild geometry (see fig. 2.9).

Black Hole Evaporation

In 1975 Hawking'? discovered the so-called processtack hole evaporation

(fig. 2.10). Quantum theory allows a process to happen at the horizon analogous
to the Penrose proce$s.In the Penrose process two already existing particles
trade energy in a region outside the horizon of a spinning black hole (see 2.6.36)
called the ergosphere, the only domain where macroscopic masses of positive
energy and of negative energy can coexist. Because the ergosphere shrinks to
extinction when a black hole is deprived of all spin, the Penrose process applies
only to a rotating, or “live,” black hole. In contrast, the Hawking process takes
place at the horizon itself and thus operates as effectively for a nonrotating black
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Time—_____ 5

Black Hole

FIGURE 2.10. The Hawking!® evaporation process capitalizes on the fact that space

is nowhere free of so-called quantum vacuum fluctuations, evidence that everywhere
latent particles await only opportunity—and energy—to be born. Associated with such
fluctuations at the surface of a black hole, a might-have-been pair of particles or photons
can be caught by gravity and transformed into a real-life particle or photon (solid arrow)
that evaporates out into the surroundings and an antiparticle or counterphoton (dashed
arrow) that “goes down” the black hole.

hole as for a rotating one. Furthermore, unlike the Penrose process, it involves
a pair of newly created microscopic particles.

According to the uncertainty principle for the energyE Ar > h, that is,
space—pure, empty, energy-free space—all the time and everywhere experi-
ences so-called quantum vacuum fluctuations at a very small scale of time, of
the order of 10%* s and less. During these quantum fluctuations, pairs of parti-
cles appear for an instant from the emptiness of space—perhaps an electron and
an antielectron pair or a proton and an antiproton pair. Particle-antiparticle pairs
are in effect all the time and everywhere being created and destroyed. Their de-
struction is so rapid that the particles never come into evidence at any everyday
scale of observation. For this reason, the pairs of particles everywhere being
born and dying are called virtual pairs. Under the conditions at the horizon, a
virtual pair may become a real pair.

In the Hawking process, two newly created particles exchange energy, one
acquiring negative energyE and the other positive enerdj Slightly outside
the horizon of a black hole, the negative energy photon has enoughtime
to cross the horizon. Therefore, the negative energy particle flies inward from
the horizon; the positive energy particle flies off to a distance. The energy it
carries with it comes in the last analysis from the black hole itself. The massive
object is no longer quite so massive because it has had to pay the debt of energy
broughtin by the negative energy member of the newly created pair of particles.
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Radiation of light or particles from any black hole of a solar mass or more
proceeds at an absolutely negligible rate—the bigger the mass the cooler the
surface and the slower the rate of radiation. The calculated Bekenstein-Hawking
temperature of a black hole ofid,, is only 2x 10~8 degrees above the absolute
zero of temperature. The total thermal radiation calculated to come from its
986 square kilometers of surface is only abostt 10-2° watt, therefore this
evaporation process would not be able to affect in any important way black
holes of about one solar mass or more. A black hole of any substantial mass is
thus deader than any planet, deader even than any dead moon—when it stands
in isolation.

Singularities

Ther = 2M region of the Schwarzschild metric (2.6.35) is a mere coordi-
nate singularity; however, the= 0 region, wherggo = —g;1 =% o0, is a

true geometrical singularity, where, as for the big bang and big crunch singu-
larities of some cosmological models (see chap. 4), some curvature invariants
diverge; for example the Kretschmann invariant for the Schwarzschild metric
iS Ry s RV ~ ™ =8 o0 (see § 6.11).

Indeed, besides coordinate singularities, or pathologies of a coordinate sys-
tem removable with a coordinate transformation, there are various types of true
geometrical singularitie¥'?-11%

Usually, in a physically realistic solution, a singularity is characterized by
diverging curvaturé? However, on a curved manifold the individual compo-
nents of the Riemann tensor depend on the coordinates used. Therefore, one
defines the true curvature singularities using the invariants built by contracting
the Riemann tensak®g,,,,, with g,z and withe,g,,,. The regions where these
invariants diverge are callestalar polynomial curvature singularities. One
may also measure the components of the Riemann tensor with respect to a local
basis parallel transported along a curve. In this case the corresponding curvature
singularities are callegdarallelly propagated curvature singularities.

Itis usual to assume that spacetime is a differentiable manifold (i.e., a mani-
fold that is covered by a family of charts, such that in the intersections between
the charts, the coordinate8 of a chart as a function of the coordinatefsof
another charty® = x*(x%), are continuous and with continuous derivatives,
C*), where space and time intervals and other physical quantities can be mea-
sured, and standard equations of physics hold in a neighborhood of every event.
Then a curvature singularity is not part of the differentiable manifold called
spacetime. Therefore, in such manifolds with singularities cut out, there will
exist curves incomplete in the sense that they cannot be extended.

To distinguish between different types of incompleteness of a manifold, var-
ious definitions have been given. First, a manifold is called inextendible if
it includes all the nonsingular spacetime poittt§he definition of geodesic
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completeness is useful to characterize an incomplete manifold. A manifold is
called geodesically complete if every geodesic can be extended to any value
of its affine parameter (§ 2.4). In particular a manifolchi timelike or null
geodesically completgif it has incomplete timelike or null geodesics. In this
case the history of a freely moving observer (or a photon), on one of these
incomplete geodesics, cannot be extended after (or before) a finite amount of
proper time. However, this definition does not include the type of singularity
that a nonfreely falling observer, moving with rockets on a nongeodesic curve,
may encounter in some manifolds. To describe these types of singularities on
nongeodesic curves, one can give the definition of bundle-completeness or b-
completeness. One first constructs on any continuous curve, with continuous
first derivatives, a generalized affine parameter that in the case of a geodesic
reduces to an affine parameter. An inextendible manifold (with all nonsingu-
lar points) is callecbundle-complete or b-complete if for every curve of

finite length, measured by the generalized affine parameter from a ppint
there is an endpoint of the curve in the manifold. Bundle-completeness implies
geodesic completeness, but not vice versa. Usually, in physically realistic so-
lutions, a spacetime which is bundle-incomplete has curvature singularities on
the b-incomplete curves (however, see the Hawking-Ellis discuSsadrthe
Taub-NUT space).

In 1965 Roger Penrose proved a theorem about the existence of singular-
ities 112 of the type corresponding to null geodesic incompleteness, without
using any particular assumption of exact symmetry.

Incomplete null geodesics exist on a manifold if:

1. Thenull convergence conditionis satisfiedRaﬂk“kﬁ > 0, forevery null
vectork®.

2. In the manifold there exists a noncompact Cauchy surface, that is, a
noncompact spacelike hypersurface such that every causal path without
endpoint intersects it once and only once (see chap. 5).

3. In the manifold there exists@dosed trapped surfaceA closed trapped
surface is a closed (compact, without boundary) spacelike two-surface
such that both the ingoing and the outgoing light rays moving on the null
geodesics orthogonal to the surface converge toward each other.

Such a closed trapped surface is due to a very strong gravitational field
that attracts back and causes the convergence even of the outgoing light rays.
An example of closed trapped surface is a two-dimensional spherical surface
inside the Schwarzschild horizon. Even the outgoing photons emitted from this
surface are attracted back and converge due to the very strong gravitational
field. Since not even the outgoing orthogonal light rays can escape from the
closed trapped surface, all the matter, with velocity less th#also trapped
and cannot escape from this surface. Closed trapped surfaces occur if a star
collapses below its Schwarzschild radius. As we have previously observed, this
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should happen if a cold star, white dwarf, or neutron star, or white dwarf or
neutron star core of a larger star, after the end of the nuclear reactions that kept
the star in equilibrium, has a mass above a critical value of a few solar masses (in
general relativity, for a neutron star, depending from the equation of state used,
at most~ 3 M). Therefore, any such star or star core should collapse within
the horizon and generate closed trapped surfaces and singularities, according
to various singularity theorerf$-1*>and in particular according to the 1965
Penrose theoreh? and to the 1970 Hawking-Penrose theoréf.

Singularities of the type of incomplete timelike and null geodesics occur in
a manifold, if:

1. Rypu®u? > 0 for every nonspacelike vectof.
2. Every nonspacelike geodesic has at least a point where:

ujo Rppystuttvju” u® # 0,

whereu® is the tangent vector to the geodesics (the manifold is not too
highly symmetric): this is the so-callegkneric condition

3. There are no closed timelike curves; this causality condition is called
chronology condition (see the 1949 &del model universe, discussed in
§ 4.6, as an example of solution violating the chronology condition).

4. There exists a closed trapped surface (or some equivalent mathematical
condition is satisfied; see Hawking and EIit8).

We note that the null convergence condition (1) of the Penrose theorem
is a consequence of theeak energy condition 7,zu*u? > 0, for every
timelike vectoru®, plus the Einstein field equation (2.3.14) (even including a
cosmological term)R.s — % Rgus+Agup = xTup. Thetimelike convergence
condition, R,su®uf > 0, for every timelike vector®, is a consequence of the
Einstein field equation plus the conditi@psu®u? > u®ue (3T — 4 A), for
every timelike vectorn®; for A = 0 this is called thetrong energy condition
for the energy-momentum tensor.

We conclude this brief introduction to spacetime singularities by observing
that, probably, the problem of the occurrence of the singularities in classical
geometrodynamics might finally be understébdnly when a consistent and
complete quantum theory of gravit{1%is available. Question: Does a proper
quantum theory of gravity rule out the formation of such singularities?

2.10 GRAVITATIONAL WAVES

As in electromagnetism in which there are electromagnetic perturbations propa-
gating with speed in a vacuum—electromagnetic waves—Einstein geometro-
dynamics predicts curvature perturbations propagating in the spacetime—
gravitational waves!!’-121
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In this section we derive a simple, weak field, wave solution of the field
equation (2.3.14). Let us first consider a perturbation of the flat Minkowski
metricnqg:

8ap = Map + hap (2.10.1)
whereh,g is a small perturbation af.s: |has| < 1. We then define
s = 1% hog
h*f = n*nfPh,, (2.10.2)
h=h%=n"hs,.
Therefore, to first order ifhq4|, we have
g% = nf — pob, (2.10.3)

From the definition of Ricci tensor (§ 2.3), we then have up to first order

1
Ry =T, — T35 5= 5 (—Ohap + h% poa + W a0p — hag) (2.10.4)

where = n*f ﬁ is the d’Alambertian operator. Therefore the Einstein
field equation, in the alternative form (2.3.17), can be written

1
—Dlrap + h° proa + 1o — hap = 167 (Taﬁ - 7%,3T) (2.10.5)

2
whereT = n°?T,, = — iﬂ R. With an infinitesimal coordinate, or gauge,
transformationx™® = x* + £* (see § 2.6), we then have
hog = hap — Eap — Epa (2.10.6)

where, of course, is still a solution of the field equation (gauge invariance of
the field equation). Therefore, if f@, we choose a solution of the differential
equation

1
Dsa = haa,a - éhaa.a ’ (2107)
we have
1 1
Woho — W% e =h" — —h%gq —Ey0° = 0. 2.10.8
, > : , 5o &, ( )

In this gauge(h”, — %S%h/),a = 0, sometimes called tHeorentz gauge,
the field equation becomes (dropping the priméjp)

1
Uhep = —167 (Taﬁ - énaﬁT). (2.10.9)
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As in electromagnetisrif, a solution to this equation is the retarded potential:

Top — 2napT| t — |x — X'
hop(x, 1) = 4/{ [Ter 2’7"“' Jo g = x) }d%/. (2.10.10)
X — X

This solution represents a gravitational perturbation propagating at the speed
of light, c = 1. WhenT,4 = 0, we then have, in the Lorentz gauge,

Ohep = O. (2.10.12)

This is the wave equation fdr,z. We recall that in electromagnetism, in the
Lorentz gaugeA® , = 0, we have the sourceless wave equatiomtfa ]1AY =
0. Correspondingly, a simple solution of the wave equation (2.10.11L),fois
a plane wave. By choosing theaxis as the propagation axis of the plane wave,
we then have
32 32
( 972 at2
wherehes = hap(z £ t), that is,hg is a function of(z & 1), wherec = 1.
From expression (2.10.6), it follows that the Lorentz condition (2.10.8) and
the simple form (2.10.11) of the vacuum field equation/igg are invariant
for any infinitesimal transformation™ = x* + &¢, if €% is a solution of
0&* = 0. Here gravity is similar to electromagnetism where, with the gauge
transformatiom’* = A%+ ¢“,if (¢ = 0, the Lorentz condition is preserved,
AY, = A%, = 0, and we still havélA’* = 0. Therefore, by performing
an infinitesimal coordinate transformation, with the four components®*of
solutions of0&* = 0, for a plane gravitational wavé,s = heg(z £ 1), itis
possible to satisfy the four conditionsy = 0 andkh = h°, = 0; that is, the
trace ofh, equal to zero. Since in this gauge we hatig — 5% 3h = h*g, the
Lorentz gauge condition becomes simpfy, , = 0. Therefore, for the weak
field plane gravitational wavé.s(z £ t), and more generally for any weak
field gravitational wave, linear superposition of plane waves, in this gauge,
fromh’,, = 0, we can setgg = O.
Summarizing in thigauge calledtransverse-tracelesgtransverse because
the wave is orthogonal to its direction of propagation), we have

)haﬁ —0 (2.10.12)

hio = 0.i.e.,h}} has spatial components only, (2.10.13)
and

AT =n"T", =0, i.e.,h)} is traceless, (2.10.14)
and

h'™x = 0,i.e.,hlT is transverse. (2.10.15)

Finally, from expressions (2.10.13), (2.10.14), and (2.10.15), for the plane wave
hl}(z =+ t) described by equation (2.10.12), apart from integration constants,
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in the transverse-traceless gauge wehgét= 1] = I = 0, and a solution
toOhy; = 0is

hiy = —hjy, = Ape @07
, (2.10.16)
hTT — hTT — A e*la)(ffz)
Xy yx X

where as usual we take the real part of these expressions, with all the other com-
ponents ohl} equal to zero to first order. This expression (2.10.16) describes a
plane gravitational wave as a perturbation of the spacetime geometry, traveling
with speedc. This perturbation of the spacetime geometry corresponds to the
curvature perturbatioRiojo = —Rioj: = Rizjz: = — 5 h]y traveling with
speed on the flat background, wheteand;j are 1 or 2.

In this simple case of a weak field, plane gravitational wave, in the transverse-
traceless coordinate system (2.10.13)—(2.10.15), one can easily verify that test
particles originally at rest in the flat backgroung; before the passage of the
gravitational wave will remain at restith respect to the coordinate system
during the propagation of the gravitational wave. In fact, from the geodesic
equation (2.4.13), to first order i}, we have

Du® __ du®
ds ~— ds
However, theproper distancebetween the two test particles at restrinand
x'+dx'isgivenbydi? = gy dx'dx*. Therefore, since;; = 1, +hi;x changes
with time, the proper distance between the test particlescivdhgewith time
during the passage of the gravitational wave. For a plane wave propagating
along thez-axis in the transverse-traceless gauge, the proper distance between
particles in thexy-plane is given by

—=0. (2.10.17)

1
2
di = [(1 + hII) dx? + (1 - hg) dy? + 20 TTdx dy} 21018

For the particlesA, B, andC of figure 2.11, on a circumference with center at
x* = 0, with coordinates
(1
v= (7 50
from the expression (2.10.18) fdt and from the expression (2.10.16) fgl’
andh!T, we immediately find the behavior of the proper distance between test
particles on a circumference due to the passage of a plane gravitational wave
perpendicularly to the circumference, behavior that is shown in figure 2.11.
Casel, A, # 0andA, = 0, and case llA, = 0andA, # 0, describe two
waves with polarizations at 4®ne from the other. Of course one can get the
same result by using the geodesic deviation equation (see § 3.6.1).

Xy =(,0,0); ) ; and x. =(0,1,0) (21019
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FIGURE 2.11. Effect of weak plane gravitational wave, propagating along thgis,
on the proper distance between a ring of test particles in thglane.



THE BARTLETT PRESS, INC. CIUFOLIN  4:00 P.M. 6 - 11T - 1995

102 CHAPTER 2

We observe that in general relativity there are gravitational wave pulses that
after their passage leave test particles slightly displaced from their original
position for a very long time compared to the duration of the pulse (the pulse
is characterized by a nonzero curvature tensor); thus, after the propagation of
such gravitational-wave pulse, the position of the test particles may represent a
record of the passage of the gravitational wave. This phenomenon is sometimes
calledposition-coded memoryand may be a linear effééf~?%r an effect due
to nonlinear term€8 in the Einstein field equation. Gravitational-wave pulses
with avelocity-coded memoryhave been also inferred in general relativiy.

By applying to a plane gravitational wave the definition (2.7.18) for the
pseudotensor of the gravitational fiefd,in the TT gauge (2.10.13)—(2.10.15),
after some calculations one géts:

1 »
et (ALY (210.20)
where( ) means average over a region of several wavelengths. In particular,
applying this expression faﬁgw to the case of the plane gravitational wave
(2.10.16), traveling along theaxis withh,, = —h,, = A4 cosw(t — z) and

hyy = hyy = A, COSw(t — 7), We get

(OW = (W = _CW %wz (42 +42), (2.10.21)
thatis, theenergy-momentum pseudotensor for a plane gravitational ywage
agating along the-axis, averaged over several wavelengths. From section 2.7
we find that the expression (2.10.21) represents the flux of energy carried by a
plane gravitational wave propagating along thexis.

Finally, we give the so-calleduadrupole formula for the outgoing flux of
gravitational wave energy emitted by a system characterized by a weak gravita-
tional field and slow motion, that is, such that its si2eis small with respect to
the reduced wavelengtg? = # of the gravitational waves emitte®: <« % .

The transverse and traceless linearized metric perturbation for gravitational
waves in the wave zone, > *, and where the background curvature can be
ignored!'®13"has been calculated to pé!51:118.136,137

2
wherer — r is the retarded time; the distance to the source centethe
proper time of a clock at rest with respect to the source;!%ﬁdlhe transverse
(with respect to the radial direction of propagation of the gravitational waves)
and traceless part of the mass quadrupole moment of the source. For a source
characterized by a weak gravitational field and small stresses, the symmetric
reduced quadrupole momenf{traceless), of the source mass dengjtig given
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byt
1 2. 13
Flj — ;O(xixj — é(sijr )d’x. (2.10.23)

We can expand in powers o}f the Newtonian gravitational potentiél,
generated by this source, as a function of the reduced quadrupole mgment
By a suitable choice of origin at the source, we have

M 3 &anind 1
v=" 4 20 o2 (2.10.24)
r 2 3 ré

wheren’ = *7 By inserting the transverse and traceless metric perturbation
(2.10.22) in the expression (2.10.20) for the flux of energy carried by a gravita-
tional wave and by integrating over a sphere of radjuge then get the rate of
gravitational-wave energy from the source crossing, in the wave zone, a sphere
of radiusr at timer:

dE
o= / t7r2dQ = — / 1%%%dQ

1 PE ? 1 .
c <Z [ats,t,j(; — r)j| > =: (—I—,ﬂ- > (2.10.25)
where dQ2 = sinfdfd¢ and ( ) means an average over several
wavelengths.

From this formula for the emission of gravitational-wave energy due to the
time variations of the quadrupole moment, one can calculate the time decrease
of the orbital period of some binary star systems. This general relativistic theo-
retical calculation agrees with the observed time decrease of the orbital period
of thebinary pulsar PSR 1913+191fsee § 3.5.1).

Geons

In the 1950s one of U&found an interesting way to treat the concept of body in
general relativity. An object can, in principle, be constructed out of gravitational
radiation or electromagnetic radiation, or a mixture of the two, and may hold
itself together by its own gravitational attraction. The gravitational acceleration
needed to hold the radiation in a circular orbit of radius of the order of
c?/r. The acceleration available from the gravitational pull of a concentration
of radiant energy of masa8/ is of the orderGM /r?. The two accelerations
agree in order of magnitude when the radius of the order

r~GM/c? = (0.742 x 10728 cm/g) M. (2.10.26)
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A collection of radiation held together in this way is callegemn(gravitational
electromagnetic entity) and is a purely classical object. It has nothing whatso-
ever directly to do with the world of elementary particles. Its structure can be
treated entirely within the framework of classical geometrodynamics, provided
that a size is adopted for it sufficiently great that quantum effects do not come
into play. Studied from a distance, such an object presents the same kind of
gravitational attraction as any other mass. Moreover, it moves through space as
a unit, and undergoes deflection by slowly varying fields of force just as does
any other mass. Yet nowhere inside the geon is there a place where one can put a
finger and say “here is mass” in the conventional sense of mass. In particular, for
a geon made of pure gravitational radiatiogravitational geon—there is no
local measure of energy, yet there is global energy. The gravitational geon owes
its existence to a localized—but everywhere regular—curvature of spacetime,
and to nothing more.

In brief, a geon is a collection of electromagnetic or gravitational-wave en-
ergy, or a mixture of the two, held together by its own gravitational attraction,
that describemass without mass
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