
Chapter 3
Software engineering

The concept of organizational maturity emerged in early 1990s in the
software development industry. It departs from the old concepts of
software maturity, which fail to consider the impacts of organizational

maturity on software development.
The first model type includes traditional systems analysis techniques. The

second model type looks at the SEI Capability Maturity Model (CMM) and the
LBMS Process Engineer. The promises and problems of each are considered.

3.1 Software maturity
Software maturity refers to the maturity of the a software development life cycle
in developing a product—from concepts to operation. It is based on software
engineering principles stating that the models of software development are
derived from other engineering activities. Feasibility studies and product design

29

are some of the engineering activity examples. An overview of systems analysis
follows.

3.1.1 Traditional systems analysis
This section discusses three types of traditional system analysis:

• Original waterfall;

• Incremental waterfall;

• Spiral waterfall.

Traditional systems analysis started with the waterfall life cycle approach,
as developed in the late 1960s and early 1970s. This approach usually involves
four steps: requirements analysis and definition, software design, implementa-
tion, and testing.

The process begins with requirements analysis and design. When this step
is completed, the process moves on to the software design step. The process
continues until the project reaches its end.

This approach works primarily if requirements and software design remain
unchanged. However, in the real world the requirements and design do change.
In addition, errors in requirements and software design emerge at the end of a
project. The risks of changing requirements and software design are
unmeasurable.

To overcome some limitations of the original waterfall approach, incre-
mental and spiral waterfall approaches (see Figures 3.1 and 3.2) have been
considered. According to Edward Yourdan [1], each increment of software
development can be managed as a waterfall cycle. Barry Boehm [2] has suggested
a series of “increments” in software development. Yourdan refers to DeGrace
and Stahl [3] for the following illustration of an incremental life cycle.

In Figure 3.1, the life cycle consists of three main components: system
feasibility/validation, software plans and requirements/validation, and the pre-
liminary product design/verification. The product design component is
grouped into increments of detail design/verification. Each increment is treated
as a waterfall life cycle of the following phases:

1. Detail design;

2. Code/unit test;

3. Integration/product test;

30 Risk Management Processes for Software Engineering Models

4. Implementation/system test;

5. Operations and maintenance/revalidation.

If an error is found in an increment, the incremental life cycle allows
backtracking of the errors in the first previous increment. The backtracking
continues until it reaches the increment containing the source of error.

Implementation

System test

Operations and
maintenance

Revalidation

Integration

Product verification

Code

Unit test

Detailed design

Verification

Implementation

System test

Operations and
maintenance

Revalidation

Integration

Product verification

Code

Unit test

Detailed design

Verification

Software plans and
requirements

Validation

System
feasibility

Validation

Product design

Verification

Figure 3.1 The incremental life cycle. (After: [1].)

Software engineering 31

In addition to the series of increments, Barry Boehm has discussed the
possibility of developing and managing a software productivity system as a series
of “spirals” (within the context of the culture of TRW Defense Systems Group).
Unlike the incremental life cycle, the Boehm spiral includes objectives, alterna-
tives, constraints, risk analysis, and prototyping in software development. It
identifies and analyzes risks of alternatives for each spiral.

The illustration shows the spiral is divided into four quadrants:

• Quadrant I: Determine objectives, alternatives, and constraints.

• Quadrant II: Evaluate alternatives, identify, and resolve risks.

• Quadrant III: Develop and verify next-level product.

• Quadrant IV: Plan next phases.

The horizontal axis divides the spiral into quadrants I and II in the upper
portion and quadrants III and IV in the lower portion of the model. It is obvious
that the upper portion consists of the objective, alternative, and constraint
determination components in quadrant I and the alternative evaluation and risk
resolution component in quadrant II, and the lower portion contains the product
development and verification component in quadrant III and planning next
phases component in quadrant IV. The planning next phase component in-
volves a review of the progress of prior steps and commitment of funds for the
next phase.

The spiral divides into four parts. Each is identified with a group function,
as follows:

• Spiral 1: Concept spiral;

• Spiral 2: Simulations spiral;

• Spiral 3: Models spiral;

• Spiral 4: Benchmarks spiral.

The first spiral is the innermost spiral. Each spiral has its own set of
determination, evaluation, development, and planning phases. For example,
spiral 2 identifies the risks in alternatives of the requirements validation phase of
the life cycle. Spiral 4 identifies the risks of the integration and test alternatives.

The concept spiral starts with the objectives, alternatives, and constraints
in the first quadrant. It proceeds to risk analysis of the alternatives and prototype
1 in the second quadrant. The spiral then moves to the concept of operation in
the third quadrant. It completes its round with the requirements and life cycle
plans in the fourth quadrant.

32 Risk Management Processes for Software Engineering Models

Then, the spiral progresses to the next phase: the simulations spiral. This
spiral requires another set of objectives, alternatives, and constraints for the
requirements phase. The risks in the requirement alternatives are identified and
resolved. The spiral moves to the third quadrant to develop and verify software

Prototype 1
R
A

Rqts. plan
life cycle

plan

Prototype 2
Prototype 3

Concept of
operation

Operational
prototype

Development
plan

Integration
& test

Requirements
validation

Design validation
& verification

Software
rqts.

Software
product
design

Risk analysis (RA)

Risk analysis

Risk analysis

Simulations Models Benchmarks

Detailed
design

Code
Unit
test

Integration
& test

Acceptance
test

Implementation

Develop,verify
next-level product

Evaluate alternatives;
identify, resolve risks

Cumulative
cost

Progress
through
steps

II

III

Plan
next phases

IV

Determine
objectives,
alternatives,
constraints

I

Commitment
Partition

Review

Figure 3.2 The spiral life cycle. (Source: [4]. © 1988 IEEE.)

Software engineering 33

requirements and requirements validation. It completes with a development
plan to prepare for the models spiral.

In this spiral, objectives, alternatives, and constraints of the development
phase are determined. This spiral identifies the risks of development alterna-
tives. It proceeds to develop and verify software product design, design valida-
tion, and design verification, and then to plan for the benchmarks spiral.

In this final spiral, the risks in integration alternatives are identified. It moves
to the next quadrant to develop and verify detailed design, unit test and code,
integration and test, acceptance test, and, finally, implementation.

The vertical axis shows the increase in cumulative cost from the implemen-
tation component of the benchmarks spiral in quadrant III to the risk component
in the outermost spiral. Risk analysis in the innermost spiral costs the least. The
costs between the components on each side of the vertical axis are theoretically
similar, such as between the development plan component in quadrant IV
and the design validation and verification component in quadrant III (see
Figure 3.2).

For easier readability, the author has transformed the spiral life cycle illus-
tration into Table 3.1, with a column of quadrants on the left side and a row of
spirals at the top. A user feedback component has been added to the end of spiral
4 (to indicate user input into next software releases).

The Boehm spiral model has its limitations. It is difficult to determine from
the table the type of risk analysis methodology used for each spiral. Risk analysis
is not an exact science, and appears to be a generic term in the second quadrant
in all four spirals. Other components are more specific for each spiral in the third
and fourth quadrants. For example, concept of operation, software require-
ments, software product design, and detailed design specifically belong to spirals
1 through 4 in the third quadrant. They are more identifiable than design as the
generic word for the third quadrant.

The spiral progresses through steps four times around the quadrants. Simi-
lar to the original waterfall model, the spiral completes the current step and
proceeds to the next step. However, errors are not detected until the spiral
reaches its end. Correcting the errors may be costly because of the many steps
involved in backtracking to the source of errors in the spiral.

3.1.2 Systems analysis with CASE tools

This section gives a general discussion of computer-aided software engineering
(CASE) and looks at systems analysis with CASE tools as the middle CASE
component. CASE is a software tool that provides automated assistance to
software development, software maintenance, or project management.

34 Risk Management Processes for Software Engineering Models

Alan S. Fisher [5] shows how CASE methodologies and tools have evolved since
1965, as follows:

• 1965 Structured methodologies;

• 1970 Data modeling techniques;

• 1975 Database 4GLs and database schema design;

• 1980 Design specification software tools;

• 1985 User prototype tools;

• 1990 Code generation tools.

Table 3.1 Viewing Spiral Life Cycle in Table Format

Action Spiral 1 Spiral 2 Spiral 3 Spiral 4

Quadrant I:
Determine
objectives,
alternatives, and
constraints

Quadrant II:
Evaluate
alternatives

Risk analysis Risk analysis Risk analysis Risk analysis

Identify and
resolve risks

Prototype 1 Prototype 2 Prototype 3 Operational
prototype

Quadrant III:
Develop and
verify next-level
product

Simulations Models Benchmarks

Concept of
operation

Software
requirements

Software
product design

Detailed design

Requirements
validation

Design validation
and verification

Unit test

Integration and
test

Acceptance test

Implementation

Quadrant IV:
Plan next phases

Requirements
plan; life plan

Development
plan

Integration and
test

User feedback

After: [4]

Software engineering 35

CASE tools automate existing system analysis and design methodologies
that have been practiced in various forms since 1970s and 1980s. Some tools
are limited in generating codes from specifications. Full automation of code
generation directly from specifications remains an academic subject.

The list should be updated to include the reverse engineering tools for 1995.
To date, reverse engineering is primarily limited to high-quality programs
written in high-level languages such as COBOL, C, and Ada. It is dependent on
the strengths of the CASE tool used. The merits of reverse engineering are
reflected in the development time it could save. CASE tools have not yet
included industry standard risk methodologies.

Today, more and more vendors are offering integrated CASE (I-CASE)
tools—either as a software package for a hardware platform or a set of packages
for diverse platforms. These tools facilitates the flow of data in an integrated
environment.

Breaking down I-CASE into components makes it easier to understand the
frame of reference for discussion. According to Michael Lucas Gibson [6], the
components contain upper, middle, and lower CASE tools. Upper CASE refers
to a component that supports computer-aided planning. Middle CASE refers to
a component that support systems analysis and design. Lower CASE refers to a
component that supports systems development (e.g., programming). The con-
cept of middle CASE emerged to reserve and expand the concept of upper CASE
for corporate planning.

With the advent of middle CASE tools, the waterfall life cycle has become
more manageable. Errors can be checked at any point of the cycle. Changes in
analysis requirements and definition are possible to correct the problems in the
later stages of the cycle, such as software design and specification. CASE tools
encourage the use and reuse of libraries of requirements, designs, and specifica-
tions to build a software product.

However, Len Fertuck [7], among others, considers the upper CASE as a
component on systems analysis and design (see Figure 3.3). For example,
Fertuck suggests that standard upper CASE products include analysis and
design tools, data modeling tools, and prototyping tools. The first two tools
apply to the requirements, analysis, design, and specification stages of the
development life cycle. This means when an error, for example, is found in the
design or specification stage, the analysis and design tool can be used to trace
the error to the requirements stage. When the error is corrected, the tool
automatically generates the changed data for the design or specification stage.

Like others, Fertuck acknowledges that lower CASE products include
prototyping tools, coding tools, testing tools, and implementation tools. Proto-
typing tools are useful for the analysis, design, specification, and code and test

36 Risk Management Processes for Software Engineering Models

stages. These tools act as a bridge between the upper and lower CASE products.
For example, if an error is found in the test stage, the prototyping tool is used to
locate the error in the analysis stage. To backtrack the source of error to the
requirements stage, the systems and analysis tool picks up the information from
the prototyping tool.

Gibson lists three major benefits of middle CASE, but fails to address the
risks associated with this CASE component. The first benefit provides easier
methods of changing system design via interactive dialog between the analysts
and the users. For example, the analysts consider and analyze the users’ needs,
and document the analysis with diagrams and dictionary entries. Then, the users
make suggestions after reviewing the diagrams and dictionary entries. The
analysts consider the suggestions and make appropriate changes to them.

The second benefit facilitates joint applications/design sessions. The end
users can quickly influence systems analysis and design. System professionals
interact with end users to document requirements at the beginning of develop-
ment projects. The end users do not wait until the end of the project to provide
their feedback to the system professionals.

The third benefit involves prototyping facility, which allows the analysts to
simulate the screens early in the analysis and design part of the project. Proto-
typing serves as the blueprint for building screens to browse, access, and update
data.

Analysis & design tools

Requirements Analysis Design

Data modeling tools

Specification

Prototyping

Code & test Implement

DBMS

Code/test

Implementation

Upper CASE products Lower CASE products

CASE workbench products

Figure 3.3 Case tools in development life cycle. (Source: [7].)

Software engineering 37

Vessey et al. [8] consider multiuser CASE tools as “collaborative support
technologies.” They require the collaboration of specialists working together to
develop a software product. Vessey’s model of a collaborative support environ-
ment shows that collaboration technology consists of cooperation technology
and coordination technology. Coordination technology is “teamware oriented”;
it involves coordination of group activities. Cooperation technology is group-
ware-oriented; it involves the cooperation of group members to communicate
and schedule meeting times about a product.

According to Vessey, an assessment of the cooperation requirements of the
CASE tools will require answers to the following questions: Does the tool
provide electronic mail facilities? Is it possible to provide anonymous feedback
to a team member on his/her work? CASE tools also involve coordination
activities in terms of control (namely, access control), information sharing (data
sharing, consistency enforcement, and concurrency control) and monitoring
(product and user). The following are examples of questions used to assess
coordination activities:

Control
Access Control Is it possible to force users to change their passwords peri-
odically? Is it possible to specify read-only passwords for certain parts of the
data dictionary? Can one analyst have read-only access to another analyst’s
work?

Information sharing
Data Sharing Is it possible to simultaneously display the diagrams on all
workstations? Is it possible to attach “electronic notes” to objects for all team
members to read?
Consistency Enforcement Does the tool automatically notify an analyst whose
work might be affected due to a change in the data dictionary? Is it possible to
freeze parts of the design work to protect it from changes?
Concurrency Control Is it possible to access the data dictionary concurrently?
If concurrent access is controlled by locking, can one query to find who has
locked the item of interest?

Monitoring
Product Can the tool flag changes to a data dictionary after a certain date? Can
the tool generate reports on every reference to an object in the dictionary?
User For any given user, is it possible to find the most recent login time, date,
and session length? For any given user, is it possible to query information on

38 Risk Management Processes for Software Engineering Models

user activity such as the number of changes made at the last login, or data
dictionary import/export operations performed on the dictionary?

It is obvious that most questions, more or less, assess risks associated with
collaborative and cooperative activities of the CASE tools.

3.2 Organizational maturity
This section looks at the organizational maturity, rather than software maturity,
in developing a product in an organization. SEI’s Capability Maturity Model
(CMM) is chosen from several software engineering models for discussion on
organizational maturity of software development processes. The model presents
a framework for process management software to automate software develop-
ment processes. A discussion of the LMBS Process Engineer product suite
follows the section on CMM.

3.2.1 SEI’s Capability Maturity Model
This section gives a brief history of the CMM and a discussion of the maturity
levels of the model. The section also covers an overview of the People Manage-
ment Capability Maturity Model (PM-CMM) and the Personal Software Process
(PSP). It shows how the maturity framework of the CMM is applied to the
PM-CMM and PSP.

The concept of organization maturity emerged in early 1990s in the software
development industry. It departs from the old concepts of software maturity that
fail to consider the impacts of organizational and management styles on software
development processes.

Humphrey [9] shows that software engineering is a better method of con-
trolling and managing software development than other attempts at developing
software in a chaotic work environment. In 1989, Humphrey presented a model
of the Software Engineering Institute’s software process maturity model as a
framework for evaluating and improving the process of developing software. The
model refers to the maturity of a software organization in improving the proc-
esses of developing a product (see Figure 3.4). The focus is shifted from fixing
problems to preventing them. The maturity is divided into five levels, as follows:

• Level 1: Initial process;

• Level 2: Repeatable process;

• Level 3: Defined process;

Software engineering 39

• Level 4: Managed process;

• Level 5: Optimizing process.

The following gives a brief description for each maturity level of the CMM.
Most organizations are at level 1 or level 2.

• Level 1: Initial process. Software process development at this stage is
semichaotic and depends on individual efforts. It provides an opportu-
nity for an automated approach for development and implementation
of software process changes.

• Level 2: Repeatable process. This stage looks at project management
controls for repeating the project successes. A set of predefined proc-
ess procedures could be used as templates for several approaches to
software development. Yourdon [1] has suggested software commit-
ment management, software planning and cost estimation, configura-
tion management, and change control.

Organizational
maturity

Level 5

Level 4

Level 3

Level 2

Level 1

Development
process

improvement criteria

Figure 3.4 Higher maturity level corresponds to improved development processes.

40 Risk Management Processes for Software Engineering Models

• Level 3: Defined process. Process definitions are built from the stand-
ardization of development activities in organization-wide software
processes. They can be used to tailor the procedures specific to a man-
agement or engineering process activity. Yourdon lists the following
needed to get to level 3: introduction of formal standards, inspections,
formal testing policies, advanced forms of configuration management,
formal process models, and establishment of a software engineering
process group.

• Level 4: Managed process.1 Detailed quantitative methods, such as
data gathering and analyses, are emphasized. They are used to meas-
ure the quality of the product and the process by which the product is
developed. A comprehensive metrics program would keep track of the
defects and the efforts to repair them.

• Level 5: Optimized process. The emphasis is placed on the quantita-
tive basis for continued capital investment in process automation and
improvement. Innovative process changes and technologies may be
used in quantitative feedback.

Martin Thomas [10] points that the CMM indicates “an ordering within
process improvement.” For example, if an organization is unable to establish
effective process management at level 2, the organization will not likely to show
any improvements within the process. As a result, the organization will not be
able to move to level 3.

One drawback of the CMM is that it emphasizes process, not people.
Continued process improvement requires significant changes in the way the
development organizations manage people. These are the changes that are not
fully accounted for in the CMM. To focus on developing the organization’s talent
in software and information systems development, PM-CMM was conceived as
an adaptation of the CMM. It was felt that as the process of developing people
management improves performance, the performance of their teams and projects
will improve (see Figure 3.5). Bill Curtis and others [11] show how the four
levels of CMM are adapted to people management, as follows:

• The repeatable level focuses on establishing people management prac-
tices. They include staffing, performance, training and career, compen-
sation and reward, as well as participatory culture.

• The defined level involves people management planning, knowledge
and skills analysis, and competency development. Team building inte-
grates the knowledge and skills needed to accomplish the project tasks.

Software engineering 41

• The measured level is concerned with establishing a quantitative un-
derstanding for the process effectiveness of people management prac-
tices. Knowledge, skills, and performance are measured.

• The optimizing level covers the issues of implementing people manage-
ment continuously. Continuous improvement of knowledge and skills
is input from quantitative feedback and adoption of human resources
innovation.

Both CMM and PM-CMM are suited for larger organizations that can
absorb large overheads. As noted by Humphrey [12], PSP has been developed
by the SEI to adapt the principles of software process improvement to small
organizations or groups. PSP includes only the CMM items found to be useful
for applications at the individual level. It has been found to improve engineers’
performance in personal software development process.

Although PSP has a maturity framework of CMM, it is not organized into
maturity levels. Instead, PSP progression consists of four components:

Organizational
maturity

Level 5

Level 4

Level 3

Level 2

Level 1

Performance
process

improvement criteria

Figure 3.5 Higher maturity level may correspond to improved people performance.

42 Risk Management Processes for Software Engineering Models

• PSP0: The baseline process;

• PSP1: The personal planning process;

• PSP2: Personal quality management process;

• PSP3: A cyclic personal process.

The baseline process establishes a baseline for measuring personal progress
in software development. The personal planning process includes size and
resource estimations of software development. With the personal quality man-
agement process, personal design and code reviews aim to help the engineers to
discover defects earlier in their processes.

The cyclic personal process, as described by Humphrey [13], starts with a
requirements and planning step for a large program and moves to a high-level
design step to partition the program into smaller elements. After this, the
elements are developed in PSP cycles. A PSP cycle consists of seven steps:
specify code, detailed design and design review, test development and review,
implementation and code review, compile, test and reassess, and recycle. The
process ends with an integration system test of a product.

The PSP work was conducted at Deimens Corporation Research and the
AIS Corporation in Peoria, Illinois. Digital Equipment Corporation and
Hewlett Packard Corporation indicated interest in introducing the PSP.

According to Yourdon [1], the following are other drawbacks of the CMM:

1. An organization cannot skip levels; for example, from level 1 to level
4. Much of the transition from one level to the next is cultural. The
organization cannot go directly from the semichaotic stage to the
stage of formal processes of software development.

2. It may take two or three years to move from one level to the next. On
the other hand, mergers or acquisitions could cause the organization
to fall back to lower levels. The mergers or acquisitions could result
in turnover of critical staff within senior management and technical
ranks.

3. Not many organizations are above level 1. As of 1993, the surveys
and assessments indicate that 81% of the U. S. sites are at level 1.

4. The organization should not depend on the enterprise-wide intro-
duction of new CASE tools to solve problems at level 1 and level 2.
Small-scale, pilot projects on new technologies may continue. The
organization must learn to improve development processes.

Software engineering 43

5. Level 3 is not the place for new software organizations to start. Newly
hired people have not worked together as a team.

Three other drawbacks are noted. First, the CMM does not recognize that
every project has a unique set of risks. Second, PM-CMM does not consider
risks in developing people management. Finally, PSP omits the importance of
risk assessment of personal software development process.

3.2.2 LBMS Process Engineer
This section discusses how the CMM provides LBMS, Inc., a maturity level
framework for developing Process Engineer (PE) 2.5—a process management
software. The product suite helps a development organization automate its
attempts to access and improve its capabilities in software development
processes.

According to Linda Garrett’s product review [14], PE 2.5 is more suited to
a large organization that can absorb the overhead costs of automating the model
more easily than smaller organizations. It is also adapted to organizations that
have proven track records of successes of managing people in a software devel-
opment workgroup. PE 2.5 assists the organization to start in the initial level of
the model. When the organization is ready, PE assists in the move to the next
level—one level at a time. PE 2.5 does not allow the organization to skip levels.
If the organization falls back by one level (i.e., level 3 to level 2) as a result of a
merger or acquisition, PE is useful in returning the organization to a higher level.

PE 2.5 permits project managers to build project plans from methodology
templates and automate the tracking and scheduling of application development
processes. Users can apply multiple risk analysis and estimating models and
customize reports.

PE 2.5 interfaces with a wide range of CASE tools and project scheduling
tools, such as Microsoft Project 3.0, Project Workbench 3.0 (Windows) from
Applied Business Technology Corp., and Timeline 5.0 for DOS from Symantec
Corp. In addition, PE 2.5 can invoke other systems development tools, includ-
ing LBMS System Engineer CASE tools.

The PE product suite consists of three components: PE/Process Library,
PE/Process Engineer, and PE/Process Manager. PE/Process Library is a reposi-
tory of process templates. Project Managers use PE/Process Engineer, a front-
end application, to assess, measure and improve software development
processes. PE/Process Manager provides a maintenance tool for the library.

44 Risk Management Processes for Software Engineering Models

In addition to predefined and customized process templates, the Process
Library contains predefined and customized process templates, configurable
metric models, and the Process Hyperguide. The templates are used to manage
a company’s software development activities, such as client/server, rapid deliv-
ery, project management, and strategic planning. Managers use metric models
to estimate and measure the development process and reconfigure the models
in response to changing business requirements.

Process Hyperguide is an online, hypertext reference of work processes and
development techniques. The reference contains eight parts: Selecting Adapt-
ing, Strategic Planning, Project Management, Client/Server, Rapid Delivery,
Classic, Express, and Incremental and Package. It does not reference metric
models as one of the main topics.

Process templates are adaptable work breakdown structures (WBS) that
provide all the stages, steps, tasks, and end products of a software development
process. New or modified templates are built from process kernel modules. PE
2.5 allows the building of a project WBS as a diagram or outline view, and the
tool will automatically reconstruct it in the complementary view. Project details
are added, such as roles/responsibilities, testing, tools, dependencies, new ac-
tivities, and new processes. Matrix Editor allows the editing of these details in a
matrix form.

PE 2.52 provides risk analysis, weighted average, variance, estimate, and
function point Albrecht models. Risk analysis assists a project manager to
eliminate, reduce, or recognize the impact of risk on the over all project or risk
categories (e.g., organizational and technical). It can take place at any point
during the project. The relative values of numbers obtained from risk analysis
are described as low, moderate, or high risk. Risk analyses are performed by
managers who can modify project plans to reflect the results.

Other models look at the quality of the process without consideration
for the probable risks to the project. Moreover, PE 2.5, unlike other process
management tools, has an expert process analyzer. As the name implies, the
analyzer checks the validity of new or modified processes and alerts the user of
invalidation.

In PE 2.5, the step-by-step instructions provide onscreen reminders of the
sequence of steps to accomplish each function in a project activity. The step-by-
step window stays open in front of all PE/Process Engineer or PE/Process
Manager screens, providing help for each step. The window can be iconized
when not needed. Online guidelines are available to assist the users in selecting
and adapting the right process templates.

Software engineering 45

PE 2.5 divides process management into five levels corresponding to the
CMM maturity levels: initial, repeatable, defined, managed, and optimized as
described below:

• At the ad hoc level (initial level), PE 2.5 allows an organization to auto-
mate the adoption of a methodology in assessing development proc-
esses for a project activity. Process success is dependent on individual
effort. Formal process for management and development does not exist
at this level.

• At the basic control level (repeatable level), PE/Library provides proc-
ess templates for various approaches to software development. These
templates can be reused for other projects. Basic project management
controls must be used to enable repetition of project successes via the
tracking of schedules, requirements and costs.

• At the process definition level (defined level), PE/Manager tools pro-
vide project managers with tools to change the templates or define new
process templates in response to changing business requirements.
These changes in the software process are documented, standardized,
and integrated into organization-wide software processes.

• At the process management level (managed level), PE 2.5 provides
configurable metrics and estimating formulas for detailed measure-
ments of the features, facets, and functionalities of the process and the
product. The results are collected to compare improvements for both
the process and product quality.

• At the process control level (optimized level), the product enables or-
ganizations to optimize their software development processes. Quanti-
tative feedback from the process and testing of new ideas and
technologies provides continuous process improvements.

Two drawbacks of PE 2.5 are noted. First, the software emphasizes work
processes and development techniques; it does not include people management
practices. Second, the capability to post electronic notes by remote users is not
available.

46 Risk Management Processes for Software Engineering Models

Notes

1. Level 2 and level 3 organizations measure lines of codes or function points to
determine the program size. These organizations also use measurements to count
the number of people assigned to a project and the time they spent on the project.

2. PE 2.5.3 provides two metrics models: Contingency and Risk, and Object Based.

References

[1] Yourdon, Edward, Decline & Fall of the American Programmer, Englewood Cliffs,
NJ: PTR Prentice-Hall, 1993.

[2] Boehm, Barry, “A Spiral Model of Software Development and Enhancement,”
Proc. of an Int’l Workshop on the Software Process and Software Environments,
Coto de Caza, Trabuco Canyon, California, 1985.

[3] DeGrace, Peter, and Leslie Hulet Stahl, Wicked Problems, Righteous Solutions:
Catalogue of Modern Software Engineering Paradigms, Englewood Cliffs, NJ:
Yourdon Press/Prentice-Hall, 1990.

[4] Boehm, Barry W., “A Spiral Model of Software Development and Enhancement,”
Computer, May 1988, pp. 61–72.

[5] Fisher, Alan S., CASE Using Software Development Tools, Second Edition, New
York, NY: John Wiley & Sons, 1991.

[6] Gibson, M. L., “The CASE Philosophy,” BYTE, Vol. 4, No. 4, April 1989,
pp. 209–218.

[7] Fertuck, Len, Systems Analysis and Design with CASE Tools, Dubuque, IA:
William C. Brown Publishers, 1992.

[8] Vessey, Iris, and V. P. Sravanapudi., “CASE Tools: Collaborative Support
Technologies,” Communications of the ACM, Vol. 35, No. 1, Jan. 1995, pp. 83–94.

[9] Humphrey, Watts S., Managing the Software Process, Reading MA: Addison-
Wesley, 1990.

Software engineering 47

[10] Thomas, Martin, “Top-Down vs. Bottom-Up Process Improvement,” IEEE
Software, Vol. 11, No. 4, July 1994, p.12.

[11] Curtis, Bill B., W. E. Hefley, and S. M. D. Konard, People Management Capability
Maturity Model, Draft Version 0.2 (for public review), Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, November 1994.

[12] Humphrey, Watts S., “The Personal Software Process,” Software Process
Newsletter (Software Engineering Technical Newsletter), IEEE Computer Society
Technical Council on Software Engineering, Vol. 13, No. 1, Sept. 1994.

[13] Humphrey, Watts S., “The Personal Software Process Paradigm” (Tutorial
Presentation), 1994 Software Engineering Process Group National Meeting,
Dallas, TX, April 25–28, 1994.

[14] Garret, Linda, “Product Review: LBMS’ Process Engineer 2.5,” Application
Development Trends, Software Productivity Group, Inc., Vol. 1, No. 12,
Northboro, MA, Nov. 1994, pp. 75–76.

48 Risk Management Processes for Software Engineering Models

	3 Software engineering 29
	3.1 Software maturity 29
	3.2 Organizational maturity 39
	Notes 47
	References 47

